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Assume throughout the problems that we work over a field k which is algebraically closed of characteristic zero, and all Lie
algebras and representations are finite dimensional over k, unless the contrary is explicitly stated.

Question 1

(i) Show directly that if ¡ : g1 ! g2 is a surjective homomorphism of semisimple Lie algebras and x = s +n is the
Jordan decomposition of x 2 g1, then ¡(x) =¡(s)+¡(n) is the Jordan decomposition of ¡(x) 2 g2.

(ii) Show that homomorphisms between semisimple Lie algebras are compatible with the Jordan decomposi-
tion, that is, if g1,g2 are semisimple Lie algebras, and ¡ : g1 ! g2 is a homomorphism, then if x = s +n is the
Jordan decomposition of x 2 g1,¡(x) =¡(s)+¡(n) is the Jordan decomposition of ¡(x) in g2.

(For this part you may assume the fact, stated in lectures, that if x = s +n is the Jordan decomposition of x and
Ω : g! gl(V ) is a representation, then Ω(s) is semsimple and Ω(n) is nilpotent.)

Proof. (i) The homomorphism ¡ : g1 ! g2 induces a representation √ : g1 ! gl(g2), defined by √(x) = ad¡(x). For
y 2 g2, since ¡ is surjective, there is z 2 g1 such that y =¡(z). Then

√(x)(y) = [¡(x), y] = [¡(x),¡(z)] =¡([x, z]) =¡(ad(x)(z))

• ¡(s) commutes with ¡(n): [¡(s),√(n)] =¡([s,n]) = 0.

• Since n is nilpotent, there exists k 2N such that (adn)k = 0. Then for y 2 g2

√(n)k (y) =√(n)k°1 ±¡(ad(n)(z)) =¡(ad(n)k (z)) = 0

Hence √(n) is nilpotent. ¡(n) is ad-nilpotent.

• Since s is semisimple, the minimal polynomial p of ad s 2 gl(g1) has distinct roots over k. Note that

p(√(s))(y) =√(p(s))(y) =¡(ad(p(s))(z)) =¡(p(ad s)(z)) = 0

Hence p(√(s)) = 0. The minimal polynomial of √(s) divides p. Therefore the minimal polynomial of
√(s) must have distinct roots. We deduce that √(s) is semisimple. ¡(s) is ad-semisimple.

Now by the uniqueness of abstract Jordan decomposition, ¡(x) =¡(s)+¡(n) is the Jordan decomposition of
¡(x).

(ii) Since√ : g1 ! gl(g2) is a representation,√(s) is semisimple and√(n) is nilpotent. Then¡(s) is ad-semisimple
and ¡(n) is ad-nilpotent. Clearly [¡(s),¡(n)] = 0. By the uniqueness of abstract Jordan decomposition,
¡(x) =¡(s)+¡(n) is the Jordan decomposition of ¡(x).

Question 2

(i) Show that if V is a (finite dimensional) representation of sl2 and V =L
k2ZVk is the decomposition of V into

(generalised) eigenspaces of h, then the number of irreducible constituents of V is equal to dim(V0)+dim(V1)

(ii) Show that if g = h©L
Æ2©gÆ is the Cartan decomposition of a semisimple Lie algebra g, and Æ,Ø and Æ+Ø

are all in©, then
£
gÆ,gØ

§
= gÆ+Ø·

(Hint: Use the representation theory of sl2. You may assume all root spaces are 1-dimensional.)

Proof. (i) Since sl2(k) is semisimple, by Weyl’s Theorem or Question 7 of Sheet 3, V is completely reducible. Suppose
that V = L`

i=1 Wi , where each Wi is a simple sl2(k)-submodule. By Question 6 of Sheet 3, each Wi
ª= V (∏)

for some ∏ 2 Z. If ∏ is odd, there exists a unique wi 2 Wi \ {0} (up to rescaling) such that h(wi ) = 0. Then
wi 2V0. If ∏ is even, there exists a unique wi 2Wi \ {0} (up to rescaling) such that h(wi ) = wi . Then wi 2V1.
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In summary, we must have `= dimV0 +dimV1.

(ii) By Lemma 4.11, we know that (for arbitrary Lie algebra g) [gÆ,gØ] µ gÆ+Ø.

If Ø = ∏Æ for some ∏ 2 C, then by Lemma 6.40, ∏ = ±1. Since Æ+Ø = (∏+1)Æ 2©, we also have ∏+1 = ±1.
This is impossible. Then Ø and Æ are linearly independent in H_. Consider the Æ-string through Ø:

Ø°pÆ, ...,Ø, ...,Ø+qÆ

The root space gÆ is 1-dimensional. Let slÆ ª= sl2(C) be the 3-dimensional subalgebra

slÆ := gÆ©g°Æ© [gÆ,g°Æ]

Since each root space is 1-dimensional, L :=
qM

i=°p
gØ+iÆ is a slÆ-submodule of g.

hÆ 2 slÆ acts on gØ+iÆ with eigenvalue (Ø+ iÆ)(hÆ). We know that Æ(hÆ) = 2 and Ø(hÆ) = p ° q . Then the
eigenvalues of hÆ on L form the set

©
°p °q,°p °q +2, ..., p +q °2, p +q

™
. In the set there is exactly one

number equals to 0 or 1, which implies that the 0-weight and 1-weight subspace of L is 1-dimensional. By
(i), L has one irreducible component, so itself is a simple slÆ-module.

For x 2 gØ \ {0}, (adeÆ)(x) 2 gÆ+Ø. Since x 2 L is not of highest weight of hÆ, (adeÆ)(x) 6= 0. Hence [gÆ,gØ] 6= 0.
We have [gÆ,gØ] = gÆ+Ø.

Question 3

Use Weyl’s theorem to give an alternative proof of the fact that any derivation of a semisimple Lie algebra g is inner.

(Hint: A derivation lets you construct a semi-direct product.)

Proof. Let ± : g! g be a derivation of g. Then we have a Lie algebra homomorphism' : gl1 ! g given by'(a) = a±, from
which we can construct a semi-direct product h := gl1 ng with the Lie bracket

[(a, x), (b, y)] :=
°
0,[x, y]+a±(y)°b±(x)

¢

h affords a representation of g given by
x · (a, y) := (0, (ad x)(y))

Then g is a g-submodule of h. Since g is semsimple, by Weyl’s Theorem, h = g© l, where l is a 1-dimensional
g-module. Then (by the analogy of 5-lemma in Lie algebra?) we have l ª= gl1. Fix (1, x) 2 l. For (0, y) 2 g … h, we
have

0 = [(1, x), (0, y)] = (0, [x, y]°±(y))

Hence ±(y) =°[x, y]. We conclude that ±=°ad x is inner.

Question 4

Suppose that g is a Lie algebra and (V ,Ω) is a faithful finite-dimensional representation (so that we may think of g
as a subalgebra of gl(V )). Show that if V is irreducible and tr(Ω(x)) = 0 for all x 2 g, then g is semisimple.

Proof. The radical radg of g is a solvable ideal. By Lie’s Theorem there exists v 2V \ {0} and linear ∏ : radg! k such that
Ω(z)(v) =∏(z)v for all z 2 radg. Let U := {v 2V : 8z 2 radg (Ω(z)(v) =∏(z)v)}. Then U 6= {0} by Lie’s Theorem.

For x 2 g, z 2 radg, and v 2U , we have

Ω(z)±Ω(x)(v) = Ω(x)±Ω(z)(v)°Ω([x, z])(v) = Ω(x)(∏(z)v)°0 =∏(z)Ω(x)(v)
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Hence Ω(x)(v) 2U . Then U affords a subrepresentation of Ω. Since Ω is irreducible, we must have U =V .

For z 2 radg, we have
0 = tr

°
Ω(z)

¢
=∏(z)dimV =) ∏(z) = 0

Since Ω is faithful, we have z = 0. Hence radg= {0}. g is semisimple.

Question 5

Let g = sp2n be the symplectic Lie algebra. Show that h, the space of matrices in g which are diagonal, is a Cartan
subalgebra, and thus find the roots of sp2n .

(Optional: Do the same for the Lie algebras so2n .)

Proof. Recall that sp2n =
©

x 2 gl2n : x>S +Sx = 0
™
, where

S =
√

0 Jn

°Jn 0

!
, Jn =

0
BBBB@

0 · · · 0 1
0 · · · 1 0
...

. . .
...

...
1 · · · 0 0

1
CCCCA

Let A? be the matrix obained by flipping A anti-diagonally. If X =
√

A B
C D

!
2 sp2n , then B = B?, C = C?, and

D =°A?. Hence

h=
(√

D 0
0 °D?

!
: D = diag{a1, ..., an}, a1, ..., an 2 k

)

It is clear that h is Abelian, and hence nilpotent. Let X 2 Nsp2n
(h). We write X = A +B , where A is the diagonal

part and B is the off-diagonal part. Then [X ,D] = [B ,D] 2 h for all D 2 h. Note that, for i 6= j , [Ei j ,Ekk ] has zero
diagonal entries. Hence [B ,D] = 0 for all D 2 h. Somehow we can prove that B = 0. Hence X 2 h. Nsp2n

(h) = h. We
deduce that h is a Cartan subalgebra of sp2n .

h has a basis
©
Ek,k °E2n+1°k,2n+1°k : k 2 {1, ...,n}

™
. Let {'1, ...,'n} be the dual basis of it.

sp2n has the decomposition
sp2n = h©gÆ©gØ©g∞©g±©g"

where

gÆ =
(√

D 0
0 °D?

!
: 8 i 2 {1, ...,n} Di i = 0

)
= span

©
Ei , j °E2n+1°i ,2n+1° j : 1 … i 6= j … n

™

gØ =
(√

0 B
0 0

!
: B = B?, 8 i 2 {1, ...,n} Bi ,2n+1°i = 0

)
= span

©
Ei ,n+ j +En+1° j ,2n+1°i : 1 … i + j … n

™

g∞ =
(√

0 0
C 0

!
: C =C?, 8 i 2 {1, ...,n} Ci ,2n+1°i = 0

)
= span

©
En+i , j +E2n+1° j ,n+1°i : 1 … i + j … n

™

g± =
(√

0 B
0 0

!
: B = B?, 8 i 6= 2n +1° j Bi j = 0

)
= span

©
Ei ,2n+1°i : 1 … i … n

™

g" =
(√

0 0
C 0

!
: C =C?, 8 i 6= 2n +1° j Ci j = 0

)
= span

©
En+i ,n+1°i : 1 … i … n

™

If X =Pn
i=1∏i (Ei ,i °E2n+1°i ,2n+1°i ), then

[X ,Ei , j ] = (∏i °∏ j )Ei , j , [X ,Ei ,n+ j ] = (∏i +∏ j )Ei ,n+ j , [X ,En+i , j ] =°(∏i +∏ j )En+i , j
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The weights are given by

Æi , j ='i °' j , Øi , j ='i +' j , ∞i , j =°'i °' j , ±i = 2'i , "i =°2'n°i

We simply observe that © has a base {'1 °'2, ...,'n°1 °'n ,2'n}. For convenience we write æi := 'i °'i+1 and
ø := 2'n . Next we shall calculate the Cartan matrix.

Let eæi = Ei ,i+1 °E2n+1°i ,2n°i . Then

hæi = [Ei ,i+1 °E2n+1°i ,2n°i ,Ei+1,i °E2n°i ,2n+1°i ] = Ei ,i °Ei+1,i+1 +E2n+1°i ,2n+1°i °E2n°i ,2n°i

Hence ≠
æi ,æ j

Æ
= ('i °'i+1)(hæ j ) =°±i , j°1 +2±i , j °±i , j+1

and
hø,æi i= 2'i (hæi ) =°2±i°1,n

Let eø = En,n+1. Then hø = [En,n+1,En+1,n] = En,n °En+1,n+1. Hence

hæi ,øi=æi (hø) = ('i °'i+1)(En,n °En+1,n+1) =°±i°1,n

The Cartan matrix is given by 0
BBBBBBBBB@

2 °1 0 · · · 0 0
°1 2 °1 · · · 0 0
0 °1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 °1
0 0 0 · · · °2 2

1
CCCCCCCCCA

The Dyakin diagram is given by

• • • • •

We conclude that sp2n has type Cn .

Question 6

Let g be a complex semisimple Lie algebra and hµ g a Cartan subalgebra. If©µ h§ is the corresponding root system
find an expression for the dimension of g in terms of©. (In particular, the dimension of g is determined by the root
system).

Proof. The Cartan decomposition of g:
g= h©

M

Æ2©
gÆ

Since g is semisimple, we know that each gÆ is 1-dimensional, and© spans h_. Hence

dimg= dimh+|©| = dimh_+|©| = dimspan©+|©|

Question 7

Let V be aQ-vector space. A lattice in V is a discrete subgroup 1Q µV which spans V overQ. Equivalently, a lattice
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is a subgroup Q of V of the form

(
X

i
∏iØi :∏i 2Z

)

where
©
Øi

™n
i=1 is a basis of V . (You do not have to prove this). Assume that V is equipped with an positive definite

inner product (°,°). A lattice Q µ V is called integral if (Æ,Ø) 2 Z for all Æ,Ø 2 Q. A lattice Q is called even if
(Æ,Æ) 2 2Z for all Æ 2Q

(i) Show that an even lattice is integral.

(ii) Let Q µ V be an even lattice. Assume that the set RQ = {Æ 2 Q : (Æ,Æ) = 2} spans V . Show that RQ is a root
system in V .

(iii) Let V =Lr
i=1Qei equipped with the standard inner product

°
ei ,e j

¢
= ±i j . Let

°r =
ΩX

ai ei :
X

ai 2 2Z and either all ai 2Z or all ai 2Z+ 1
2
·
æ

Show that °r is an even lattice if r is divisible by 8 .

(iv) Consider °= °8 µQ8. Show that V is spanned by the vectors v 2 ° such that (v, v) = 2, and describe the roots
in the resulting root system R°

(v) Consider the functional t 2V § given by

t =
7X

i=1
(i °1)e§i +23e§8

where
©
e§i

™8
i=1 is the dual basis to {ei }8

i=1 . Show that 0 6= t (Æ) 2Z for allÆ 2 R°. Calculate the set of rootsÆ 2 R°
with t (Æ) = 1 and check it is a basis of V . Compute the matrix of the inner product with respect to this basis.
(This step is similar to the proof that a root system has a base.)

(vi) Let H7 denote the hyperplane V orthogonal to e7 + e8. Show that R°\H7 is a root system of and find a basis
for H7 contained in it (hint: start with the basis in the previous part.)

(vii) Let H6 be the subspace orthogonal to e6+e7+2e8 and e7+e8. Show that R°\H6 is a root system and calculate
a basis for H6 contained in it.

Proof. (i)


