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Question 1

Show that L0 and the sequent calculus SQ are equivalent. I.e., using the language L0 = L[{¬,!}] of propositional
calculus, for all � ✓ Form(L0) and for all � 2 Form(L0):

� `L0 � if and only if � `SQ �.

Proof. We first show that L0 implies SQ. The deduction rules Ass and MP are trivial. DT is implied by the Deduction
Theorem in L0. We only need to prove PC:

Suppose that � [ {¬ } `L0 � and �0 [ {¬ } `L0 ¬�. Hence � [�0{¬ } `L0 {�,¬�}. By Deduction Theorem, we
have

1: � [�0 `L0 (¬ ! �) [DT]
2: � [�0 `L0 (¬ ! ¬�) [DT]
3: `L0 (�! (¬�! ¬( !  ))) [Sheet 2 Question 5.(i)]
4: � [�0 `L0 (¬ ! (¬�! ¬( !  ))) [HS 1,3]
5: `L0 ((¬ ! (¬�! ¬( !  ))) ! ((¬ ! ¬�) ! (¬ ! ¬( !  )))) [A2]
6: � [�0 `L0 ((¬ ! ¬�) ! (¬ ! ¬( !  ))) [MP 4,5]
7: � [�0 `L0 (¬ ! ¬( !  )) [MP 2,6]
8: `L0 ((¬ ! ¬( !  )) ! (( !  ) !  )) [A3]
9: � [�0 `L0 (( !  ) !  ) [MP 7,8]
10: `L0 ( !  ) [Theorem]
11: � [�0 `L0  [MP 9,10]

Next we show that SQ implies L0. Proof of MP is trivial. Proof of A1:

1: {↵,�} `SQ ↵ [Ass]
2: ↵ `SQ (� ! ↵) [DT]
3: `SQ (↵! (� ! ↵)) [DT]

Proof of A2:
1: ↵ `SQ ↵ [Ass]
2: (↵! �) `SQ (↵! �) [Ass]
3: (↵! (� ! �)) `SQ (↵! (� ! �)) [Ass]
4: {↵, (↵! �)} `SQ � [MP 1,2]
5: {↵, (↵! (� ! �))} `SQ (� ! �) [MP 1,3]
6: {↵, (↵! �), (↵! (� ! �))} `SQ � [MP 4,5]
7: {(↵! �), (↵! (� ! �))} `SQ (↵! �) [DT]
8: (↵! (� ! �)) `SQ ((↵! �) ! (↵! �)) [DT]
9: `SQ ((↵! (� ! �)) ! ((↵! �) ! (↵! �))) [DT]

Proof of A3:
1: {(¬� ! ¬↵),¬�} `SQ ¬� [Ass]
2: {(¬� ! ¬↵),¬�} `SQ (¬� ! ¬↵) [Ass]
3: {(¬� ! ¬↵),¬�} `SQ ¬↵ [MP 1,2]
4: {↵,¬�} `SQ ↵ [Ass]
5: {↵, (¬� ! ¬↵)} `SQ � [PC 3,4]
6: (¬� ! ¬↵) `SQ (↵! �) [DT]
7: `SQ ((¬� ! ¬↵) ! (↵! �)) [DT]

We have shown that the axioms and rules of L0 and SQ are equivalent. Hence � `L0 � if and only if � `SQ �.

Question 2

The Four Colour Theorem asserts that if a region in the plane is divided into finitelymany countries, then each country
may be coloured either red, green, blue, or yellow in such away that no two countrieswith a commonborder (of positive
length) get the same colour. Use the Compactness Theorem to show that this remains true even if there are countably
infinitely many countries.

In L0 we do not vary the set of premises in one proof, so 
we usually state the premises at the beginning and omit it 
from the exact lines of the proof
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Proof. We assume that every country is a connected set on R2 with positive Lebesgue measure. Hence there are at most
countably many countries. We enumerate them as c1, c2, c3, .... For each cn, we associate it with two propositional
variables p2n�1 and p2n. For each assignment v, we extend it on C := {cn : n 2 Z+} by defining:

ṽ(cn) =

8
>>>><

>>>>:

A, v(p2n�1) = T and v(p2n) = T

B, v(p2n�1) = T and v(p2n) = F

C, v(p2n�1) = F and v(p2n) = T

D, v(p2n�1) = F and v(p2n) = F

where A,B,C,D are colours.

Let

A = {(m,n) : cn and cm are adjacent}.

Consider

� := {�m,n = ¬((p2n�1 $ p2m�1) ^ (p2n $ p2m)) : (m,n) 2 A},

where$ is a binary connective defined by

(�$  ) ⌘ ((�!  ) ^ ( ! �)).

Note that, by truth table, ṽ(�n,m) = F if and only if ṽ(cn) = ṽ(cm). A colouring of C uniquely determines an
assignment v. Hence there exists a correct colouring if and only if � is satisfiable. By Compactness Theorem, � is
satisfiable if and only it is finitely satisfiable. But any finite subset of � only concerns finitely many countries, on
which the Four Colour Theorem hold. Hence the Four Colour Theorem holds for countably many countries.

Question 3

State and prove the unique readability theorem for predicate calculus

(a) for terms,

(b) for atomic formulae,

(c) for all formulae.

Proof. (a) Unique Readability Theorem for Terms:

For each term t of LFOPC, exactly one of the following holds:

(i) t = xi for a unique i 2 N;

(ii) t = f (k)
i (t1, .., tk) for unique terms t1, .., tk and a unique function symbol f

(k)
i .

We first prove that any proper initial substring of a term in LFOPC is not a term. We use induction on the
length of the term. Suppose that the result holds for all terms of length less than n.

Suppose that t is a term in LFOPC. n = 1 is trivial. Assume that n > 1. Then t = f (k)
i (t1, ..., tk) for some terms

t1, .., tk and some function symbol f
(k)
i . The proper initial substring of t is one of the following:

(1) f (k)
i ;

(2) f (k)
i (t1, ..., t` where ` 2 {0, ..., k};

(3) f (k)
i (t1, ..., t`, where ` 2 {1, ..., k};

(4) f (k)
i (t1, ..., t`, s where ` 2 {0, ..., k � 1} and s is a proper initial substring of t`+1.

(1) is not a term, because it has length 1 and is not a variable symbol. (3) is not a term because a term longer
than 1 must end with ).

Suppose that (2) is a term. There exists function symbol f (m)

j and terms u1, ..., um such that

f (k)
i (t1, ..., t` = f (m)

j (u1, ..., um).
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Then f (k)
i = f (m)

j . In particular i = j and k = m. If t1 6= u1, then either t1 is a proper initial substring of u1, or
u1 is a proper initial substring of t1. But t1 and u1 are terms of length shorter than n. By induction hypothesis,
this is impossible. Hence t1 = u1. Inductively, we have tp = up for all p 2 {1, ..., `}. This is impossible, as the
length of f (k)

i (u1, ..., uk) is longer than f (k)
i (u1, ..., u`.

Suppose that (4) is a term. There exists function symbol fm
j and terms u1, ..., um such that

f (k)
i (t1, ..., s = f (m)

j (u1, ..., um).

As above, we can prove that i = j, k = m, and tp = up for all p 2 {1, ..., `}. Hence

s = u`+1, ..., uk)

In particular, u`+1 is a poper initial substring of s. This is impossible because the length of s is shorter than n.

This completes the induction. Now we return to the proof of unique readability.

Suppose that t is a term. t is a variable symbol if and only if it has length 1. Suppose that t = f (k)
i (t1, .., tk) =

f (l)
j (s1, ..., sl) for some terms t1, ..., tk, s1, ..., sl. Then f (k)

i = f (l)
j . Hence i = j and k = l. If t1 6= s1, than either

t1 is a proper initial substring of s1, or s1 is a proper initial substring of t1, both of which are impossible. Thus
t1 = s1. Inductively, we have tn = sn for each n 2 {1, ..., k}. Hence the term t is uniquely readable.

(b) Unique Readability Theorem for Atomic Formulae:

For each atomic formula ↵ of LFOPC, exactly one of the following holds:

(i) ↵ = P (k)
i (t1, ..., tk) for unique terms t1, .., tk and a unique predicate symbol P

(k)
i ;

(ii) ↵ = t1
.
= t2 for unique terms t1 and t2.

It is clear that the cases are mutually exclusive. If ↵ is an atomic formula where ↵ = P (k)
i (t1, ..., tk), then ↵ is

uniquely readable similar to (a).(ii). If ↵ = t1
.
= t2 = s1

.
= s2 for some terms t1, t2, s1, s2. If t1 6= s1, then either

t1 is a proper initial substring of s1, or s1 is a proper initial substring of t1, both of which is impossible. Then
t1 = s1 and hence t2 = s2. Therefore the atomic formula ↵ is uniquely readable.

(c) Unique Readability Theorem for Formulae:

For each formula � of LFOPC, exactly one of the following holds:

(i) � is an atomic formula;

(ii) � = ¬ for a unique formula  ;

(iii) � = ( ! �) for unique formulae  and �;

(iv) � = 8xi↵ for a unique formula ↵ and a unique variable symbol xi.

We first prove that any proper initial substring of a formula in LFOPC is not a formula. We use induction
on the length of the formula. Suppose that the result holds for all formulae of length less than n.

Suppose that � is a formula in LFOPC of length n.

(i) If � is an atomic formula, then it is one of (b).(i) or (b).(ii). For the case (b).(i), we have proven the result.
For the case (b).(ii), the proper initial substring of � is one of the following:

(1) s (proper initial substring of t1);

(2) t1;

(3) t1
.
=;

(4) t1
.
= s where s is a proper initial substring of t2.

(1) and (2) are clearly not atomic formulae, as they do not contain predicate symbols or .
=. (3) is not an

atomic formulae, as atomic formulae cannot end with .
=. Suppose that (4) is an atomic formula. By unique

readability s is a term, which contradicts the result proven in (a).

(ii) If � = ¬ , then the proper initial substring of � is one of the following:

(1) ¬;

(2) ¬↵ where ↵ is a proper initial substring of  .

✓

More simply, the atomic 
formula t1 = t2 has one 
unique equality symbol 
in it, so the position of 
that symbol uniquely 
determines t1 and t2

It helps if you write down the most 
fundamental observation that atomic 
formulae cannot be read as non-
atomic formulae (and vice versa) 
because atomic formulae have no 
connectives/quantifiers
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(1) is not a formula. By induction hypothesis, since  has length less than n, then ↵ is not a formula. Hence
¬↵ is not a formula either.

(iii) If � = ( ! �), then the proper initial substring of � is one of the following:

(1) (;

(2) (↵ where ↵ is a proper initial substring of  ;

(3) ( ;

(4) ( !;

(5) ( ! ↵ where ↵ is a proper initial substring of �;

(6) ( ! �.

(1) and (3) are clearly not formulae. Suppose that (2) is a formula. Since it begins with (, there exists
formulae � and � such that (↵ = (� ! �). Then � is a proper initial substring of ↵. But ↵ is of length
less than n. By induction hypothesis this is impossible. Similarly we can prove that none of (3),(5),(6) are
formulae.

(iv) If � = 8xi↵, then the proper initial substring of � is one of the following:

(1) 8;

(2) 8xi;

(3) 8xi� where � is a proper initial substring of ↵.

(1) and (2) are clearly not formulae. Suppose that (3) is a formula. Then there exists variable symbol xj and
formula � such that 8xi� = 8xj�. Immediately we have i = j and � = �. But ↵ is of length less than n. By
induction hypothesis � is not formula. We obtain a contradiction.

After listing all the cases, we finish the induction. Now we return to the proof of unique readability.

It is clear that all cases are mutually exclusive. The unique readability for Cases (i), (ii) and (iv) is trivial. For
Case (iii), suppose that � = ( 1 ! �1) = ( 2 ! �2). If  1 6=  2, then either  1 is a proper initial substring
of  2, or  2 is a proper initial substring of  1, both of which are impossible. Hence  1 =  2 and �1 = �2. � is
uniquely readable.

Question 4

Let L = {f} be a first-order language containing a unary function symbol f , and no other non-logical symbols. Write
down sentences � and  of L such that for any L-structure A = hA, fAi

(i) A ✏ � if and only if fA is injective;
(ii) A ✏  if and only if fA is surjective.

Write down a sentence � of L which is satisfiable in some structure with an infinite domain but is false in every
structure with a finite domain. What can you say about the size of the domains of the models of the sentence ¬�?

Write down a sentence ⇢ such that wheneverA ✏ ⇢ and A is finite, then A contains an even number of elements, and,
further, every finite set with an even number of elements is the domain of some model of ⇢. What can you say about
the size of the domains of the models of the sentence ¬⇢?

Proof. (i) � = 8x08x1(f(x0)
.
= f(x1) ! x0

.
= x1);

(ii)  = 8x09x1f(x1)
.
= x0.

Since every set-endomorphism over a finite set is injective if and only if it is surjective, the sentence

� = (� ^ ¬ ) = (8x08x1(f(x0)
.
= f(x1) ! x0

.
= x1) ^ 9x18x0¬f(x1)

.
= x0)

can never be satisfied in a structure with finite domain. However, it can be satisfied in
⌦
N, ·2

↵
.

¬� can be satisfied in a structure with infinite or finite domain. In natural language, ¬� is satisfied if there exists a
set-endomorphism which is either surjective or is not injective.

You mean (4)?
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⇢ = 8x09x1(¬x0

.
= x1 ! (f(x0)

.
= x1 ^ f(x1)

.
= x0))

If A ✏ ⇢, then for any element x0 in A there exists a unique distinct element x1 in A that pairs with x0 via fA. In
other words, fA induces an equivalence relation onA such that every equivalence class is a doubleton. In particular,
if A is finite, then cardA is an even number.

The negation of ¬⇢ is

¬⇢ = 9x08x1(¬x0

.
= x1 ^ ¬(f(x0)

.
= x1 ^ f(x1)

.
= x0))

It can be satisfied by structures with arbitrary size of domain.

Question 5

Let L = {P} be a first-order language with a binary relation symbol P as only non-logical symbol. By exhibiting three
suitable L-structures prove (informally) that no two of the following sentences logically implies the other one:

(i) 8x8y8z(P (x, y) ! (P (y, z) ! P (x, z)))

(ii) 8x8y(P (x, y) ! (P (y, x) ! x
.
= y))

(iii) (8x9yP (x, y) ! 9y8xP (x, y))

Proof. 1. (i) and (ii) does not imply (iii):

(i) and (ii) are satisfiable in the model hR;6i. (iii) is not satisfiable in hR,6i, since ṽ(8x9yP6(x, y)) = T for
all assignments v ("for all real numbers, there exists one no small than it") and ṽ(9y8xP6(x, y)) = F for all
assignments v ("there exists a real number which is not smaller than all real numbers").

2. (i) and (iii) does not imply (ii):

Consider the model A = hC;PAi, where PA(x, y) if and only if |x| > |y|. It is clear that PA is transitive and is
not antisymmetric. So (i) is satisfiable and (ii) is not satisfiable in the model. Since |0| > |y| is false for all y 2 C,
8x9yPA(x, y) is not satisfiable in A. Hence (iii) is satisfiable in A.

3. (ii) and (iii) does not imply (i):

Consider the model A = hN;PAi, where PA(x, y) if and only if x = y + 1. It is clear that PA is antisymmetric
and is not transitive. So (i) is not satisfiable and (ii) is satisfiable in the model. Since 0 = y + 1 is false for all
y 2 N, 8x9yPA(x, y) is not satisfiable in A. Hence (iii) is satisfiable in A.

Question 6

Let L = {f, c} be a first-order language containing as non-logical symbols the unary function f and the constant
symbol c. Let L1 = L [ {P}, where P is a unary predicate symbol. Consider the following strings of L1:

� : ((P (x0) ^ 8x0(P (x0) ! P (f(x2)))) ! 8x2P (x0))
 : ((P (c) ^ 8x0(P (x0) ! P (f(x0)))) ! 8x0P (x0))

(a) Prove that both � and  are formulae of L1 and indicate the free and bound occurences of variables in them.
Which of these formulae are sentences?

(b) Describe the collection of closed terms of L and of L1. (A term is called closed if it contains no occurences of
variables.)

(c) Characterise thoseL-structuresA = hA; fA; cAiwhere the domainA is an infinite set, and where for every unary
relation PA on A, hA; fA; cA;PAi ✏  

Proof. (a) It is easy to show that � and  are formulae by following the definition step by step.  is a sentence because it
has no free variables. � is not a sentence because x0 and x2 have free occurences in �.

(b) In L and L1, a closed term is one of the following:

(i) c,

(ii) f(�), where � is a closed term.

Here cannot be arrow. Should be conjunction!

So this is also wrong

Proof? It helps to say that any domain with function f that does not pair up 
the elements (e.g. map everything to the same element) satisfies ¬ρ
By the way, if you have checked you would have realised that your ¬ρ is 
written wrongly (and hence ρ is wrong) because it cannot be satisfied
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                                                          (ii) is also satisfied — because for no x, y 
we have |x| > |y| and |y| > |x| together, so (ii) is vaguely true. P(x, y) := |x| ︎≥ |y| 
should work instead — but it satisfies (iii) in a different way
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(c) We claim that all L-structures satisfying the property are isomorphic. In other words, for any two such models
A = hA; fA; cAi and B = hB; fB; cBi, there exists a bijection � : A ! B such that �(cA) = cB and �(fA(x)) =
fB(�(x)) for all x 2 A. In particular, every such model is isomorphic to the Peano system of natural numbers
hN; ++; 0i.

Let A = hA; fA; cAi be a model with the property. Then for any x 2 A, there exists a closed term tA such that
x = tA. If not, suppose that there exists y 2 A such that y 6= tA for all closed terms tA. Consider a unary relation
PA on A such that PA(x) for all x 2 A\{y}. Then we have A ✏ P (c). Assume that A ✏ 8x0(P (x0) ! P (f(x0))).
By substition, A ✏ P (f(c)). Inductively, we have A ✏ P (t) for all closed terms t. However, since P (y) is false,
A 6✏ 8x0P (x0). Hence A 6✏  , which is a contradiction.
Next, we claim that every x 2 A is equal to a unique closed term tA. Note that the closed terms of L1 has a
natural bijection to the natural numbers. We define t(n) to be the closed termwith n function symbols. Suppose
that there exists y 2 A such that y = t(n1)

A = t(n2)

A . Without loss of generality we assume that n1 > n2. For
n > n2, t

(n)
A = t(n

0
+n2)

A where n2 6 n0 6 n1 � 1 and n ⌘ n0 mod (n1 � n2). Then A has at most n1 distinct
elements: t(0)A , ..., t(n1)

A . This contradicts that A is an infinite set.

For x 2 A, we define �(x) to be the number of function symbols of the closed form t such that x = tA. Following
the discussion above, � : A ! N is naturally a bijection. For x 2 A, if x = t(n)A , then �(fA(x)) = �(fA(t

(n)
A )) =

�(t(n+1)

A ) = n+ 1 = �(t(n)A ) + 1 = �(x) + +. This completes the proof.

✓

                                                                              This is not correct! Suppose that y = f(z), where 
z also do not correspond to a closed term, then P_A = A\{y} does not satisfy the condition!

Correct proof 
is to directly 
consider P_A 
= {x in A | x is 
expressible by 
a closed term}, 
and show that 
P_A satisfies ψ 

✓

✓


