Peize Liu St. Peter's College University of Oxford

Problem Sheet 1

B2: Symmetry & Relativity

Einstein summation convention is assumed, with indices taking values from 1 to N.

Question 1

If we have two successive transformations from $u^i=u^i\left(x^1,x^2,...,x^N\right)$ to $v^i=v^i\left(y^1,y^2,...,y^N\right)$ and from v^i to $w^i=w^i\left(z^1,z^2,\cdots z^N\right)$, with $i=1,2,\cdots N$

$$v^i = \frac{\partial y^i}{\partial x^j} u^j$$

and

$$w^i = \frac{\partial z^i}{\partial v^j} v^j$$

show that we can perform the transformation in one step via

$$w^i = \frac{\partial z^i}{\partial x^j} u^j$$

Proof. This is essentially a chain rule:

$$w^{i} = \frac{\partial z^{i}}{\partial y^{j}} v^{j} = \frac{\partial z^{i}}{\partial y^{j}} \frac{\partial y^{j}}{\partial x^{k}} u^{k} = \frac{\partial z^{i}}{\partial x^{k}} u^{k} = \frac{\partial z^{i}}{\partial x^{j}} u^{j}$$

To justify the chain rule in the third equality, let M be the N-dimensional (background) manifold. $\varphi = (x^1,...,x^N)$, $\psi = (y^1,...,y^N)$ and $\chi = (z^1,...,z^N)$ are coordinates charts from $U \subseteq M$ to \mathbb{R} . Let $r^1,...,r^N$ be the standard coordinates of \mathbb{R}^N . Then

$$\begin{split} \frac{\partial z^i}{\partial x^k} &= \frac{\partial (z^i \circ \varphi^{-1})}{\partial r^k} = \frac{\partial \left((z^i \circ \psi^{-1}) \circ (\psi \circ \varphi^{-1}) \right)}{\partial r^k} = \frac{\partial (z^i \circ \psi^{-1})}{\partial r^j} \frac{\partial (y^j \circ \varphi^{-1})}{\partial r^k} \\ &= \frac{\partial z^i}{\partial y^j} \frac{\partial y^j}{\partial x^k} \end{split}$$

(chain rule in \mathbb{R}^N)

Question 2

If A_k^{ij} is a mixed tensor, B_k^{ij} is another tensor of the same kind, and α and β are scalar invariants, show that $\alpha A_k^{ij} + \beta B_k^{ij}$ is yet another tensor of the same kind.

Proof. Algebrically, it follows from that the set of all type (2,1) tensors forms a vector space $T_1^2(V) = V \otimes V \otimes V^*$, where V is the tangent space T_pM . If we use the definition given by transformation rule, we can check

$$\alpha \widetilde{A}_{k}^{ij} + \beta \widetilde{B}_{k}^{ij} = \alpha \frac{\partial \widetilde{x}^{i}}{\partial x^{\ell}} \frac{\partial \widetilde{x}^{j}}{\partial x^{m}} \frac{\partial x^{n}}{\partial \widetilde{x}^{k}} A_{k}^{ij} + \beta \frac{\partial \widetilde{x}^{i}}{\partial x^{\ell}} \frac{\partial \widetilde{x}^{j}}{\partial x^{m}} \frac{\partial x^{n}}{\partial \widetilde{x}^{k}} B_{n}^{\ell m} = \frac{\partial \widetilde{x}^{i}}{\partial x^{\ell}} \frac{\partial \widetilde{x}^{j}}{\partial x^{m}} \frac{\partial x^{n}}{\partial \widetilde{x}^{k}} \left(\alpha A_{n}^{\ell m} + \beta B_{n}^{\ell m} \right) = \overline{\alpha A_{k}^{ij} + \beta B_{k}^{ij}}$$

Question 3

If A_i^i are the components of a mixed tensor, show that A_i^i transforms as a scalar invariant.

Proof. A_i^i is the contraction of a type (1,1) tensor A_i^i :

$$C_1^1(T) = C_1^1 \left(A_j^i \frac{\partial}{\partial x^i} \otimes dx^j \right) = A_j^i dx^j \left(\frac{\partial}{\partial x^i} \right) = A_j^i \frac{\partial x^j}{\partial x^i} = A_j^i \delta_i^j = A_i^i$$

The contraction of a type (1,1) tensor is a type (0,0) tensor, which is a scalar. So A_i^i surely transforms as a scalar invariant. \Box

I think the point of the problem was to show this, rether thou assuming it

Question 4

Assuming x and y transform as the components of a Euclidean vector, determine which of the following matrices are tensors:

$$A^{ij} = \left(\begin{array}{cc} x^2 & xy \\ xy & y^2 \end{array} \right), \quad B^{ij} = \left(\begin{array}{cc} xy & y^2 \\ x^2 & -xy \end{array} \right), \quad C^{ij} = \left(\begin{array}{cc} y^2 & xy \\ xy & x^2 \end{array} \right)$$

[based on E Butkov, Mathematical Physics]

Proof. Geometrically speaking, tensors are specified at a fixed point in a manifold. So I think the correct question to ask here is that if the matrices are tensor fields.

None of A, B, C looks like a tensor field as they seem not multi-linear with respect to the coordinates. Yet we can verify if the matrices are invariant under orthogonal transformations of \mathbb{R}^2 (as done in the lecture recordings).

Any orthogonal matrix $O \in O(2)$ is of the form

$$O = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad \text{or} \qquad O = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \qquad (\theta \in [0, 2\pi])$$

Consider the change of variables

$$\begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix} = \begin{pmatrix} \cos \theta & \mp \sin \theta \\ \sin \theta & \pm \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

which implies that

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ \mp \sin\theta & \pm \cos\theta \end{pmatrix} \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix} = \begin{pmatrix} \widetilde{x}\cos\theta + \widetilde{y}\sin\theta \\ \pm (-\widetilde{x}\sin\theta + \widetilde{y}\cos\theta) \end{pmatrix}$$

Let $\widetilde{A}(\widetilde{x},\widetilde{y}) = A(x,y)$. Then

$$\begin{split} \widetilde{A} &= \begin{pmatrix} (\widetilde{x}\cos\theta + \widetilde{y}\sin\theta)^2 & \pm (\widetilde{x}\cos\theta + \widetilde{y}\sin\theta)(-\widetilde{x}\sin\theta + \widetilde{y}\cos\theta) \\ \pm (\widetilde{x}\cos\theta + \widetilde{y}\sin\theta)(-\widetilde{x}\sin\theta + \widetilde{y}\cos\theta) & (-\widetilde{x}\sin\theta + \widetilde{y}\cos\theta)^2 \end{pmatrix} \\ &= \begin{pmatrix} \widetilde{x}^2\cos^2\theta + \widetilde{y}^2\sin^2\theta + \widetilde{x}\widetilde{y}\sin2\theta & \pm \left(\frac{\widetilde{y}^2 - \widetilde{x}^2}{2}\sin2\theta + \widetilde{x}\widetilde{y}\cos2\theta\right) \\ \pm \left(\frac{\widetilde{y}^2 - \widetilde{x}^2}{2}\sin2\theta + \widetilde{x}\widetilde{y}\cos2\theta\right) & \widetilde{x}^2\sin^2\theta + \widetilde{y}^2\cos^2\theta - \widetilde{x}\widetilde{y}\sin2\theta \end{pmatrix} \end{split}$$

On the other hand, after change of basis

$$O^{T}AO = \begin{pmatrix} \cos\theta & \sin\theta \\ \mp \sin\theta & \pm \cos\theta \end{pmatrix} \begin{pmatrix} x^{2} & xy \\ xy & y^{2} \end{pmatrix} \begin{pmatrix} \cos\theta & \mp \sin\theta \\ \sin\theta & \pm \cos\theta \end{pmatrix} = \begin{pmatrix} \widetilde{x}^{2}\cos^{2}\theta + \widetilde{y}^{2}\sin^{2}\theta + \widetilde{x}\widetilde{y}\sin2\theta & \pm \left(\frac{\widetilde{y}^{2} - \widetilde{x}^{2}}{2}\sin2\theta + \widetilde{x}\widetilde{y}\cos2\theta\right) \\ \pm \left(\frac{\widetilde{y}^{2} - \widetilde{x}^{2}}{2}\sin2\theta + \widetilde{x}\widetilde{y}\cos2\theta\right) & \widetilde{x}^{2}\sin^{2}\theta + \widetilde{y}^{2}\cos^{2}\theta - \widetilde{x}\widetilde{y}\sin2\theta \end{pmatrix}$$
Hence $\widetilde{A} = O^{T}AO$. A is invariant under orthogonal transformations. Rather, if thousand the following section is the following section.

For matrix B.

$$\widetilde{B} = \begin{pmatrix} \pm \left(\frac{\widetilde{y}^2 - \widetilde{x}^2}{2} \sin 2\theta + \widetilde{x} \widetilde{y} \cos 2\theta \right) & \widetilde{x}^2 \sin^2 \theta + \widetilde{y}^2 \cos^2 \theta - \widetilde{x} \widetilde{y} \sin 2\theta \\ \widetilde{x}^2 \cos^2 \theta + \widetilde{y}^2 \sin^2 \theta + \widetilde{x} \widetilde{y} \sin 2\theta & \mp \left(\frac{\widetilde{y}^2 - \widetilde{x}^2}{2} \sin 2\theta + \widetilde{x} \widetilde{y} \cos 2\theta \right) \end{pmatrix}$$

$$O^{\mathsf{T}}BO = \begin{pmatrix} \cos\theta & \sin\theta \\ \mp\sin\theta & \pm\cos\theta \end{pmatrix} \begin{pmatrix} xy & y^2 \\ x^2 & -xy \end{pmatrix} \begin{pmatrix} \cos\theta & \mp\sin\theta \\ \sin\theta & \pm\cos\theta \end{pmatrix} = \begin{pmatrix} \left(\frac{\widetilde{x}^2 + \widetilde{y}^2}{2}\sin2\theta + \widetilde{x}\widetilde{y}\cos2\theta\right) & \pm\left(\widetilde{x}^2\cos^2\theta - \widetilde{y}^2\sin^2\theta + \widetilde{x}\widetilde{y}\sin2\theta\right) \\ \pm\left(\widetilde{x}^2\sin^2\theta - \widetilde{y}^2\cos^2\theta - \widetilde{x}\widetilde{y}\sin2\theta\right) & \left(-\frac{\widetilde{x}^2 + \widetilde{y}^2}{2}\sin2\theta - \widetilde{x}\widetilde{y}\cos2\theta\right) \end{pmatrix}$$

Hence $\widetilde{B} = O^{T}BO$. B is not invariant under orthogonal transformations.

For matrix C,

$$\widetilde{C} = \begin{pmatrix} \widetilde{x}^2 \sin^2 \theta + \widetilde{y}^2 \cos^2 \theta - \widetilde{x} \widetilde{y} \sin 2\theta & \pm \left(\frac{\widetilde{y}^2 - \widetilde{x}^2}{2} \sin 2\theta + \widetilde{x} \widetilde{y} \cos 2\theta \right) \\ \pm \left(\frac{\widetilde{y}^2 - \widetilde{x}^2}{2} \sin 2\theta + \widetilde{x} \widetilde{y} \cos 2\theta \right) & \widetilde{x}^2 \cos^2 \theta + \widetilde{y}^2 \sin^2 \theta + \widetilde{x} \widetilde{y} \sin 2\theta \end{pmatrix}$$

$$O^{\mathrm{T}}CO = \begin{pmatrix} \cos\theta & \sin\theta \\ \mp\sin\theta & \pm\cos\theta \end{pmatrix} \begin{pmatrix} y^2 & xy \\ xy & x^2 \end{pmatrix} \begin{pmatrix} \cos\theta & \mp\sin\theta \\ \sin\theta & \pm\cos\theta \end{pmatrix} = \begin{pmatrix} \widetilde{x}^2\cos^2\theta + \widetilde{y}^2\sin^2\theta + \widetilde{x}\widetilde{y}\sin2\theta & \pm\left(\frac{\widetilde{x}^2-\widetilde{y}^2}{2}\sin2\theta + \widetilde{x}\widetilde{y}\cos2\theta\right) \\ \pm\left(\frac{\widetilde{x}^2-\widetilde{y}^2}{2}\sin2\theta + \widetilde{x}\widetilde{y}\cos2\theta\right) & \widetilde{x}^2\sin^2\theta + \widetilde{y}^2\cos^2\theta - \widetilde{x}\widetilde{y}\sin2\theta \end{pmatrix}$$

Hence $\widetilde{C} = O^{T}CO$. C is not invariant under orthogonal transformations.

Remark. We observe that $A = x^i \frac{\partial}{\partial x^i} \otimes x^j \frac{\partial}{\partial x^j}$ is a tensor product of two vector fields. It makes me wonder if A is still a tensor field in the most general sense... what is the most general sourc?

Question 5

Show that if the components of a contravariant vector vanish in one coordinate system, they vanish in all coordinate systems. What can be said of two contravariant vectors whose components are equal in one coordinate system?

Proof. If $A^i = 0$ for $i \in \{1, ..., N\}$. Then it represents a zero tangent vector $A^i \frac{\partial}{\partial x^i} = 0 \in T_p M$. Hence it is zero in any coordinate charts.

Suppose that $A^i = k \neq 0$ for $i \in \{1,...,N\}$. Consider a new coordinate chart $(y^1,...,y^N)$, where $y^1 = 2x^1$ and $y^i = x^i$ for $i \in \{1,...,N\}$. \times {1,..., N}. Then $A^i \frac{\partial}{\partial x^i} = \widetilde{A}^j \frac{\partial}{\partial y^j}$ implies that $(\widetilde{A}^1,...,\widetilde{A}^N) = (k/2,k,...,k)$. So after transformation the components are no You should have picked 2 vectors A'=B' and showed A'=B'

this is not what the proflem asked

Question 6

Let A_{ij} be a skew-symmetric tensor with $A_{ij} = -A_{ji}$, and S_{ij} a symmetric tensor with $S_{ij} = S_{ji}$. Show that the symmetry properties are preserved in coordinate transformations. Also show that the quantities with raised indices, A^{ij} and S^{ij} , possess the same properties. From this, show that $A^{ij}S_{ij} = 0$ and $A_{ij}S^{ij} = 0$.

Proof. Consider the type (0,2) skew-symmetric tensor

$$A_{ij}\mathrm{d} x^i \wedge \mathrm{d} x^j = \widetilde{A}_{ij}\mathrm{d} \widetilde{x}^i \wedge \mathrm{d} \widetilde{x}^j$$

We have

$$\widetilde{A}_{ji} = \frac{\partial x^{\ell}}{\partial \widetilde{x}^{j}} \frac{\partial x^{k}}{\partial \widetilde{x}^{i}} A_{\ell k} = -\frac{\partial x^{\ell}}{\partial \widetilde{x}^{j}} \frac{\partial x^{k}}{\partial \widetilde{x}^{i}} A_{k\ell} = -\widetilde{A}_{ij}$$

Consider the type (0,2) symmetric tensor

$$S_{ij}\mathrm{d} x^i\otimes\mathrm{d} x^j=\widetilde{S}_{ij}\mathrm{d} \widetilde{x}^i\otimes\mathrm{d} \widetilde{x}^j$$

We have

$$\widetilde{S}_{ji} = \frac{\partial x^{\ell}}{\partial \widetilde{x}^{j}} \frac{\partial x^{k}}{\partial \widetilde{x}^{i}} S_{\ell k} = \frac{\partial x^{\ell}}{\partial \widetilde{x}^{j}} \frac{\partial x^{k}}{\partial \widetilde{x}^{i}} S_{k \ell} = -\widetilde{S}_{ij}$$

Consider the type (2,0) skew-symmetric tensor

$$A^{ij}\frac{\partial}{\partial x^i}\wedge\frac{\partial}{\partial x^j}=\widetilde{A}^{ij}\frac{\partial}{\partial\widetilde{x}^i}\wedge\frac{\partial}{\partial\widetilde{x}^j}$$

We have

$$\widetilde{A}^{ji} = \frac{\partial \widetilde{x}^j}{\partial x^\ell} \frac{\partial \widetilde{x}^i}{\partial x^k} A^{\ell k} = -\frac{\partial \widetilde{x}^j}{\partial x^\ell} \frac{\partial \widetilde{x}^i}{\partial x^k} A^{k\ell} = -\widetilde{A}^{ij}$$

Consider the type (2,0) symmetric tensor

$$S^{ij}\frac{\partial}{\partial x^i}\otimes\frac{\partial}{\partial x^j}=\widetilde{S}^{ij}\frac{\partial}{\partial\widetilde{x}^i}\otimes\frac{\partial}{\partial\widetilde{x}^j}$$

We have

$$\widetilde{S}^{ji} = \frac{\partial \widetilde{x}^{j}}{\partial x^{\ell}} \frac{\partial \widetilde{x}^{i}}{\partial x^{k}} S^{\ell k} = \frac{\partial \widetilde{x}^{j}}{\partial x^{\ell}} \frac{\partial \widetilde{x}^{i}}{\partial x^{k}} S^{k\ell} = \widetilde{S}^{ij}$$

If A is skew-symmetric and S is symmetric, then

$$A^{ij}S_{ij} = -A^{ji}S_{ij} = -A^{ji}S_{ji} = -A^{ij}S_{ij}$$

$$A_{ij}S^{ij} = -A_{ji}S^{ij} = -A_{ji}S^{ji} = -A_{ij}S^{ij}$$

Hence $A^{ij}S_{ij} = 0$ and $A_{ij}S^{ij} = 0$.

Question 7

Let $C^{k\ell}=A^{ijk}B^\ell_{ij}$ be a rank-2 contravariant tensor given by contracting the N^3 functions A^{ijk} with the tensor B^ℓ_{mn} , which is symmetric in the mn indices but otherwise arbitrary, i.e., $B^\ell_{mn}=B^\ell_{nm}$. Show that $A^{ijk}+A^{jik}$ is a rank-3 contravariant tensor. Give reasons why the same is not true for A^{ijk} or A^{jik} separately.

Proof. First we prove the following lemma:

Suppose that $A^{ijk}B^{\ell}_{ij}=0$ for any type (1,2) tensor B symmetric in the two lower indices. Then $A^{ijk}+A^{jik}=0$.

For $a,b \in \{1,...,N\}$, consider a tensor B where $B_{ij}^{\ell}=1$ whenever (i,j)=(a,b) and (b,a), and $B_{ij}^{\ell}=0$ otherwise. Then we have $A^{ijk}B_{ij}^{\ell}=A^{abk}+A^{bak}=0$. We deduce that $A^{ijk}+A^{jik}=0$ for all $i,j,k \in \{1,...,N\}$.

Now we return to the problem. Using the fact that C is a type (2,0) tensor and that B is a type (1,2) tensor, we have the transformation rule

$$\widetilde{A}^{ijk}\frac{\partial\widetilde{x}^{\ell}}{\partial x^{n}}\frac{\partial x^{p}}{\partial\widetilde{x}^{i}}\frac{\partial x^{q}}{\partial\widetilde{x}^{j}}B^{n}_{pq} = \widetilde{A}^{ijk}\widetilde{B}^{\ell}_{ij} = \widetilde{C}^{k\ell} = \frac{\partial\widetilde{x}^{k}}{\partial x^{m}}\frac{\partial\widetilde{x}^{\ell}}{\partial x^{n}}C^{mn} = \frac{\partial\widetilde{x}^{k}}{\partial x^{m}}\frac{\partial\widetilde{x}^{\ell}}{\partial x^{n}}A^{pqm}B^{n}_{pq}$$

Since the coordinate transformation is invertible, $\partial \tilde{x}^{\ell}/\partial x^{n} \neq 0$. Hence we have

$$B_{pq}^{n} \left(\frac{\partial x^{p}}{\partial \widetilde{x}^{i}} \frac{\partial x^{q}}{\partial \widetilde{x}^{j}} \widetilde{A}^{ijk} - \frac{\partial \widetilde{x}^{k}}{\partial x^{m}} A^{pqm} \right) = 0$$
 (*)

This holds for all type (1,2) tensors symmetric in the lower indices. By the lemma above we have

$$\frac{\partial x^p}{\partial \widetilde{x}^i} \frac{\partial x^q}{\partial \widetilde{x}^j} \widetilde{A}^{ijk} - \frac{\partial \widetilde{x}^k}{\partial x^m} A^{pqm} + \frac{\partial x^q}{\partial \widetilde{x}^i} \frac{\partial x^p}{\partial \widetilde{x}^j} \widetilde{A}^{ijk} - \frac{\partial \widetilde{x}^k}{\partial x^m} A^{qpm} = 0$$

By relabeling the indices and combining we obtain

$$\widetilde{A}^{ijk} + \widetilde{A}^{jik} = \frac{\partial \widetilde{x}^k}{\partial x^m} \frac{\partial \widetilde{x}^i}{\partial x^p} \frac{\partial \widetilde{x}^j}{\partial x^q} \left(A^{pqm} + A^{qpm} \right)$$

Hence $A^{ijk} + A^{jik}$ transforms like a type (3,0) tensor.

The conclusion does not apply to A^{ijk} . Let C be a non-zero anti-symmetric type (3,0) tensor. Then $C^{ijk} + C^{jik} = 0$ and hence $C^{ijk}B^{\ell}_{ij} = 0$ for any type (1,2) tensor B symmetric in the two lower indices. The equation (*) is satisfied by

$$\frac{\partial x^p}{\partial \widetilde{x}^i} \frac{\partial x^q}{\partial \widetilde{x}^j} \widetilde{A}^{ijk} - \frac{\partial \widetilde{x}^k}{\partial x^m} A^{pqm} = C^{pqk}$$

Then

$$\widetilde{A}^{ijk} = \frac{\partial \widetilde{x}^k}{\partial x^m} \frac{\partial \widetilde{x}^i}{\partial x^p} \frac{\partial \widetilde{x}^j}{\partial x^q} A^{pqm} + \frac{\partial \widetilde{x}^i}{\partial x^p} \frac{\partial \widetilde{x}^j}{\partial x^q} C^{pqk}$$

 A^{ijk} does not transform like a type (3,0) tensor for a suitably chosen anti-symmetric C.

Question 8

In this problem, we will consider a transformation from Cartesian to polar coordinate systems in two Euclidean dimensions. Let $x^1 = x$ and $x^2 = y$ for the Cartesian system, and $\hat{x}^1 = r$ and $\hat{x}^2 = \theta$ for the polar, with the transformation

$$x^{1} = r\cos\theta = \hat{x}^{1}\cos\hat{x}^{2}$$
$$x^{2} = r\sin\theta = \hat{x}^{1}\sin\hat{x}^{2}$$

The metric for the Cartesian system is $g_{ij} = \delta_{ij}$. Derive the metric tensor \hat{g}_{ij} for the polar coordinate system, its reciprocal \hat{g}^{ij} , and the covariant polar components \hat{x}_1 and \hat{x}_2 in terms of r and θ . Why might it not be appropriate to calculate a length from the origin to a point specified by finite values of r and θ using these covariant components? Show that the components of the metrics g_{ij} and \hat{g}_{ij} do not change under rotations of the coordinate system through a fixed angle α around the origin.

Proof. Note the the metric is a type (0,2) tensor. It transforms via

$$\widehat{g}_{ij} = \frac{\partial x^k}{\partial \widetilde{x}^i} \frac{\partial x^\ell}{\partial \widetilde{x}^j} g_{k\ell} = \frac{\partial x^k}{\partial \widetilde{x}^i} \frac{\partial x^\ell}{\partial \widetilde{x}^j} \delta_{k\ell} = \frac{\partial x^k}{\partial \widetilde{x}^i} \frac{\partial x^k}{\partial \widetilde{x}^j}$$

Since $x = r \cos \theta$ and $y = r \sin \theta$, the Jacobian matrix of the transformation:

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{pmatrix} \partial x/\partial r & \partial x/\partial \theta \\ \partial y/\partial r & \partial y/\partial \theta \end{pmatrix} = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}$$

Then

$$\widehat{g}_{11} = \frac{\partial x}{\partial r} \frac{\partial x}{\partial r} + \frac{\partial y}{\partial r} \frac{\partial y}{\partial r} = 1$$

$$\widehat{g}_{12} = \widehat{g}_{21} = \frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta} + \frac{\partial y}{\partial r} \frac{\partial y}{\partial \theta} = 0$$

$$\widehat{g}_{22} = \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} + \frac{\partial y}{\partial \theta} \frac{\partial y}{\partial \theta} = r^2$$

Hence the metric tensor in polar coordinates is

$$g = \widehat{g}_{ij} d\widehat{x}^i \otimes d\widehat{x}^j = dr \otimes dr + r^2 d\theta \otimes d\theta$$

Let *G* be the matrix whose components are g_{ij} . Then the reciprocal is $g^{ij} = (G^{-1})_{ij}^{T}$, where

$$G = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix} \qquad \qquad (G^{-1})^{\mathrm{T}} = \begin{pmatrix} 1 & 0 \\ 0 & 1/r^2 \end{pmatrix} \qquad \checkmark$$

Then the reciprocal of the metric tensor *g* is

$$\frac{\partial}{\partial r} \otimes \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial \theta} \otimes \frac{\partial}{\partial \theta}$$

The covariant components \hat{x}^i are obtained by contracting the tensor product of g and $\hat{x}^j \frac{\partial}{\partial x^j}$:

$$\widehat{x}_i = g_{ij}x^j \Longrightarrow \widehat{x}_1 = g_{11}r = r, \ \widehat{x}_2 = g_{22}\theta = r^2\theta$$

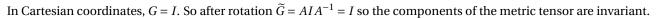
Note that the Jacobian vanishes at the origin, so the coordinate transformation is not invertible. So we cannot use \hat{g}_{ij} to calculate the distance from origin to a fixed point.

Let *A* be the rotation matrix:

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

Since $\tilde{x}^i = A^i_j x^j$, we have $\frac{\partial x^i}{\partial \tilde{x}^j} = (A^{-1})^i_j$. Then

$$\widetilde{g}_{ij} = \frac{\partial x^k}{\partial \widetilde{x}^i} \frac{\partial x^\ell}{\partial \widetilde{x}^j} g_{k\ell} \implies \widetilde{G} = (A^{-1})^{\mathrm{T}} G A^{-1} = A G A^{-1}$$



In polar coordinates, the rotation is given by $r \mapsto r$ and $\theta \mapsto \theta + \alpha$. So the rotation matrix (in fact the Jacobian matrix) A = I. So after rotation $\widetilde{G} = G$. The components of the metric tensor are invariant.

Some Mathematical Stuff

In the lectures, contravariant and covariant vectors are defined via coordinate transformations. Here I would like to present a more geometric way of defining vectors and tensors.

Definition. Smooth Manifolds. Suppose that M is a *Hausdorff, second countable* topological space. X is called a smooth manifold or simply a manifold, if there exists a family $\mathcal{A} = \{(U_i, \varphi_i) : i \in I\}$, where:

- 1. $\{U_i: i \in I\}$ is an open cover of M;
- 2. $\varphi_i: U_i \to \mathbb{R}^n$ is an homeomorphism onto its image;
- 3. for $U_i \cap U_j \neq \emptyset$, the **transition map** $\varphi_j \circ \varphi_i^{-1}|_{\varphi_i(U_i \cap U_j)} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ is bijective, C^{∞} , and has a C^{∞} inverse. (This is called the **compatibility** condition.)

 \mathscr{A} is called an **atlas** and the pairs (U_i, φ_i) are called **coordinate charts**. n is the dimension of the manifold M.

If the altas \mathscr{A} is maximal in the sense that every coordinate chart that is compatible with one in \mathscr{A} is contained in \mathscr{A} , then we say that \mathscr{A} defines a **differentiable structure** on M.

Here we only concern the local properties of manifolds. Let M be an n-dimensional manifold and $p \in M$. Let $(U, \varphi) = (U; x^1, ..., x^n)$ be a coordinate chart with $p \in U$. Let $(r^1, ..., r^n)$ be the standard coordinates of \mathbb{R}^n . Then we have n real-valued functions $x^i = r^i \circ \varphi : U \to \mathbb{R}$.

Let C_p^{∞} denotes the set of smooth functions from U to \mathbb{R} . Let $\gamma: [-\varepsilon, \varepsilon] \to M$ be a C^1 path on M with $\gamma(0) = p$. For $f \in C_p^{\infty}$, $f \circ \gamma: [-\varepsilon, \varepsilon] \to \mathbb{R}$ is C^1 and we can differentiate at 0:

$$(f \circ \gamma)'(0) = \frac{\mathrm{d}}{\mathrm{d}t}(f \circ \gamma)(t) \bigg|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}(f \circ \varphi^{-1} \circ \varphi \circ \gamma)(t) \bigg|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}(f \circ \varphi^{-1}) \left(c^{1}(t), ..., c^{n}(t)\right) \bigg|_{t=0} = \left(c^{i'}(0) \frac{\partial}{\partial r^{i}} \bigg|_{\varphi(p)}\right) \left(f \circ \varphi^{-1}\right)$$

where $(c^1(t), ..., c^n(t)) = \varphi \circ \gamma(t)$.

Let
$$\frac{\partial f}{\partial x^i}\Big|_p$$
 denotes $\frac{\partial}{\partial r^i}\Big|_{\varphi(p)}$ $(f\circ\varphi^{-1})$. In order words, $\frac{\partial}{\partial x^i}\Big|_p$ is the pullback of $\frac{\partial}{\partial r^i}\Big|_{\varphi(p)}$ by φ^{-1} .

We observe that the path γ induces the linear functional $f \mapsto (f \circ \gamma)'(0)$, which spans a (dual) vector space. We can take

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_{p}, ..., \frac{\partial}{\partial x^n} \bigg|_{p} \right\}$$
 as a basis. Hence we have identified the path γ with a vector $(c^1, ..., c^n)$ in \mathbb{R}^n .

Definition. Tangent Vectors. Let $\gamma : [-\varepsilon, \varepsilon] \to M$ be a \mathbb{C}^1 path on M with $\gamma(0) = p$. Then $v_\gamma : C_p^\infty \to \mathbb{R}$, $f \mapsto (f \circ \gamma)'(0)$ is called a tangent vector of M at p.

Definition. Tangent Spaces. The set of tangent vectors at p is called the tangent space at p and is denoted by T_pM . T_pM is a n-dimensional vector space with a basis $\left\{ \frac{\partial}{\partial x^1} \Big|_p, ..., \frac{\partial}{\partial x^n} \Big|_p \right\}$.

We shall show that the tangent vectors are exactly the contravariant vectors defined in the lectures:

Suppose that $(U; x^1, ..., x^n)$ and $(\widetilde{U}, \widetilde{x}^1, ..., \widetilde{x}^n)$ are two coordinate charts and $p \in U \cap \widetilde{U}$. Then from the discussions above we know that $T_p M$ has two bases $\left\{ \left. \frac{\partial}{\partial x^1} \right|_p, ..., \left. \frac{\partial}{\partial x^n} \right|_p \right\}$ and $\left\{ \left. \frac{\partial}{\partial \widetilde{x}^1} \right|_p, ..., \left. \frac{\partial}{\partial \widetilde{x}^n} \right|_p \right\}$. Consider a tangent vector

$$v = v^i \left. \frac{\partial}{\partial x^i} \right|_p = \widetilde{v}^i \left. \frac{\partial}{\partial \widetilde{x}^i} \right|_p \in T_p M$$

For any $f \in C_n^{\infty}$,

$$v(f) = v^i \left. \frac{\partial f}{\partial x^i} \right|_p = v^i \left. \frac{\partial f \circ \varphi^{-1}}{\partial r^i} \right|_{\varphi(p)} = v^i \left. \frac{\partial (f \circ \widetilde{\varphi}^{-1}) \circ (\widetilde{\varphi} \circ \varphi^{-1})}{\partial r^i} \right|_{\varphi(p)} = v^i \left. \frac{\partial f \circ \widetilde{\varphi}^{-1}}{\partial r^j} \right|_{\widetilde{\varphi}(p)} \left. \frac{\partial \left(\widetilde{\varphi} \circ \varphi^{-1}\right)^j}{\partial r^i} \right|_{\varphi(p)} = v^i \left. \frac{\partial f}{\partial \widetilde{x}^j} \frac{\partial \widetilde{x}^j}{\partial x^i} \right|_p = \widetilde{v}^j \left. \frac{\partial f}{\partial \widetilde{x}^j} \right|_p$$

Hence the coordinates are transformed via

$$\widetilde{v}^j = \left. \frac{\partial \widetilde{x}^j}{\partial x^i} \right|_{\mathcal{D}} v^i$$

For $f \in C_p^{\infty}$, f naturally induces a dual vector of a tangent vector: $df|_p : T_pM \to \mathbb{R}$, $df|_p(v) := v(f)$. In this way we can identify the dual space of the tangent space:

Definition. Cotangent Spaces. Let T_pM be the tangent space at $p \in M$. The cotangent space T_p^*M is the dual space of T_pM . $\left\{ \mathrm{d}x^1 \Big|_p, ..., \mathrm{d}x^n \Big|_p \right\}$ is a basis of T_p^*M , and is the dual basis of $\left\{ \frac{\partial}{\partial x^1} \Big|_p, ..., \frac{\partial}{\partial x^n} \Big|_p \right\}$. A **cotangent vector** or a **covariant vector** is an element in the cotangent space.

$$dx^{i}|_{p}\left(\frac{\partial}{\partial x^{j}}\Big|_{p}\right) = \frac{\partial x^{i}}{\partial x^{j}}\Big|_{p} = \delta^{i}_{j}$$

Coordinate transformations of cotangent vectors: Consider a cotangent vector

$$\omega = \omega_i \, \mathrm{d} x^i \big|_p = \widetilde{\omega}_i \, \mathrm{d} \widetilde{x}^i \big|_p$$

For any tangent vector $v = v^i \left. \frac{\partial}{\partial x^i} \right|_p = \widetilde{v}^i \left. \frac{\partial}{\partial \widetilde{x}^i} \right|_p \in T_p M$, we have

$$\omega(v) = \omega_i v^i = \widetilde{\omega}_j \widetilde{v}^j$$

Hence the coordinates are transformed via

$$\widetilde{\omega}_j = \frac{\partial x^j}{\partial \widetilde{x}^i} \bigg|_p \omega_i$$

Definition. Tensor Product. Suppose that $V_1, ..., V_n$ are vector spaces over a field F. The tensor product space $V_1 \otimes \cdots \otimes V_n$ is a vector space satisfying the following universal property:

There exists a multilinear map $\varphi: V_1 \times \cdots \times V_n \to V_1 \otimes \cdots \otimes V_n$ such that for any F-vector space W and multilinear map $\sigma: V_1 \times \cdots \times V_n \to W$ such that there exists a unique linear map $\widetilde{\sigma}: V_1 \otimes \cdots \otimes V_n \to W$ such that $\sigma = \widetilde{\sigma} \circ \varphi$.

Definition. Tensors. Let T_pM and T_p^*M be the tangent and cotangent spaces at $p \in M$. A tensor product space of type (r, s) at p is

$$T_s^r(p) = \underbrace{\mathsf{T}_p M \otimes \cdots \otimes \mathsf{T}_p M}_{r \text{ times}} \otimes \underbrace{\mathsf{T}_p^* M \otimes \cdots \otimes \mathsf{T}_p^* M}_{s \text{ times}}$$

A tensor of type (r, s) (rank r contravariant and rank s covariant) is an element of $T_s^r(p)$.

Naturally a basis of $T_s^r(p)$ is the set of vectors

$$\frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_r}} \otimes \mathrm{d} x^{j_1} \otimes \cdots \otimes \mathrm{d} x^{j_s}$$

where $i_1, ..., i_r, j_1, ..., j_s \in \{1, ..., n\}$.

For a tensor $T \in T_{\mathfrak{s}}^r(p)$:

$$T = T_{j_1 \cdots j_s}^{i_1 \cdots i_r} \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_r}} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_s} = \widetilde{T}_{j_1 \cdots j_s}^{i_1 \cdots i_r} \frac{\partial}{\partial \widetilde{x}^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial \widetilde{x}^{i_r}} \otimes d\widetilde{x}^{j_1} \otimes \cdots \otimes d\widetilde{x}^{j_s}$$

The coordinates are transformed via

$$\widetilde{T}_{\ell_1\cdots\ell_s}^{k_1\cdots k_r} = \frac{\partial\widetilde{x}^{k_1}}{\partial x^{i_1}}\cdots\frac{\partial\widetilde{x}^{k_r}}{\partial x^{i_r}}\frac{\partial x^{j_1}}{\partial\widetilde{x}^{\ell_1}}\cdots\frac{\partial x^{j_s}}{\partial\widetilde{x}^{\ell_s}}T_{j_1\cdots j_s}^{i_1\cdots i_r}$$