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Einstein summation convention is assumed, with indices taking values from 1 to N.

Question 1

If we have two successive transformations from u! = u’ (x!,x2,..., xN) to v' = v* (y', )2, ...y
and from v’ to w' = w' (2!, 2%,---2N), withi=1,2,---N

)
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show that we can perform the transformation in one step via

Y
w'=—u’
oxJ

Proof. This is essentially a chain rule: /
0z dz'

i 02 j_0dloy 02 i

== 4

oy~ ayl axk ' T ok T oxd

S

To justify the chain rule in the third equality, let M be the N-dimensional (background) manifold. ¢ = (x',..., xV), v =
(4., yV)and y = (2}, ..., z") are coordinates charts from U < M to R. Let r!, ..., "V be the standard coordinates of R"V. Then

i i -1 ) i -1 -1 i -1 j -1
0z = 0z o9™) = ((Z oy ooy )) = oz 01{/ )04 e07) (Chainrulein[RN)
axk ork ork orJ ork
oz oyl
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dy’l oxk

Question 2

If A;C] is a mixed tensor, B]lc] is another tensor of the same kind, and « and f are scalar invariants, show that aA;C] + ,BB;C] is yet
another tensor of the same kind.

Proof. Algebrically, it follows from that the set of all type (2,1) tensors forms a vector space TIZ(V) =Ve®Ve®V* where V is the
tangent space T, M. If we use the definition given by transformation rule, we can check

0x" 9x/ ox" _—
Bim= o= o (aAl + BBY™) = )] + BB O

ox! 8%/ ox" ;; 0% 0%/ 9x"
dx? ox™ gxk "k ax? axm axk " gxf 0x™ 9%k

T, R =
aA; +PB. =a

Question 3

If A§ are the components of a mixed tensor, show that Aﬁ: transforms as a scalar invariant.

Proof. Aﬁ is the contraction of a type (1, 1) tensor A;.:

! . . .( 9 ox) o .
1 _ 1 _ _ — J —
Cl (1) = Cl (A;@ ®dx]) = A}dxf (@) = A;ﬁ = A;él = Ai

The contraction of a type (1, 1) tensor is a type (0,0) tensor, which is a scalar. So Aﬁ surely transforms as a scalar invariant. O
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Question 4
Assuming x and y transform as the components of a Euclidean vector, determine which of the following matrices are tensors:

Aij:(xz xy) Bij:(xy yz) Cij:(yz xJ’)

xy y? x?  —xy xy x?

[based on E Butkov, Mathematical Physics]

Proof. Geometrically speaking, tensors are specified at a fixed point in a manifold. So I think the correct question to ask here is that if
the matrices are tensor fields.

None of A, B, C looks like a tensor field as they seem not multi-linear with respect to the coordinates. Yet we can verify if the
matrices are invariant under orthogonal transformations of R? (as done in the lecture recordings).

Any orthogonal matrix O € O(2) is of the form

cosf —sinf cosf sinf
0= (sin@ cos@ ) or 0= (sin@ —cos@) (0 €10,271)

Consider the change of variables

(f) B (cos() ¢sin9) (x)

y) \sin@ +cosf)\y
which implies that
(x) _ ( cos6 sinf ) (35) _ ( Xcos@ + ysinf )
y) \Fsin6 +cosO)\y) \+(-FsinO+ ycosh)
Let A(%,7) = A(x, ). Then
~_( (X¥cosO + ysinh)? i(ic'cos@+J7sin9)(—35sin9+)700s6))
" |+ (Zcosh + ¥sinf)(—xsin0 + ycosH) (—Xsinf + J7cos¢9)2
yZ _ 352
72 cos?0 + 7 sin?0 + Xysin20  + ( sin26 + Xy cos 20)

= 2_ =2
i(y 2x sin20+3537c0329) %2 sin? 0 + 72 cos? O — Xysin20

On the other hand, after change of basis

572_352

%2 cos?0 + 7*sin®0 + Xysin20  + ( sin20 + J’Ef/cosze)

= 52 =2
+ (y Y sin26 + Xy cos 29) %2 sin? 0 + 7% cos? — Xysin20
l \Aoou N - i.bg. &'M A S TNV
Hence A = OT AO. A s invariant under orthogonal transformations. Ra.w .t V\’Muhsga(\ws .Q),_-\ ¥ does 5o

—

For matrix B, i~ o Covemmas wey

cosf sin@)(x2 xy)(cos@ ¢sin0)

0'AO=
(TrsinG tcosf)\xy y?/\sin@ +cosh

2 =2
+ ( 5 sin20 + ?cf/cosze) %2 sin? 6 + 72 cos® 0 — Xysin 20

B= 2 =2
72 cos?0 + 7?sin®0 + Xysin20  F ( sin26 + Xy cos 29)
Ty sin26 + Xy cos 20 + (X2 cos? 0 — y*sin® 0 + Xy sin26)
o'BO = ( cosf sin@ )(x%/ y? )(cos@ ¢sin9) _ 2 Y - S Y Y
. - ) N
Fsing  +cosf)\x XyJ\sin0 - +cosb) | (%*sin®6 — y* cos® 6 — Xy'sin26) (— al 5 sin20 — Xy cos 26

Hence B = OTBO. B is not invariant under orthogonal transformations.
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For matrix C,

572 _ 2
%2sin?0 + 7% cos® 0 — Xysin20  + (

=2 =2
i(y X
2

_ sin26 + Xy cos 29)
C=

sin20 + 36)7c0320) %2 cos? 0 + 7*sin? 0 + Xy sin 20

=2
orco = ( cosf sinf ) (y2 xy) (cos@ isin@) _ *
“\Fsinf +cosOf\xy x*)\sinf +cosf)

=2 _ =2
72—
cos?0 +7*sin?0 + Xysin20  + ( 5 Y sin20 + Xycos20

2_ =2
i( zy sin29+)~c)7c0329) %2sin? 0 + 72 cos® 6 — Xysin 26

Hence C = OTCO. C is not invariant under orthogonal transformations. O

.0 .0
Remark. We observe that A = x* Fy ® x/ FP is a tensor product of two vector fields. It makes me wonder if A is still a tensor field
X x

in the most general sense... ?
8 R s R muodt gonard svee’

Question 5

Show that if the components of a contravariant vector vanish in one coordinate system, they vanish in all coordinate systems.
What can be said of two contravariant vectors whose components are equal in one coordinate system?

. .0

Proof. If A' =0for i € {1,..., N}. Then it represents a zero tangent vector A’ Fie 0€ T, M. Hence it is zero in any coordinate charts.
x

Suppose that A’ = k # 0 for i € {1,..., N}. Consider a new coordinate chart (y',..., V), where y' = 2x! and y’ = x’ for i €

.0 ~. 0 ~ ~
{1,..., N}. Then AIF = Afﬁ implies that (AL,..., ANY = (k/2,k,...,k). So after transformation the components are no
X y

longer equal. . LR, Yoo hold Bave picked 2 o
‘\'Qv)s 'S ch NQ/\A_ Vedoes AN el ond Fowed
?w%ew- ‘LSQA' 'A'\ T

Question 6

Let A;; be a skew-symmetric tensor with A;; = —Aj;, and S;; a symmetric tensor with S;; = S;;. Show that the symmetry
properties are preserved in coordinate transformations. Also show that the quantities with raised indices, A%/ and S'/, possess
the same properties. From this, show that A"/ S;; =0and A;;S"/ =0.

Proof. Consider the type (0,2) skew-symmetric tensor
Ajjdx’ Adx! = A; ;% A dF

~ ax? axk ox?t axk \/
A Agp = Ao =

= o= A - = = —A ii
T %7 ox oxi ox' T Y
Consider the type (0, 2) symmetric tensor

We have

S;jdx' @ dx/ = §;;d¥’ ® d¥/
We have

~ ox? axk ax?t axk
Sji = Sk Ske @i i -

1= 37 oxi T ox o%t
Consider the type (2, 0) skew-symmetric tensor

;i 0 0 ~;; 0 0
A J — N— = A” — N —
oxt  0xJ ox! 0%/
We have . .
aii 20X OF yox L OXT OX' ke i
ax? axk ax? axk
Consider the type (2,0) symmetric tensor
gi0 g0 _qj 0 o0

oxi oxi " ox  ox
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We have . L
ax? axk ax? axk
If A is skew-symmetric and S is symmetric, then

AijSij:—AjiSij=—AjiSji=—AijSij AijSijZ—AjiSij=—Aji5ji=—AijSij \/

Hence AifS,-j:Oand AijSij:O. 0

Question 7

Let Ck¢ = Al kaj be a rank-2 contravariant tensor given by contracting the N° functions A*/¥ with the tensor B,,,, which is

symmetric in the mn indices but otherwise arbitrary, i.e., BS,,, = B,,. Show that A/ + A/?k is a rank-3 contravariant tensor.
Give reasons why the same is not true for A“/* or AJ#¥ separately.

Proof. First we prove the following lemma:

Suppose that A kaj =0 for any type (1,2) tensor B symmetric in the two lower indices. Then A'J¥ + AJik = ¢,

For a,b e {1,..., N}, consider a tensor B where B[] =1 whenever (i, j) = (a, b) and (b, a), and ij = 0 otherwise. Then we have
Aikafj = A9k 4 pbak — o We deduce that AV/* + A/i¥ = forall i, j, k€ {1,..., N}.

Now we return to the problem. Using the fact that C is a type (2,0) tensor and that B is a type (1,2) tensor, we have the
transformation rule

kﬁ%@Bn :Ai]kBZ Cké 63Ek 6_55( mn _ 63516 035[
ax" oxt axi P9 ox™ gxn ax™ dx"

=0 / (%)

This holds for all type (1, 2) tensors symmetric in the lower indices. By the lemma above we have

i

pgm pn
A Bp

Since the coordinate transformation is invertible, d%¢/0x" # 0. Hence we have

6xp qu Fijk _ ax
0xt ox/ ox™m

n 2 ppam

Ox” 0x 5y OFF g 07 Ox 7y OX*

- - —— —— AP =
0%t 0%/ ox™m %t 0% ox™m

By relabeling the indices and combining we obtain

i~ O%F 0% 9% \/
k k
AT+ AT :ax_mﬁﬁ(wm”qpm)

Hence A'/k + AJik transforms like a type (3,0) tensor.

The conclusion does not apply to A’/¥. Let C be a non-zero anti-symmetric type (3,0) tensor. Then C/* + C/i* = 0 and hence
Cijkaj = 0 for any type (1,2) tensor B symmetric in the two lower indices. The equation (*) is satisfied by

~k
0xP 0x7 ijjc _ 0%\ pgm _ cpak
oxt ox/ oxm
Then N . .
2 vt} evd
Fijk = 9% ai%qum OX" 0x pgk
ox™ 0xP 0x9 oxP 0x4

Ali* does not transform like a type (3,0) tensor for a suitably chosen anti-symmetric C. O
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Question 8

In this problem, we will consider a transformation from Cartesian to polar coordinate systems in two Euclidean dimensions.
Let x! = x and x? = y for the Cartesian system, and X! = r and % = @ for the polar, with the transformation

x! = rcosf = %! cos #?
x% = rsin@ = &' sin #?

The metric for the Cartesian system is g;; = 0;;. Derive the metric tensor ;; for the polar coordinate system, its reciprocal
&'J, and the covariant polar components %; and X in terms of r and §. Why might it not be appropriate to calculate a length
from the origin to a point specified by finite values of r and 6 using these covariant components? Show that the components
of the metrics g;; and §;; do not change under rotations of the coordinate system through a fixed angle a around the origin.

Proof. Note the the metric is a type (0,2) tensor. It transforms via

dxk ax? _ dxk ax? _ dxk axk
0%t o3 S~ ot oxi ¥ T oxt ox

8ij=
Since x = r cos@ and y = rsinf, the Jacobian matrix of the transformation:

G(x,y)_(ax/(?r 6x/69) (cosH —rsinH)

0(r,0) \dy/or 0dyi00) ~ \sind rcosd
Then
. 0x 0x 6y6y
1= or or dr or
. 0x 0x ayay

8i2=81= 7555550~
N 0x 0x 6y6y 9

822= 5030 " o030 ~

Hence the metric tensor in polar coordinates is
g=g;;dx' ®dx/ =dredr+r’dfedo \/

Let G be the matrix whose components are g; ;. Then the reciprocal is gl =(G 1)T where

o[y 2 ey )/

1/r

Then the reciprocal of the metric tensor g is
0 6 10 0

® —+—5-9®——
or adr 1?90 90
o . . . 0
The covariant components X' are obtained by contracting the tensor product of g and X/ 6_!
x

- L A ) \/
Xi=gijx! = Xi=gur=r, X =gnb=r7"0

Note that the Jacobian vanishes at the origin, so the coordinate transformation is not invertible. So we cannot use g;; to
calculate the distance from origin to a fixed point.

Let A be the rotation matrix:

4= [cos —sina A1 = cosa sina
sina cosa —-sina cosa
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. o axi ,
Since % = Alx/, we have — = (A™!)’. Then
J ox/ J

ax* ax’ ~ T
~"=TT EGz(A_) GA_leGA_l
gl] oxt 0% 8ke \/
In Cartesian coordinates, G = I. So after rotation G = AIA™! = I so the components of the metric tensor are invariant.

In polar coordinates, the rotation is given by r — r and 0 — 0 + a. So the rotation matrix (in fact the Jacobian matrix) A = I.
So after rotation G = G. The components of the metric tensor are invariant. O

Some Mathematical Stuff

In the lectures, contravariant and covariant vectors are defined via coordinate transformations. Here I would like to present a more
geometric way of defining vectors and tensors.

Definition. Smooth Manifolds. Suppose that M is a Hausdorff, second countable topological space. X is called a smooth manifold
or simply a manifold, if there exists a family «f = {(U;, ¢;) : i € I}, where:

1. {U;: i € I} is an open cover of M;
2. ¢;:U; — R" is an homeomorphism onto its image;

3. for U;nU; # &, the transition map ¢ ; O(P,-_l lp;winuy 1 @iUinUj) — @U;nU;)) is bijecitve, C*, and has a C* inverse. (This
is called the compatibility condition.)

&/ is called an atlas and the pairs (Uj, ¢;) are called coordinate charts. 7 is the dimension of the manifold M.

If the altas «f is maximal in the sense that every coordinate chart that is compatible with one in « is contained in <7, then we say
that «f defines a differentiable structure on M.

Here we only concern the local properties of manifolds. Let M be an n-dimensional manifold and p € M. Let (U, @) = (U; x',..., x™)
be a coordinate chart with p € U. Let (rl, ..., r™) be the standard coordinates of R”. Then we have # real-valued functions x* = r! op:
U—R.

Let C3” denotes the set of smooth functions from U to R. Lety: [-¢,¢] — M be a C! path on M with y(0) = p. For f € Cyy foy:
[~¢,€] — Ris C! and we can differentiate at 0:

d
"0) =
(fop)(0)= dt(fOY)(t)

_ Ci/(o)i
t:0_ ort

Jreo)

= i -1 — i -1 1 n
=g oo oq)oy)(t)'tzo— S Foe ™) (e (1), c" (1)

t=0 @(p)

where (c!(2),...,¢"(1) = poy(1).
of

0
Let —| denotes —
ort

-1
- .
ox' |,

0
(fop~1). In order words, — by
ox?

T lomp)

0
is the pullback of -
o(p) p a

We observe that the path y induces the linear functional f — (f oy)’(0), which spans a (dual) vector space. We can take

o
ox!

Definition. Tangent Vectors. Let y : [-¢,£] — M be a C! path on M with y(0) = p. Then vy CpP =R, f—(f 0y)'(0) is called a tangent
vector of M at p.

} as a basis. Hence we have identified the path y with a vector (c, ..., c"*) in R".

yeey
p o 0x"lp

Definition. Tangent Spaces. The set of tangent vectors at p is called the tangent space at p and is denoted by T,M. T,M is a

o)

n-dimensional vector space with a basis { e S
x
We shall show that the tangent vectors are exactly the contravariant vectors defined in the lectures:

1
6xp

Suppose that (U; x!,...,x") and (U, %', ...,X") are two coordinate charts and p € Un U. Then from the discussions above we know

0|1 .q]0 9
" oxn |, x|, ox"

0
that T, M has two bases { il
X

}. Consider a tangent vector

p P P
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For any f € C,
0 L Ofogp! L (fod Vo (@op! ofog | 0(@og) Lof 0%l i 0
v(f):yz_fi =v’fo—(f _ i (fop )oi(tpo(P ) _ fO(e ((P(lj ) _ leil =§]4
o0x p or o(p) or o(p) orl PP or o(p) 0xJ 0x p oxJ p
Hence the coordinates are transformed via )
_j_ ox/
V= —
oxt |p

For f € C?, f naturally induces a dual vector of a tangent vector: df |p :TpM —R,df |p(v) := v(f). In this way we can identify the
dual space of the tangent space:

Definition. Cotangent Spaces. Let T,M be the tangent space at p € M. The cotangent space T),M is the dual space of T, M.
0
{dx1

yoeey @
element in the cotangent space.

,...,dx”| } is a basis of T* M, and is the dual basis of { —
p p p ox!

}. A cotangent vector or a covariant vector is an

p p

i
—5]-
p

, 0 ax’!
dxl | by -
P\oxi |, ox/
Coordinate transformations of cotangent vectors: Consider a cotangent vector
w=wdx'| =&;d¥|
P p

0 »
For any tangent vector v = v —| =7' —
P ox!

Py € T, M, we have
X

p

o) =wv' =00’

Hence the coordinates are transformed via )
ox/
wi=—| W;
j po i
oxt |p
Definition. Tensor Product. Suppose that V1, ..., V, are vector spaces over a field F. The tensor product space V; ®---® V,, is a vector
space satisfying the following universal property:

There exists a multilinearmap ¢ : Vj x---xV,, = V1 ®---®V,, such that for any F-vector space W and multilinearmap o : V; x---xV;, —
W such that there exists a unique linear mapo:V; ®---® V,, — W such thato =g o .

Definition. Tensors. Let T, M and T),M be the tangent and cotangent spaces at p € M. A tensor product space of type (r,s) at p
is

T (p)=TpM®--®T,M8T,M®---®T,M

~

~~ ~~
r times s times

A tensor of type (7, s) (rank r contravariant and rank s covariant) is an element of T} (p).

Naturally a basis of T} (p) is the set of vectors

0 0 . .
—® - —dx)! ®---®dx/s
oxh oxtr

where iy, ..., iy, j1,.., js € {1,..., 1}
Foratensor T € T{ (p):

ip 0 0 ; o 0
T=T"" —@. .0 —odxle--@dx/s=T""" —@ .. © —
J1Is gxh oxlir J1Js gxh oxtr

odil ®--- @ d¥/s

The coordinates are transformed via . . ) )
ke _ ox™  ox"r oxl'  ox!s ;.
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