Peize Liu St. Peter's College University of Oxford

Problem Sheet 4

C2.1: Lie Algebras

Assume throughout the problems that we work over a field k which is algebraically closed of characteristic zero, and all Lie algebras and representations are finite dimensional over k, unless the contrary is explicitly stated.

Question 1

- (i) Show directly that if $\phi : \mathfrak{g}_1 \to \mathfrak{g}_2$ is a surjective homomorphism of semisimple Lie algebras and x = s + n is the Jordan decomposition of $x \in \mathfrak{g}_1$, then $\phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x) \in \mathfrak{g}_2$.
- (ii) Show that homomorphisms between semisimple Lie algebras are compatible with the Jordan decomposition, that is, if $\mathfrak{g}_1, \mathfrak{g}_2$ are semisimple Lie algebras, and $\phi : \mathfrak{g}_1 \to \mathfrak{g}_2$ is a homomorphism, then if x = s + n is the Jordan decomposition of $x \in \mathfrak{g}_1, \phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x)$ in \mathfrak{g}_2 .

(For this part you may assume the fact, stated in lectures, that if x = s + n is the Jordan decomposition of x and $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ is a representation, then $\rho(s)$ is semsimple and $\rho(n)$ is nilpotent.)

Proof. (i) The homomorphism $\phi : \mathfrak{g}_1 \to \mathfrak{g}_2$ induces a representation $\psi : \mathfrak{g}_1 \to \mathfrak{gl}(\mathfrak{g}_2)$, defined by $\psi(x) = \operatorname{ad} \phi(x)$. For $y \in \mathfrak{g}_2$, since ϕ is surjective, there is $z \in \mathfrak{g}_1$ such that $y = \phi(z)$. Then

$$\psi(x)(y) = [\phi(x), y] = [\phi(x), \phi(z)] = \phi([x, z]) = \phi(\operatorname{ad}(x)(z))$$

- $\phi(s)$ commutes with $\phi(n)$: $[\phi(s), \psi(n)] = \phi([s, n]) = 0$.
- Since *n* is nilpotent, there exists $k \in \mathbb{N}$ such that $(\operatorname{ad} n)^k = 0$. Then for $y \in \mathfrak{g}_2$

$$\psi(n)^k(y) = \psi(n)^{k-1} \circ \phi(\operatorname{ad}(n)(z)) = \phi(\operatorname{ad}(n)^k(z)) = 0$$

Hence $\psi(n)$ is nilpotent. $\phi(n)$ is ad-nilpotent.

• Since s is semisimple, the minimal polynomial p of ad $s \in \mathfrak{gl}(\mathfrak{g}_1)$ has distinct roots over k. Note that

$$p(\psi(s))(y) = \psi(p(s))(y) = \phi(ad(p(s))(z)) = \phi(p(ad(s)(z))) = 0$$

Hence $p(\psi(s)) = 0$. The minimal polynomial of $\psi(s)$ divides p. Therefore the minimal polynomial of $\psi(s)$ must have distinct roots. We deduce that $\psi(s)$ is semisimple. $\phi(s)$ is ad-semisimple.

Now by the uniqueness of abstract Jordan decomposition, $\phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x)$.

(ii) Since $\psi : \mathfrak{g}_1 \to \mathfrak{gl}(\mathfrak{g}_2)$ is a representation, $\psi(s)$ is semisimple and $\psi(n)$ is nilpotent. Then $\phi(s)$ is ad-semisimple and $\phi(n)$ is ad-nilpotent. Clearly $[\phi(s), \phi(n)] = 0$. By the uniqueness of abstract Jordan decomposition, $\phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x)$.

q(s) is semisimple on y/gi), not endonly on one.

Question 2

- (i) Show that if V is a (finite dimensional) representation of \mathfrak{sl}_2 and $V = \bigoplus_{k \in \mathbb{Z}} V_k$ is the decomposition of V into (generalised) eigenspaces of h, then the number of irreducible constituents of V is equal to $\dim(V_0) + \dim(V_1)$
- (ii) Show that if $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$ is the Cartan decomposition of a semisimple Lie algebra \mathfrak{g} , and α, β and $\alpha + \beta$ are all in Φ , then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.

(Hint: Use the representation theory of \mathfrak{sl}_2 . You may assume all root spaces are 1-dimensional.)

Proof. (i) Since $\mathfrak{sl}_2(\mathsf{k})$ is semisimple, by Weyl's Theorem or Question 7 of Sheet 3, V is completely reducible. Suppose that $V = \bigoplus_{i=1}^{\ell} W_i$, where each W_i is a simple $\mathfrak{sl}_2(\mathsf{k})$ -submodule. By Question 6 of Sheet 3, each $W_i \cong V(\lambda)$ for some $\lambda \in \mathbb{Z}$. If λ is odd, there exists a unique $w_i \in W_i \setminus \{0\}$ (up to rescaling) such that $h(w_i) = 0$. Then $w_i \in V_0$. If λ is even, there exists a unique $w_i \in W_i \setminus \{0\}$ (up to rescaling) such that $h(w_i) = w_i$. Then $w_i \in V_1$.

In summary, we must have $\ell = \dim V_0 + \dim V_1$.

(ii) By Lemma 4.11, we know that (for arbitrary Lie algebra \mathfrak{g}) $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subseteq \mathfrak{g}_{\alpha+\beta}$.

If $\beta = \lambda \alpha$ for some $\lambda \in \mathbb{C}$, then by Lemma 6.40, $\lambda = \pm 1$. Since $\alpha + \beta = (\lambda + 1)\alpha \in \Phi$, we also have $\lambda + 1 = \pm 1$. This is impossible. Then β and α are linearly independent in H^{\vee} . Consider the α -string through β :

$$\beta - p\alpha, ..., \beta, ..., \beta + q\alpha$$

The root space \mathfrak{g}_{α} is 1-dimensional. Let $\mathfrak{sl}_{\alpha} \cong \mathfrak{sl}_{2}(\mathbb{C})$ be the 3-dimensional subalgebra

$$\mathfrak{sl}_{\alpha} := \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$$

Since each root space is 1-dimensional, $L:=\bigoplus_{i=-p}^q \mathfrak{g}_{\beta+i\alpha}$ is a \mathfrak{sl}_{α} -submodule of \mathfrak{g} .

 $h_{\alpha} \in \mathfrak{sl}_{\alpha}$ acts on $\mathfrak{g}_{\beta+i\alpha}$ with eigenvalue $(\beta+i\alpha)(h_{\alpha})$. We know that $\alpha(h_{\alpha})=2$ and $\beta(h_{\alpha})=p-q$. Then the eigenvalues of h_{α} on L form the set $\{-p-q, -p-q+2, ..., p+q-2, p+q\}$. In the set there is exactly one number equals to 0 or 1, which implies that the 0-weight and 1-weight subspace of L is 1-dimensional. By (i), *L* has one irreducible component, so itself is a simple \mathfrak{sl}_{α} -module.

For $x \in \mathfrak{g}_{\beta} \setminus \{0\}$, $(\operatorname{ad} e_{\alpha})(x) \not\in \mathfrak{g}_{\alpha+\beta}$. Since $x \in L$ is not of highest weight of h_{α} , $(\operatorname{ad} e_{\alpha})(x) \neq 0$. Hence $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \neq 0$. We have $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$

Question 3

Use Weyl's theorem to give an alternative proof of the fact that any derivation of a semisimple Lie algebra g is inner.

(Hint: A derivation lets you construct a semi-direct product.)

Proof. Let $\delta: \mathfrak{g} \to \mathfrak{g}$ be a derivation of \mathfrak{g} . Then we have a Lie algebra homomorphism $\varphi: \mathfrak{gl}_1 \to \mathfrak{g}$ given by $\varphi(a) = a\delta$, from which we can construct a semi-direct product $\mathfrak{h} := \mathfrak{gl}_1 \ltimes \mathfrak{g}$ with the Lie bracket

$$[(a,x),(b,y)] := (0,[x,y] + a\delta(y) - b\delta(x))$$

h affords a representation of g given by

$$x \cdot (a, y) := (0, (\operatorname{ad} x)(y))$$

Then g is a g-submodule of \mathfrak{h} . Since g is semsimple, by Weyl's Theorem, $\mathfrak{h} = \mathfrak{g} \oplus \mathfrak{l}$, where \mathfrak{l} is a 1-dimensional \mathfrak{g} -module. Then (by the analogy of 5-lemma in Lie algebra?) we have $\mathfrak{l} \cong \mathfrak{gl}_1$. Fix $(1, x) \in \mathfrak{l}$. For $(0, y) \in \mathfrak{g} \leq \mathfrak{h}$, we have

$$0 = [(1, x), (0, y)] = (0, [x, y] - \delta(y))$$

Hence $\delta(y) = -[x, y]$. We conclude that $\delta = -\operatorname{ad} x$ is inner.

$0 = [(1,x),(0,y)] = (0,[x,y] - \delta(y))$ $\delta = -\operatorname{ad} x \text{ is inner.}$ $\delta = -\operatorname{ad} x \text{ is inner.}$ $\operatorname{ag} \ 1 - \operatorname{dor.} \ \sqrt{\operatorname{space}} \ \sqrt{-\Box}$

Question 4

Suppose that g is a Lie algebra and (V, ρ) is a faithful finite-dimensional representation (so that we may think of g as a subalgebra of $\mathfrak{gl}(V)$). Show that if V is irreducible and $\operatorname{tr}(\rho(x))=0$ for all $x\in\mathfrak{g}$, then \mathfrak{g} is semisimple.

Proof. The radical rad g of g is a solvable ideal. By Lie's Theorem there exists $v \in V \setminus \{0\}$ and linear λ : rad $g \to k$ such that $\rho(z)(v) = \lambda(z)v$ for all $z \in \text{rad}\,\mathfrak{g}$. Let $U := \{v \in V : \forall z \in \text{rad}\,\mathfrak{g} \ (\rho(z)(v) = \lambda(z)v)\}$. Then $U \neq \{0\}$ by Lie's Theorem.

For $x \in \mathfrak{g}$, $z \in \operatorname{rad} \mathfrak{g}$, and $v \in U$, we have

$$\rho(z) \circ \rho(x)(v) = \rho(x) \circ \rho(z)(v) - \rho([x, z])(v) = \rho(x)(\lambda(z)v) - 0 = \lambda(z)\rho(x)(v)$$

Hence $\rho(x)(v) \in U$. Then *U* affords a subrepresentation of ρ . Since ρ is irreducible, we must have U = V.

For $z \in \text{rad} \mathfrak{g}$, we have

$$0 = \operatorname{tr}(\rho(z)) = \lambda(z) \operatorname{dim} V \Longrightarrow \lambda(z) = 0$$

Since ρ is faithful, we have z = 0. Hence rad $g = \{0\}$. g is semisimple.

Question 5

Let $\mathfrak{g} = \mathfrak{sp}_{2n}$ be the symplectic Lie algebra. Show that \mathfrak{h} , the space of matrices in \mathfrak{g} which are diagonal, is a Cartan subalgebra, and thus find the roots of \mathfrak{sp}_{2n} .

(Optional: Do the same for the Lie algebras \mathfrak{so}_{2n} .)

Proof. Recall that $\mathfrak{sp}_{2n} = \{x \in \mathfrak{gl}_{2n} : x^{\top}S + Sx = 0\}$, where

$$S = \begin{pmatrix} 0 & J_n \\ -J_n & 0 \end{pmatrix}, \qquad J_n = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{pmatrix}$$

Let A^{\perp} be the matrix obtained by flipping A anti-diagonally. If $X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathfrak{sp}_{2n}$, then $B = B^{\perp}$, $C = C^{\perp}$, and

 $D = -A^{\perp}$. Hence

$$\mathfrak{h} = \left\{ \begin{pmatrix} D & 0 \\ 0 & -D^{\perp} \end{pmatrix} \colon D = \operatorname{diag}\{a_1,...,a_n\}, \ a_1,...,a_n \in \mathsf{k} \right\}$$

It is clear that \mathfrak{h} is Abelian, and hence nilpotent. Let $X \in N_{\mathfrak{sp}_{2n}}(\mathfrak{h})$. We write X = A + B, where A is the diagonal part and B is the off-diagonal part. Then $[X,D] = [B,D] \in \mathfrak{h}$ for all $D \in \mathfrak{h}$. Note that, for $i \neq j$, $[E_{ij},E_{kk}]$ has zero diagonal entries. Hence [B,D] = 0 for all $D \in \mathfrak{h}$. Somehow we can prove that B = 0. Hence $X \in \mathfrak{h}$. $N_{\mathfrak{sp}_{2n}}(\mathfrak{h}) = \mathfrak{h}$. We deduce that \mathfrak{h} is a Cartan subalgebra of \mathfrak{sp}_{2n} .

f has a basis { $E_{k,k} - E_{2n+1-k,2n+1-k}$: $k ∈ {1,...,n}$ }. Let { $φ_1,...,φ_n$ } be the dual basis of it.

 \mathfrak{sp}_{2n} has the decomposition

$$\mathfrak{sp}_{2n} = \mathfrak{h} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{\beta} \oplus \mathfrak{g}_{\gamma} \oplus \mathfrak{g}_{\delta} \oplus \mathfrak{g}_{\varepsilon}$$

where

$$\begin{split} &\mathfrak{g}_{\alpha} = \left\{ \begin{pmatrix} D & 0 \\ 0 & -D^{\perp} \end{pmatrix} \colon \forall \, i \in \{1,...,n\} \, D_{i\,i} = 0 \right\} = \operatorname{span} \left\{ E_{i,j} - E_{2n+1-i,2n+1-j} \colon 1 \leqslant i \neq j \leqslant n \right\} \\ &\mathfrak{g}_{\beta} = \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \colon B = B^{\perp}, \, \forall \, i \in \{1,...,n\} \, B_{i,2n+1-i} = 0 \right\} = \operatorname{span} \left\{ E_{i,n+j} + E_{n+1-j,2n+1-i} \colon 1 \leqslant i + j \leqslant n \right\} \\ &\mathfrak{g}_{\gamma} = \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \colon C = C^{\perp}, \, \forall \, i \in \{1,...,n\} \, C_{i,2n+1-i} = 0 \right\} = \operatorname{span} \left\{ E_{n+i,j} + E_{2n+1-j,n+1-i} \colon 1 \leqslant i + j \leqslant n \right\} \\ &\mathfrak{g}_{\delta} = \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \colon B = B^{\perp}, \, \forall \, i \neq 2n+1-j \, B_{ij} = 0 \right\} = \operatorname{span} \left\{ E_{i,2n+1-i} \colon 1 \leqslant i \leqslant n \right\} \\ &\mathfrak{g}_{\varepsilon} = \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \colon C = C^{\perp}, \, \forall \, i \neq 2n+1-j \, C_{ij} = 0 \right\} = \operatorname{span} \left\{ E_{n+i,n+1-i} \colon 1 \leqslant i \leqslant n \right\} \end{split}$$

If
$$X = \sum_{i=1}^{n} \lambda_i (E_{i,i} - E_{2n+1-i,2n+1-i})$$
, then

$$[X, E_{i,j}] = (\lambda_i - \lambda_j) E_{i,j}, \qquad [X, E_{i,n+j}] = (\lambda_i + \lambda_j) E_{i,n+j}, \qquad [X, E_{n+i,j}] = -(\lambda_i + \lambda_j) E_{n+i,j}$$

The weights are given by

re given by
$$\alpha_{i,j} = \varphi_i - \varphi_j, \quad \beta_{i,j} = \varphi_i + \varphi_j, \quad \gamma_{i,j} = -\varphi_i - \varphi_j, \quad \delta_i = 2\varphi_i, \quad \varepsilon_i = -2\varphi_{n-i} \quad \text{for } i \in \mathbb{N}$$

We simply observe that Φ has a base $\{\varphi_1 - \varphi_2, ..., \varphi_{n-1} - \varphi_n, 2\varphi_n\}$. For convenience we write $\sigma_i := \varphi_i - \varphi_{i+1}$ and $\tau := 2\varphi_n$. Next we shall calculate the Cartan matrix. Shar hora(h)

Let $e_{\sigma_i} = E_{i,i+1} - E_{2n+1-i,2n-i}$. Then

$$h_{\sigma_i} = [E_{i,i+1} - E_{2n+1-i,2n-i}, E_{i+1,i} - E_{2n-i,2n+1-i}] = E_{i,i} - E_{i+1,i+1} + E_{2n+1-i,2n+1-i} - E_{2n-i,2n-i}$$

Hence

$$\langle \sigma_i, \sigma_i \rangle = (\varphi_i - \varphi_{i+1})(h_{\sigma_i}) = -\delta_{i, i-1} + 2\delta_{i, i} - \delta_{i, i+1}$$

and

$$\langle \tau, \sigma_i \rangle = 2\varphi_i(h_{\sigma_i}) = -2\delta_{i-1,n}$$

Let $e_{\tau} = E_{n,n+1}$. Then $h_{\tau} = [E_{n,n+1}, E_{n+1,n}] = E_{n,n} - E_{n+1,n+1}$. Hence

$$\langle \sigma_i, \tau \rangle = \sigma_i(h_\tau) = (\varphi_i - \varphi_{i+1})(E_{n,n} - E_{n+1,n+1}) = -\delta_{i-1,n}$$

The Cartan matrix is given by

$$\begin{pmatrix}
2 & -1 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
0 & -1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 & -1 \\
0 & 0 & 0 & \cdots & -2 & 2
\end{pmatrix}$$

The Dyakin diagram is given by

We conclude that \mathfrak{sp}_{2n} has type C_n .

Question 6

Let g be a complex semisimple Lie algebra and $\mathfrak{h} \subseteq \mathfrak{g}$ a Cartan subalgebra. If $\Phi \subseteq \mathfrak{h}^*$ is the corresponding root system find an expression for the dimension of g in terms of Φ . (In particular, the dimension of g is determined by the root system).

Proof. The Cartan decomposition of g:

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$$

Since \mathfrak{g} is semisimple, we know that each \mathfrak{g}_{α} is 1-dimensional, and Φ spans \mathfrak{h}^{\vee} . Hence

$$\dim \mathfrak{g} = \dim \mathfrak{h} + |\Phi| = \dim \mathfrak{h}^{\vee} + |\Phi| = \dim \operatorname{span} \Phi + |\Phi|$$

Question 7

Let V be a \mathbb{Q} -vector space. A lattice in V is a discrete subgroup ${}^1Q \subseteq V$ which spans V over \mathbb{Q} . Equivalently, a lattice

is a subgroup Q of V of the form

$$\left\{ \sum_{i} \lambda_{i} \beta_{i} : \lambda_{i} \in \mathbb{Z} \right\}$$

where $\{\beta_i\}_{i=1}^n$ is a basis of V. (You do not have to prove this). Assume that V is equipped with an positive definite inner product (-,-). A lattice $Q \subseteq V$ is called *integral* if $(\alpha,\beta) \in \mathbb{Z}$ for all $\alpha,\beta \in Q$. A lattice Q is called *even* if $(\alpha,\alpha) \in 2\mathbb{Z}$ for all $\alpha \in Q$

- (i) Show that an even lattice is integral.
- (ii) Let $Q \subseteq V$ be an even lattice. Assume that the set $R_Q = \{\alpha \in Q : (\alpha, \alpha) = 2\}$ spans V. Show that R_Q is a root system in V.
- (iii) Let $V = \bigoplus_{i=1}^{r} \mathbb{Q}e_i$ equipped with the standard inner product $(e_i, e_j) = \delta_{ij}$. Let

$$\Gamma_r = \left\{ \sum a_i e_i : \sum a_i \in 2\mathbb{Z} \text{ and either all } a_i \in \mathbb{Z} \text{ or all } a_i \in \mathbb{Z} + \frac{1}{2} \cdot \right\}$$

Show that Γ_r is an even lattice if r is divisible by 8.

- (iv) Consider $\Gamma = \Gamma_8 \subseteq \mathbb{Q}^8$. Show that V is spanned by the vectors $v \in \Gamma$ such that (v, v) = 2, and describe the roots in the resulting root system R_{Γ}
- (v) Consider the functional $t \in V^*$ given by

$$t = \sum_{i=1}^{7} (i-1)e_i^* + 23e_8^*$$

where $\{e_i^*\}_{i=1}^8$ is the dual basis to $\{e_i\}_{i=1}^8$. Show that $0 \neq t(\alpha) \in \mathbb{Z}$ for all $\alpha \in R_{\Gamma}$. Calculate the set of roots $\alpha \in R_{\Gamma}$ with $t(\alpha) = 1$ and check it is a basis of V. Compute the matrix of the inner product with respect to this basis. (This step is similar to the proof that a root system has a base.)

- (vi) Let H_7 denote the hyperplane V orthogonal to $e_7 + e_8$. Show that $R_{\Gamma} \cap H_7$ is a root system of and find a basis for H_7 contained in it (*hint: start with the basis in the previous part.*)
- (vii) Let H_6 be the subspace orthogonal to $e_6 + e_7 + 2e_8$ and $e_7 + e_8$. Show that $R_{\Gamma} \cap H_6$ is a root system and calculate a basis for H_6 contained in it.

Proof. (i)