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Einstein summation convention is assumed, with indices taking values from 1 to N .

Question 1

If we have two successive transformations from ui = ui
(
x1, x2, ..., xN

)
to v i = v i

(
y1, y2, ..., y N

)
and from v i to w i = w i

(
z1, z2, · · ·zN

)
, with i = 1,2, · · ·N

v i = ∂y i

∂x j
u j

and

w i = ∂zi

∂y j
v j

show that we can perform the transformation in one step via

w i = ∂zi

∂x j
u j

Proof. This is essentially a chain rule:

w i = ∂zi

∂y j
v j = ∂zi

∂y j

∂y j

∂xk
uk = ∂zi

∂xk
uk = ∂zi

∂x j
u j

To justify the chain rule in the third equality, let M be the N -dimensional (background) manifold. ϕ = (x1, ..., xN ), ψ =
(y1, ..., y N ) and χ= (z1, ..., zN ) are coordinates charts from U ⊆ M to R. Let r 1, ...,r N be the standard coordinates of RN . Then

∂zi

∂xk
= ∂(zi ◦ϕ−1)

∂r k
= ∂

(
(zi ◦ψ−1)◦ (ψ◦ϕ−1)

)
∂r k

= ∂(zi ◦ψ−1)

∂r j

∂(y j ◦ϕ−1)

∂r k
(chain rule in RN )

= ∂zi

∂y j

∂y j

∂xk

Question 2

If Ai j
k is a mixed tensor, B i j

k is another tensor of the same kind, and α and β are scalar invariants, show that αAi j
k +βB i j

k is yet
another tensor of the same kind.

Proof. Algebrically, it follows from that the set of all type (2,1) tensors forms a vector space T 2
1 (V ) = V ⊗V ⊗V ∗, where V is the

tangent space Tp M . If we use the definition given by transformation rule, we can check

αÃi j
k +βB̃ i j

k =α∂x̃i

∂x`
∂x̃ j

∂xm

∂xn

∂x̃k
Ai j

k +β ∂x̃i

∂x`
∂x̃ j

∂xm

∂xn

∂x̃k
B`m

n = ∂x̃i

∂x`
∂x̃ j

∂xm

∂xn

∂x̃k

(
αA`m

n +βB`m
n

)
=αAi j

k +βB i j
k

Question 3

If Ai
j are the components of a mixed tensor, show that Ai

i transforms as a scalar invariant.

Proof. Ai
i is the contraction of a type (1,1) tensor Ai

j :

C 1
1 (T ) =C 1

1

(
Ai

j
∂

∂xi
⊗dx j

)
= Ai

j dx j
(
∂

∂xi

)
= Ai

j
∂x j

∂xi
= Ai

jδ
j
i = Ai

i

The contraction of a type (1,1) tensor is a type (0,0) tensor, which is a scalar. So Ai
i surely transforms as a scalar invariant.
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Question 4

Assuming x and y transform as the components of a Euclidean vector, determine which of the following matrices are tensors:

Ai j =
(

x2 x y
x y y2

)
, B i j =

(
x y y2

x2 −x y

)
, C i j =

(
y2 x y
x y x2

)
[based on E Butkov, Mathematical Physics]

Proof. Geometrically speaking, tensors are specified at a fixed point in a manifold. So I think the correct question to ask here is that if
the matrices are tensor fields.

None of A,B ,C looks like a tensor field as they seem not multi-linear with respect to the coordinates. Yet we can verify if the
matrices are invariant under orthogonal transformations of R2 (as done in the lecture recordings).

Any orthogonal matrix O ∈ O(2) is of the form

O =
(
cosθ −sinθ
sinθ cosθ

)
or O =

(
cosθ sinθ
sinθ −cosθ

)
(θ ∈ [0,2π])

Consider the change of variables (
x̃
ỹ

)
=

(
cosθ ∓sinθ
sinθ ±cosθ

)(
x
y

)
which implies that (

x
y

)
=

(
cosθ sinθ
∓sinθ ±cosθ

)(
x̃
ỹ

)
=

(
x̃ cosθ+ ỹ sinθ

±(−x̃ sinθ+ ỹ cosθ
))

Let Ã(x̃, ỹ) = A(x, y). Then

Ã =
(

(x̃ cosθ+ ỹ sinθ)2 ±(x̃ cosθ+ ỹ sinθ)(−x̃ sinθ+ ỹ cosθ)
±(x̃ cosθ+ ỹ sinθ)(−x̃ sinθ+ ỹ cosθ) (−x̃ sinθ+ ỹ cosθ)2

)

=

x̃2 cos2θ+ ỹ2 sin2θ+ x̃ ỹ sin2θ ±
(

ỹ2 − x̃2

2
sin2θ+ x̃ ỹ cos2θ

)
±

(
ỹ2 − x̃2

2
sin2θ+ x̃ ỹ cos2θ

)
x̃2 sin2θ+ ỹ2 cos2θ− x̃ ỹ sin2θ


On the other hand, after change of basis

OT AO =
(

cosθ sinθ
∓sinθ ±cosθ

)(
x2 x y
x y y2

)(
cosθ ∓sinθ
sinθ ±cosθ

)
=

x̃2 cos2θ+ ỹ2 sin2θ+ x̃ ỹ sin2θ ±
(

ỹ2 − x̃2

2
sin2θ+ x̃ ỹ cos2θ

)
±

(
ỹ2 − x̃2

2
sin2θ+ x̃ ỹ cos2θ

)
x̃2 sin2θ+ ỹ2 cos2θ− x̃ ỹ sin2θ


Hence Ã =OT AO. A is invariant under orthogonal transformations.

For matrix B ,

B̃ =

 ±
(

ỹ2 − x̃2

2
sin2θ+ x̃ ỹ cos2θ

)
x̃2 sin2θ+ ỹ2 cos2θ− x̃ ỹ sin2θ

x̃2 cos2θ+ ỹ2 sin2θ+ x̃ ỹ sin2θ ∓
(

ỹ2 − x̃2

2
sin2θ+ x̃ ỹ cos2θ

)


OTBO =
(

cosθ sinθ
∓sinθ ±cosθ

)(
x y y2

x2 −x y

)(
cosθ ∓sinθ
sinθ ±cosθ

)
=


(

x̃2 + ỹ2

2
sin2θ+ x̃ ỹ cos2θ

)
±(

x̃2 cos2θ− ỹ2 sin2θ+ x̃ ỹ sin2θ
)

±(
x̃2 sin2θ− ỹ2 cos2θ− x̃ ỹ sin2θ

) (
− x̃2 + ỹ2

2
sin2θ− x̃ ỹ cos2θ

)


Hence B̃ =OTBO. B is not invariant under orthogonal transformations.
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For matrix C ,

C̃ =

x̃2 sin2θ+ ỹ2 cos2θ− x̃ ỹ sin2θ ±
(

ỹ2 − x̃2

2
sin2θ+ x̃ ỹ cos2θ

)
±

(
ỹ2 − x̃2

2
sin2θ+ x̃ ỹ cos2θ

)
x̃2 cos2θ+ ỹ2 sin2θ+ x̃ ỹ sin2θ



OTCO =
(

cosθ sinθ
∓sinθ ±cosθ

)(
y2 x y
x y x2

)(
cosθ ∓sinθ
sinθ ±cosθ

)
=

x̃2 cos2θ+ ỹ2 sin2θ+ x̃ ỹ sin2θ ±
(

x̃2 − ỹ2

2
sin2θ+ x̃ ỹ cos2θ

)
±

(
x̃2 − ỹ2

2
sin2θ+ x̃ ỹ cos2θ

)
x̃2 sin2θ+ ỹ2 cos2θ− x̃ ỹ sin2θ


Hence C̃ =OTCO. C is not invariant under orthogonal transformations.

Remark. We observe that A = xi ∂

∂xi
⊗ x j ∂

∂x j
is a tensor product of two vector fields. It makes me wonder if A is still a tensor field

in the most general sense...

Question 5

Show that if the components of a contravariant vector vanish in one coordinate system, they vanish in all coordinate systems.
What can be said of two contravariant vectors whose components are equal in one coordinate system?

Proof. If Ai = 0 for i ∈ {1, ..., N }. Then it represents a zero tangent vector Ai ∂

∂xi
= 0 ∈ Tp M . Hence it is zero in any coordinate charts.

Suppose that Ai = k 6= 0 for i ∈ {1, ..., N }. Consider a new coordinate chart (y1, ..., y N ), where y1 = 2x1 and y i = xi for i ∈
{1, ..., N }. Then Ai ∂

∂xi
= Ã j ∂

∂y j
implies that (Ã1, ..., ÃN ) = (k/2,k, ...,k). So after transformation the components are no

longer equal.

Question 6

Let Ai j be a skew-symmetric tensor with Ai j = −A j i , and Si j a symmetric tensor with Si j = S j i . Show that the symmetry
properties are preserved in coordinate transformations. Also show that the quantities with raised indices, Ai j and Si j , possess
the same properties. From this, show that Ai j Si j = 0 and Ai j Si j = 0.

Proof. Consider the type (0,2) skew-symmetric tensor

Ai j dxi ∧dx j = Ãi j dx̃i ∧dx̃ j

We have

Ã j i = ∂x`

∂x̃ j

∂xk

∂x̃i
A`k =−∂x`

∂x̃ j

∂xk

∂x̃i
Ak` =−Ãi j

Consider the type (0,2) symmetric tensor
Si j dxi ⊗dx j = S̃i j dx̃i ⊗dx̃ j

We have

S̃ j i = ∂x`

∂x̃ j

∂xk

∂x̃i
S`k = ∂x`

∂x̃ j

∂xk

∂x̃i
Sk` =−S̃i j

Consider the type (2,0) skew-symmetric tensor

Ai j ∂

∂xi
∧ ∂

∂x j
= Ãi j ∂

∂x̃i
∧ ∂

∂x̃ j

We have

Ã j i = ∂x̃ j

∂x`
∂x̃i

∂xk
A`k =−∂x̃ j

∂x`
∂x̃i

∂xk
Ak` =−Ãi j

Consider the type (2,0) symmetric tensor

Si j ∂

∂xi
⊗ ∂

∂x j
= S̃i j ∂

∂x̃i
⊗ ∂

∂x̃ j

Pietro
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We have

S̃ j i = ∂x̃ j

∂x`
∂x̃i

∂xk
S`k = ∂x̃ j

∂x`
∂x̃i

∂xk
Sk` = S̃i j

If A is skew-symmetric and S is symmetric, then

Ai j Si j =−A j i Si j =−A j i S j i =−Ai j Si j Ai j Si j =−A j i Si j =−A j i S j i =−Ai j Si j

Hence Ai j Si j = 0 and Ai j Si j = 0.

Question 7

Let C k` = Ai j k B`
i j be a rank-2 contravariant tensor given by contracting the N 3 functions Ai j k with the tensor B`

mn , which is

symmetric in the mn indices but otherwise arbitrary, i.e., B`
mn = B`

nm . Show that Ai j k + A j i k is a rank-3 contravariant tensor.
Give reasons why the same is not true for Ai j k or A j i k separately.

Proof. First we prove the following lemma:

Suppose that Ai j k B`
i j = 0 for any type (1,2) tensor B symmetric in the two lower indices. Then Ai j k + A j i k = 0.

For a,b ∈ {1, ..., N }, consider a tensor B where B`
i j = 1 whenever (i , j ) = (a,b) and (b, a), and B`

i j = 0 otherwise. Then we have

Ai j k B`
i j = Aabk + Abak = 0. We deduce that Ai j k + A j i k = 0 for all i , j ,k ∈ {1, ..., N }.

Now we return to the problem. Using the fact that C is a type (2,0) tensor and that B is a type (1,2) tensor, we have the
transformation rule

Ãi j k ∂x̃`

∂xn

∂xp

∂x̃i

∂xq

∂x̃ j
B n

pq = Ãi j k B̃`
i j = C̃ k` = ∂x̃k

∂xm

∂x̃`

∂xn C mn = ∂x̃k

∂xm

∂x̃`

∂xn ApqmB n
pq

Since the coordinate transformation is invertible, ∂x̃`/∂xn 6= 0. Hence we have

B n
pq

(
∂xp

∂x̃i

∂xq

∂x̃ j
Ãi j k − ∂x̃k

∂xm Apqm

)
= 0 (∗)

This holds for all type (1,2) tensors symmetric in the lower indices. By the lemma above we have

∂xp

∂x̃i

∂xq

∂x̃ j
Ãi j k − ∂x̃k

∂xm Apqm + ∂xq

∂x̃i

∂xp

∂x̃ j
Ãi j k − ∂x̃k

∂xm Aqpm = 0

By relabeling the indices and combining we obtain

Ãi j k + Ã j i k = ∂x̃k

∂xm

∂x̃i

∂xp

∂x̃ j

∂xq

(
Apqm + Aqpm)

Hence Ai j k + A j i k transforms like a type (3,0) tensor.

The conclusion does not apply to Ai j k . Let C be a non-zero anti-symmetric type (3,0) tensor. Then C i j k +C j i k = 0 and hence
C i j k B`

i j = 0 for any type (1,2) tensor B symmetric in the two lower indices. The equation (∗) is satisfied by

∂xp

∂x̃i

∂xq

∂x̃ j
Ãi j k − ∂x̃k

∂xm Apqm =C pqk

Then

Ãi j k = ∂x̃k

∂xm

∂x̃i

∂xp

∂x̃ j

∂xq Apqm + ∂x̃i

∂xp

∂x̃ j

∂xq C pqk

Ai j k does not transform like a type (3,0) tensor for a suitably chosen anti-symmetric C .
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Question 8

In this problem, we will consider a transformation from Cartesian to polar coordinate systems in two Euclidean dimensions.
Let x1 = x and x2 = y for the Cartesian system, and x̂1 = r and x̂2 = θ for the polar, with the transformation

x1 = r cosθ = x̂1 cos x̂2

x2 = r sinθ = x̂1 sin x̂2

The metric for the Cartesian system is gi j = δi j . Derive the metric tensor ĝi j for the polar coordinate system, its reciprocal
ĝ i j , and the covariant polar components x̂1 and x̂2 in terms of r and θ. Why might it not be appropriate to calculate a length
from the origin to a point specified by finite values of r and θ using these covariant components? Show that the components
of the metrics gi j and ĝi j do not change under rotations of the coordinate system through a fixed angle α around the origin.

Proof. Note the the metric is a type (0,2) tensor. It transforms via

ĝi j = ∂xk

∂x̃i

∂x`

∂x̃ j
gk` =

∂xk

∂x̃i

∂x`

∂x̃ j
δk` =

∂xk

∂x̃i

∂xk

∂x̃ j

Since x = r cosθ and y = r sinθ, the Jacobian matrix of the transformation:

∂(x, y)

∂(r,θ)
=

(
∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

)
=

(
cosθ −r sinθ
sinθ r cosθ

)
Then

ĝ11 = ∂x

∂r

∂x

∂r
+ ∂y

∂r

∂y

∂r
= 1

ĝ12 = ĝ21 = ∂x

∂r

∂x

∂θ
+ ∂y

∂r

∂y

∂θ
= 0

ĝ22 = ∂x

∂θ

∂x

∂θ
+ ∂y

∂θ

∂y

∂θ
= r 2

Hence the metric tensor in polar coordinates is

g = ĝi j dx̂i ⊗dx̂ j = dr ⊗dr + r 2dθ⊗dθ

Let G be the matrix whose components are gi j . Then the reciprocal is g i j = (G−1)T
i j , where

G =
(
1 0
0 r 2

)
(G−1)T =

(
1 0
0 1/r 2

)
Then the reciprocal of the metric tensor g is

∂

∂r
⊗ ∂

∂r
+ 1

r 2

∂

∂θ
⊗ ∂

∂θ

The covariant components x̂i are obtained by contracting the tensor product of g and x̂ j ∂

∂x j
:

x̂i = gi j x j =⇒ x̂1 = g11r = r, x̂2 = g22θ = r 2θ

Note that the Jacobian vanishes at the origin, so the coordinate transformation is not invertible. So we cannot use ĝi j to
calculate the distance from origin to a fixed point.

Let A be the rotation matrix:

A =
(
cosα −sinα
sinα cosα

)
A−1 =

(
cosα sinα
−sinα cosα

)

Pietro
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Since x̃i = Ai
j x j , we have

∂xi

∂x̃ j
= (

A−1
)i

j . Then

g̃i j = ∂xk

∂x̃i

∂x`

∂x̃ j
gk` =⇒ G̃ = (A−1)TG A−1 = AG A−1

In Cartesian coordinates, G = I . So after rotation G̃ = AI A−1 = I so the components of the metric tensor are invariant.

In polar coordinates, the rotation is given by r 7→ r and θ 7→ θ+α. So the rotation matrix (in fact the Jacobian matrix) A = I .
So after rotation G̃ =G . The components of the metric tensor are invariant.

Some Mathematical Stuff

In the lectures, contravariant and covariant vectors are defined via coordinate transformations. Here I would like to present a more
geometric way of defining vectors and tensors.

Definition. Smooth Manifolds. Suppose that M is a Hausdorff, second countable topological space. X is called a smooth manifold
or simply a manifold, if there exists a family A = {(Ui ,ϕi ) : i ∈ I }, where:

1. {Ui : i ∈ I } is an open cover of M ;

2. ϕi : Ui →Rn is an homeomorphism onto its image;

3. for Ui ∩U j 6=∅, the transition map ϕ j ◦ϕ−1
i |ϕi (Ui∩U j ) :ϕi (Ui ∩U j ) →ϕ j (Ui ∩U j ) is bijecitve, C∞, and has a C∞ inverse. (This

is called the compatibility condition.)

A is called an atlas and the pairs (Ui ,ϕi ) are called coordinate charts. n is the dimension of the manifold M .

If the altas A is maximal in the sense that every coordinate chart that is compatible with one in A is contained in A , then we say
that A defines a differentiable structure on M .

Here we only concern the local properties of manifolds. Let M be an n-dimensional manifold and p ∈ M . Let (U ,ϕ) = (U ; x1, ..., xn)
be a coordinate chart with p ∈U . Let (r 1, ...,r n) be the standard coordinates of Rn . Then we have n real-valued functions xi = r i ◦ϕ :
U →R.

Let C∞
p denotes the set of smooth functions from U to R. Let γ : [−ε,ε] → M be a C1 path on M with γ(0) = p. For f ∈ C∞

p , f ◦γ :
[−ε,ε] →R is C1 and we can differentiate at 0:

( f ◦γ)′(0) = d

dt
( f ◦γ)(t )

∣∣∣∣
t=0

= d

dt
( f ◦ϕ−1 ◦ϕ◦γ)(t )

∣∣∣∣
t=0

= d

dt
( f ◦ϕ−1)

(
c1(t ), ...,cn(t )

)∣∣∣∣
t=0

=
(

c i ′(0)
∂

∂r i

∣∣∣∣
ϕ(p)

)(
f ◦ϕ−1)

where
(
c1(t ), ...,cn(t )

)=ϕ◦γ(t ).

Let
∂ f

∂xi

∣∣∣∣
p

denotes
∂

∂r i

∣∣∣∣
ϕ(p)

( f ◦ϕ−1). In order words,
∂

∂xi

∣∣∣∣
p

is the pullback of
∂

∂r i

∣∣∣∣
ϕ(p)

by ϕ−1.

We observe that the path γ induces the linear functional f 7→ ( f ◦γ)′(0), which spans a (dual) vector space. We can take{
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
as a basis. Hence we have identified the path γ with a vector (c1, ...,cn) in Rn .

Definition. Tangent Vectors. Let γ : [−ε,ε] → M be a C1 path on M with γ(0) = p. Then vγ : C∞
p →R, f 7→ ( f ◦γ)′(0) is called a tangent

vector of M at p.

Definition. Tangent Spaces. The set of tangent vectors at p is called the tangent space at p and is denoted by Tp M . Tp M is a

n-dimensional vector space with a basis

{
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
.

We shall show that the tangent vectors are exactly the contravariant vectors defined in the lectures:

Suppose that (U ; x1, ..., xn) and (Ũ , x̃1, ..., x̃n) are two coordinate charts and p ∈ U ∩Ũ . Then from the discussions above we know

that Tp M has two bases

{
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
and

{
∂

∂x̃1

∣∣∣∣
p

, ...,
∂

∂x̃n

∣∣∣∣
p

}
. Consider a tangent vector

v = v i ∂

∂xi

∣∣∣∣
p
= ṽ i ∂

∂x̃i

∣∣∣∣
p
∈ Tp M

Pietro
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For any f ∈ C∞
p ,

v( f ) = v i ∂ f

∂xi

∣∣∣∣
p
= v i ∂ f ◦ϕ−1

∂r i

∣∣∣∣
ϕ(p)

= v i ∂( f ◦ ϕ̃−1)◦ (ϕ̃◦ϕ−1)

∂r i

∣∣∣∣
ϕ(p)

= v i ∂ f ◦ ϕ̃−1

∂r j

∣∣∣∣
ϕ̃(p)

∂
(
ϕ̃◦ϕ−1

) j

∂r i

∣∣∣∣∣
ϕ(p)

= v i ∂ f

∂x̃ j

∂x̃ j

∂xi

∣∣∣∣
p
= ṽ j ∂ f

∂x̃ j

∣∣∣∣
p

Hence the coordinates are transformed via

ṽ j = ∂x̃ j

∂xi

∣∣∣∣
p

v i

For f ∈ C∞
p , f naturally induces a dual vector of a tangent vector: d f

∣∣
p

: Tp M → R, d f
∣∣

p
(v) := v( f ). In this way we can identify the

dual space of the tangent space:

Definition. Cotangent Spaces. Let Tp M be the tangent space at p ∈ M . The cotangent space T∗
p M is the dual space of Tp M .{

dx1
∣∣

p
, ...,dxn

∣∣
p

}
is a basis of T∗

p M , and is the dual basis of

{
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
. A cotangent vector or a covariant vector is an

element in the cotangent space.

dxi ∣∣
p

(
∂

∂x j

∣∣∣∣
p

)
= ∂xi

∂x j

∣∣∣∣
p
= δi

j

Coordinate transformations of cotangent vectors: Consider a cotangent vector

ω=ωi dxi ∣∣
p
= ω̃i dx̃i ∣∣

p

For any tangent vector v = v i ∂

∂xi

∣∣∣∣
p
= ṽ i ∂

∂x̃i

∣∣∣∣
p
∈ Tp M , we have

ω(v) =ωi v i = ω̃ j ṽ j

Hence the coordinates are transformed via

ω̃ j = ∂x j

∂x̃i

∣∣∣∣
p
ωi

Definition. Tensor Product. Suppose that V1, ...,Vn are vector spaces over a field F . The tensor product space V1⊗·· ·⊗Vn is a vector
space satisfying the following universal property:

There exists a multilinear mapϕ : V1×·· ·×Vn →V1⊗·· ·⊗Vn such that for any F -vector space W and multilinear mapσ : V1×·· ·×Vn →
W such that there exists a unique linear map σ̃ : V1 ⊗·· ·⊗Vn →W such that σ= σ̃◦ϕ.

Definition. Tensors. Let Tp M and T∗
p M be the tangent and cotangent spaces at p ∈ M . A tensor product space of type (r, s) at p

is
T r

s (p) = Tp M ⊗·· ·⊗Tp M︸ ︷︷ ︸
r times

⊗T∗
p M ⊗·· ·⊗T∗

p M︸ ︷︷ ︸
s times

A tensor of type (r, s) (rank r contravariant and rank s covariant) is an element of T r
s (p).

Naturally a basis of T r
s (p) is the set of vectors

∂

∂xi1
⊗·· ·⊗ ∂

∂xir
⊗dx j1 ⊗·· ·⊗dx js

where i1, ..., ir , j1, ..., js ∈ {1, ...,n}.

For a tensor T ∈ T r
s (p):

T = T i1···ir
j1··· js

∂

∂xi1
⊗·· ·⊗ ∂

∂xir
⊗dx j1 ⊗·· ·⊗dx js = T̃ i1···ir

j1··· js

∂

∂x̃i1
⊗·· ·⊗ ∂

∂x̃ir
⊗dx̃ j1 ⊗·· ·⊗dx̃ js

The coordinates are transformed via

T̃ k1···kr
`1···`s

= ∂x̃k1

∂xi1
· · · ∂x̃kr

∂xir

∂x j1

∂x̃`1
· · · ∂x js

∂x̃`s
T i1···ir

j1··· js


