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Question 1. Galilean group.

A Galilean transformation between the coordinate systems of two inertial frames R and R′ is given by
t

x

y

z

 =


1 0 0 0

v1 H11 H12 H13

v2 H21 H22 H23

v3 H31 H32 H33



t′

x′

y′

z′

+


c0

c1

c2

c3


whereH ∈ SO(3).

(a) Show that (v1, v2, v3) are the components in frame R of the vector which gives the velocity of the origin of R′.

(b) Show that the composition of two such transformations in again a Galilean transformation. Find the inverse of a
Galilean transformation and show that it is again a Galiean transformation.

(c) Let (t, x1, y1, z1) and (t2, x2, y2, z3) be the coordinates relative to R of two events. Show that under Galilean trans-
formations

(A) The temporal separation t2 − t1 is invariant.

(B) The spatial distance
√
(x2 − x1)2 + (y2 − y1)2 − (z2 − z1)2 is invariant provided that the events are simultane-

ous, i.e. t2 = t1.

Explain why statement (B) is not true for events that are not simultaneous. Show that, conversely, any coordinate
transformation of the form 

t

x

y

z

 =M


t′

x′

y′

z′

+


c0

c1

c2

c3


with properties (A) and (B), whereM ∈M4×4(R) has positive determinant, is a Galilean transformation.

Proof. I shall use the convention that r = (x, y, z) represents a 3-vector andX = (t, r) = (t, x, y, z) represents a 4-vector.

(a) At time t, the 4-vecctor of the origin ofR′ inR′ isX ′ = (t+ c0, 0, 0, 0). By applying a Galilean transformationG, in
the frame R it is

X = G(X ′) = (t, v1t
′ + c1, v2t

′ + c2, v3t
′ + c3) = (t, v1t+ v1c0 + c1, v2t+ v2c0 + c2, v3t+ v3c0 + c3)

The velocity of the origin of R′ in R:

v =
dr

dt
= (v1, v2, v3)

(b) Suppose thatG1,G2 are two Galilean transformations such that:(
t

r

)
=

(
1 0

v1 H1

)(
t′

r′

)
+

(
c0

c

) (
t′

r′

)
=

(
1 0

v2 H2

)(
t′′

r′′

)
+

(
d0

d

)

Then their compositionG1 ◦G2 is given by(
t

r

)
=

(
1 0

v1 H1

)((
1 0

v2 H2

)(
t′′

r′′

)
+

(
d0

d

))
+

(
c0

c

)
=

(
1 0

v1 +Hv2 H1H2

)(
t′′

r′′

)
+

(
c0 + d0

c+ v2d0 +H2d

)

SinceH1, H2 ∈ SO(3),H1H2 ∈ SO(3). We deduce thatG1 ◦G2 is also a Galilean transformation.
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For the inverse of the Galilean transformationG, notice that(
1 0

v H

)(
1 0

−H−1v H−1

)
=

(
1 0

0 I3

)

We have (
t

r

)
=

(
1 0

v1 H1

)(
t′

r′

)
+

(
c0

c

)
=⇒

(
t− c0
r − c

)
=

(
1 0

v1 H1

)(
t′

r′

)

=⇒

(
t′

r′

)
=

(
1 0

−H−1v H−1

)(
t− c0
r − c

)
=

(
1 0

−H−1v H−1

)(
t

r

)
+

(
−c0

H−1(c0v − c)

)

SinceH ∈ SO(3),H−1 SO(3). We deduce thatG−1 is also a Galilean transformation.

We conclude that the set of all Galilean transformations forms a group, namely the Galilean group.

(c) (A). Under a Galilean transformation from R to R′, we have t′1 = t1 + c0 and t′2 = t2 + c0 for some c0 ∈ R. Hence
t′2 − t′1 = t2 − t1. The temporal separation is invariant.

(B). Under a Galilean transformation from R to R′, we have r′1 = vt1 +Hr1 + c and r′2 = vt2 +Hr2 + c for some
v, c ∈ R3 andH ∈ SO(3). If t1 = t2, then

||r′2 − r′1|| = ||v(t2 − t1) +H(r2 − r1)|| = ||H(r2 − r1)|| = ||r2 − r1||

since orthogonal matrix H preserves Euclidean norm. Hence the spatial separation is invariant. If t1 6= t2, then
||r′2 − r′1|| = ||v(t2 − t1) + r2 − r1|| 6= ||r2 − r1|| in general.

Conversely, consider a coordinate transformation with properties (A) and (B). We write M in the following block
matrix form:

M =

(
a B

v D

)

where a ∈ R, B ∈M1×3(R),v ∈ R3, D ∈M3×3(R).

Then we have t′2 − t′1 = a(t2 − t1) +B(r2 − r1). The invariance of temporal separation implies that a = 1, B = 0. If
t1 = t2, then r′2 − bmr′1 = D(r2 − r1). The invariance of spatial distance implies that D ∈ O(3). But we know that
detM = a detD = detD > 0. HenceD ∈ SO(3). We conclude that this coordinate transformtion is Galilean.

Question 2. Space-time diagrams.

Four ghosts travel in straight lines at different constant velocities across a flat (two-dimensional) field. Five of the six
possible pairs of ghosts pass through each other at different times. Show that the sixth pair must also pass through each
other at some point. It will be helpful to think in terms of a space-time diagram.

Proof. Consider their space-time coordinates (t, x, y) ∈ R3. The motion of the four particles are represented by four straight
linesL1, L2, L3, L4 ⊆ R3. The intersections of two lines are the event that two particles pass through each other. Without
loss of generality we assume that L1, L2, L3 intersect mutually. Then they lie in the same plane ω ⊆ R3. Since L4

intersects with two of L1, L2, and L3, it has at least two points in ω. Hence L4 ⊆ ω. If the statement in the question is
false, then L4 doesnot intersect with one of L1, L2, and L3. For example if L4 does not intersect L1, then L1//L4 because
they are coplanar. But it means that the particles 1 and 4 have the same velocity, which is a contradiction. Hence L4

must intersect all other lines in the space-time diagram.
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Question 3. Relativistic Doppler effect.

Two observers O and O′ travel along the same straight line in space at constant speeds. The first sends out two light
signals separated by an interval τ measured onO ’s clock. What is the interval between the times (according toO′ ) when
these signals are received at O′ if both light signals are emitted

(a) When O′ is approaching O ?

(b) When O′ is receding from O?

If the light making up the signal has frequency ω as measured by O, what is the frequency as measured by O′ in cases (a)
and (b) respectively?

Solution. Suppose thatO′ has velocity v in the frame ofO. We set up the coordinates (t, x) ofO and (t′, x′) ofO′ such that their
origins coincide.

Suppose that at t = t1,O sends the first signal. By Lorentz transformation, this event in the frame ofO′ has coordinates:

t′1 = γt1 x′1 = −γvt1.

At t2 = t1 + τ , O sends the second signal. By Lorentz transformation, this event in the frame of O′ has coordinates:

t′2 = γ(t1 + τ) x2 = −γv(t1 + τ).

The time when O′ receives the two signals:

s′1 = t′1 +
0− x′1
c

= γt1 +
γvt1
c

s′2 = t′2 +
0− x′2
c

n = γ(t1 + τ) +
γv(t1 + τ)

c

Hence the temporal separation in the frame O′ is τ ′ = s′2 − s′1 = γ
(
1 +

v

c

)
τ =

√
c+ v

c− v
τ .

If O′ is approaching O, then v < 0 and τ ′ < τ . If O′ is receding from O, then v > 0 and τ ′ > τ .

If τ is the period of the electromagnetic wave, then ωτ = 2π. We have ω′ =
√
c− v
c+ v

ω. The sign of v indicates if O′ is

approaching or receding form O.

Question 4. Barn door paradox.

An pole-vaulter carrying a 15-foot-long pole runs with speed
√
3c/2 towards a barn that is 10 feet long. Exactly when the

front of the pole reaches the far wall of the barn, a child standing by the barn door closes it. Explain, with the aid of a
space-time diagram, how this is possible when in the athlete’s coordinate system, the pole has a length 15 feet but the
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room is only 5 feet deep.

If the athlete holds the pole by its back end, are they (i) outside the barn, (ii) at the barn door, or (iii) inside the barn door
when they first feel the shock of the tip of the pole striking the far wall?

Solution. Let (t, x) be the frame observed by the child and (t′, x′) be the frame observed by the athlete (or the back end of the
pole). At t′ = t′0, the athlete observes that the front end of the pole hits the wall, when he is outside the room. The same
event is observed by the child at t = t1. He immediately closes the door, which is observed by the athlete at t′ = t′1 > t′0,
when he is inside the room.

The process is only possible if we assume that the pole is contractible (special relativity does not allow the existence of

rigid bodies). The shock travels along the rod at a speed of
√
E

ρ
� c. The athelete is inside the room when he feels the

shock.

The space-time diagram is shown as follows:

Question 5. Symmetries of the wave equation.

Consider the wave equation in one spatial dimension describing waves propagating at speed c,

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
= 0

(a) Consider the homogeneous Galilean transformation in one spatial dimension,(
t

x

)
=

(
1 0

v 1

)(
t′

x′

)

Show that the wave equation is not invariant under this transformation, i.e., there are solutions φ(x, t) equation that
are not solutions of the corresponding equation in x′ and t′.

(b) Consider a transformation of the form (
t

x

)
=

(
p q

r s

)(
t′

x′

)

where p, q, r, and s are constant. Find necessary and sufficient conditions on p, q, r, and s to ensure that the wave
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equation in one spatial dimension is invariant, that is, that

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
=

1

c2
∂2φ

∂t′2
− ∂2φ

∂x′2

Assuming that p and s are both positive, show that we can rewrite this as the standard Lorentz transformation in
one spatial dimension: (

ct

x

)
= γ(v)

(
1 v/c

v/c 1

)(
ct′

x′

)
, γ(v) =

1√
1− v2/c2

Proof. For convenience we consider the general transformation with the form given in part (b):t = pt′ + qx′

x = rt′ + sx′

By chain rule we have

∂t′ =
∂t

∂t′
∂t +

∂x

∂t′
∂x = p∂t + r∂x ∂x′ =

∂x

∂x′
∂x +

∂t

∂x′
∂x = q∂t + s∂x

Hence
1

c2
∂2t′ − ∂2x′ =

1

c2
(p∂t + r∂x)

2 − (q∂t + s∂x)
2 =

(
p2

c2
− q2

)
∂2t +

(
r2

c2
− s2

)
∂2x + 2

(pr
c2
− qs

)
∂x∂t

With p = 1, q = 0, r = v, s = 1, we have

1

c2
∂2t′ − ∂2x′ =

1

c2
∂2t +

(
v2

c2
− 1

)
∂2x +

2v

c2
∂x∂t

We see that the wave equation is invariant if and only if v = 0 (or v � c in physics, which gives the low speed approxi-
mation).

In general, the wave equation is invariant if and only if:

p2 = c2q2 + 1 r2 = c2(s2 − 1) pr = c2qs

For positive p, s, this is equivalent to

p = s r = c2q s2 − q2c2 = 1.

We have (
ct

x

)
=

(
s cq

cq s

)(
ct′

x′

)

Change of variable: s = cosh η, cq = sinh η. Let v/c = tanh η. Then cosh η =
c√

c2 − v2
= γ. We have(

ct

x

)
= cosh η

(
1 tanh η

tanh η 1

)(
ct′

x′

)
= γ

(
1 v/c

v/c 1

)(
ct′

x′

)

Question 6. Characterizing Lorentz transformation.

Consider a linear transformation (
ct

x

)
= L

(
ct′

x′

)
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Show that L takes the form of the standard one-dimensional Lorentz transformation,

L = γ(v)

(
1 v/c

v/c 1

)

if and only if

(i) the top left entry in L is positive,

(ii) det L > 0, and

(iii) L obeys the pseudo-orthogonality condition

LT

(
1 0

0 −1

)
L =

(
1 0

0 −1

)
.

Proof. "=⇒": Suppose that L is the standard one-dimensional Lorentz transformation. Then trivially the top left entry of L is
positive. The determinant detL = γ2(1− v2/c2) = 1 > 0. For the pseudo-orthogonality condition:

LT

(
1 0

0 −1

)
L = γ2

(
1 v/c

v/c 1

)(
1 0

0 −1

)(
1 v/c

v/c 1

)
= γ2

(
1− v2/c2 0

0 v2/c2 − 1

)
=

(
1 0

0 −1

)

"⇐=": Suppose that

L =

(
p q

r s

)
satisfies the three conditions.

For the pseudo-orthogonality condition:

LT

(
1 0

0 −1

)
L =

(
p r

q s

)(
1 0

0 −1

)(
p q

r s

)
=

(
p2 − r2 pq − rs
pq − rs q2 − s2

)

Hence a, b, c, d satisfy the condition:

pq − rs = 0 p2 − r2 = 1 q2 − s2 = −1

which implies that

p2 = s2 q2 = r2 s2 − r2 = 1

The condition (i) and (ii) requires that p > 0 and ps− qr > 0.

If s < 0, then p = −s > 0. pq = rs implies that qr < 0. Then detL = ps − qr = −s2 + r2 = −1 < 0, which is a
contradiction.

We must have s > 0. Then p = s > 0. pq = rs implies that q = r. The rest of the procedure is identical to that in
Question 5: Let s = cosh η, r = sinh η, v/c = tanh η. We shoould obtain that

L = γ

(
1 v/c

v/c 1

)

That is, L is a standard one-dimensional Lorentz transformation.


