Peize Liu St. Peter's College University of Oxford

Problem Sheet 3

C2.1: Lie Algebras

Assume throughout the problems that we work over a field k which is algebraically closed of characteristic zero, and all Lie algebras and representations are finite dimensional over k, unless the contrary is explicitly stated.

Question 1

Let *V* be an *n*-dimensional k-vector space and let $\mathscr{F} = (0 = F_0 < F_1 < ... < F_n = V)$ be a complete flag in *V*. Let $\mathfrak{b} = \mathfrak{b}_{\mathscr{F}} = \{x \in \mathfrak{gl}(V) : x(F_i) \subseteq F_i, \forall i, 1 \le i \le n\}$.

- (a) Find a Cartan subalgebra of b.
- (b) Describe the associated Cartan decomposition of b.
- **Proof.** (a) Know from Sheet 2 $\mathfrak{g} = \mathfrak{gl}(V)$ has $\mathfrak{h} = \bigoplus_i \operatorname{End}(L_i)$ where $F_i = \bigoplus_{k=1}^i L_i$. Let $L_i = \mathsf{k}e_i$. Then \mathfrak{h} is a set of diagonal matrices with respect to $\{e_1, ..., e_n\}$. $N_{\mathfrak{gl}(V)}(\mathfrak{h}) = \mathfrak{h}$.

Note: If $h \subseteq \mathfrak{q} \subseteq \mathfrak{q}$ and h is a Cartan subalgebra of $\mathfrak{ql}(V)$, then it is also a Cartan subalgebra of \mathfrak{q} .

Since $\mathfrak{h} \subseteq \mathfrak{b}_{\mathscr{F}}$, \mathfrak{h} is a Cartan subalgebra of $\mathfrak{b}_{\mathscr{F}}$.

(b)
$$\mathfrak{gl}(V) = \operatorname{Hom}\left(\bigoplus_i L_i, \bigoplus_j L_j\right) = \bigoplus_{i,j} \operatorname{Hom}(L_i, L_j) = \bigoplus_{i,j} L_i^\vee \otimes L_j$$

 \mathfrak{h}^{\vee} has a basis $\{\varepsilon_i : 1 \leq i \leq n\}$, where $\varepsilon_i : \mathfrak{h} \to \mathsf{k}$, $\bigoplus_k f_k \mapsto f_i$.

For
$$\mathfrak{b}_{\mathscr{F}}$$
 we have $\mathfrak{b}_{\mathscr{F}} = \bigoplus_{1 \leq i \leq j \leq n} L_i^{\vee} \otimes L_j = \mathfrak{h} \oplus \bigoplus_{1 \leq i < j \leq n} L_i^{\vee} \otimes L_j$.

Question 2

Let κ denote the Killing form on $\mathfrak{gl}_n(\mathbb{C})$, so that $\kappa(x,y) = \operatorname{tr}(\operatorname{ad}(x)\operatorname{ad}(y))$, and let $\mathfrak{h},\mathfrak{n}_+,\mathfrak{n}_-$ denote the subspaces of diagonal, strictly upper triangular and strictly lower triangular matrices respectively.

(a) Show that $\mathfrak h$ is orthogonal to $\mathfrak n_+\oplus\mathfrak n_-$ and that the restriction of κ to $\mathfrak n_+\oplus\mathfrak n_-$ is nondegenerate.

[Hint: It is probably useful to calculate the values of the Killing form on matrix coefficients.]

- (b) Calculate \mathfrak{n}_{+}^{\perp} .
- (c) Describe the radical of the restriction of κ to \mathfrak{h} and conclude that the restriction of κ to $\mathfrak{sl}_n(\mathbb{C})$ is nondegenerate.

Proof. (a)
$$\operatorname{ad}(E_{ij})\operatorname{ad}(E_{k\ell})(E_{\alpha\beta}) = \operatorname{ad}(E_{ij})(\delta_{\ell\alpha}E_{k\beta} - \delta_{\ell\beta}E_{k\alpha}) = \delta_{kj}\delta_{\ell\alpha}E_{i\beta} - \delta_{i\beta}\delta_{\ell\alpha}E_{kj} - \delta_{\beta k}\delta_{\alpha j}E_{i\ell} + \delta_{\beta k}\delta_{\ell i}E_{\alpha j}$$

$$\operatorname{tr}\left(\operatorname{ad}(E_{ij})\operatorname{ad}(E_{k\ell})\right) = \sum_{\alpha,\beta} \left(\delta_{kj}\delta_{\ell\alpha}\delta_{i\alpha} - \delta_{i\beta}\delta_{\ell\alpha}\delta_{k\alpha}\delta_{j\beta} - \delta_{\beta k}\delta_{\alpha j}\delta_{i\alpha}\delta_{\ell\beta} + \delta_{\beta k}\delta_{\ell i}\delta_{\beta j}\right)$$

$$= \begin{cases} 2n - 2 & i = k = \ell \\ -2 & i \neq k = \ell & i = j \\ 0 & k \neq \ell \end{cases}$$

$$2n\delta_{i\ell}\delta_{ik} & i \neq i \end{cases}$$

Let $\mathfrak{h} = \bigoplus_i \mathbb{C} E_i i$. Then $\kappa(E_{ii}, E_{jj}) = 2(n-1)\delta_{ij} - 2$. Hence κ is non-degenerate on $\mathfrak{n}_+ \oplus \mathfrak{n}_-$. Since $\mathfrak{gl}_n = (\mathfrak{n}_+ \oplus \mathfrak{n}_-) \oplus^{\perp} \mathfrak{h}$, $\mathrm{rad}(\kappa^{\mathfrak{gl}_n}) = \mathrm{rad}(\kappa^{\mathfrak{gl}(V)}|_{\mathfrak{h}})$. $\kappa(E_{ii}, E_{jj}) = 2(n-1)\delta_{ij} - 2$ shows that if $z = \sum_i \lambda_i \varepsilon_i \in \mathfrak{h} \cap \mathfrak{h}^{\perp} = \operatorname{rad}(\kappa^{\mathfrak{gl}_n})$, then

$$0 = \kappa(\sum_{i} \lambda_{i} \varepsilon_{i}, \varepsilon_{j}) = 2(n-1)\lambda_{j} - 2\sum_{i \neq j} \lambda_{i} \implies (n-1)\lambda_{j} = \sum_{i \neq j} \lambda_{i} \implies \lambda_{1} = \dots = \lambda_{n}$$

Hence $z \in \mathbb{C}id_n$.

Question 3

Show that the Killing form for \mathfrak{sl}_n is given by

$$\kappa(x, y) = 2n \cdot \operatorname{tr}(x \cdot y)$$

(where tr(x,y) denotes the ordinary trace, i.e. the trace form for the vector representation).

Proof. For $x, y \in \mathfrak{gl}_n$, $\mathfrak{t}_n(x, y) = \operatorname{tr}(xy)$. Use the calculation in Question 2 or the fact that \mathfrak{sl}_n is simple (if and only if ad is an irrep of \mathfrak{sl}_n).

 \mathfrak{t}_n is an invariant bilinear form.

$$\operatorname{Bil}(\mathfrak{sl}_n)^{\mathfrak{sl}_n} \cong \operatorname{Hom}(\mathfrak{sl}_n,\mathfrak{sl}_n^{\vee})^{\mathfrak{sl}_n} \cong \operatorname{Hom}_{\mathfrak{sl}_n}(\mathfrak{sl}_n,\mathfrak{sl}_n^{\vee})$$

As \mathfrak{sl}_n is simple, Schur's Lemma shows that $\mathrm{Hom}_{\mathfrak{sl}_n}(\mathfrak{sl}_n,\mathfrak{sl}_n^\vee)$ is 1-dimensional. Hence $\mathrm{Bil}(\mathfrak{sl}_n)^{\mathfrak{sl}_n}=\mathbb{C}\mathfrak{t}_n$.

If
$$h = \text{diag}(h_1, ..., h_n)$$
, then $\text{tr}(\text{ad}(h)^2) = \sum_{i,j} (h_i - h_j)^2 = 2n \sum_i h_i^2$ since $\sum_i h_i = 0$.

The next few questions of this exercise sheet classify all the irreducible finite dimensional representations of $\mathfrak{sl}_2(\mathbb{C})$.

Recall that if we let

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

then e, f and h give a basis of \mathfrak{sl}_2 with relations

$$[h, e] = 2e$$
, $[h, f] = -2f$ and $[e, f] = h$

Hence, a representation of $\mathfrak{sl}_2(\mathbb{C})$ consists of a vector space V over \mathbb{C} together with three endomorphisms E, F and H satisfying

$$HE - EH = 2E$$
, $HF - FH = -2F$ and $EF - FE = H$.

(We recover the representation $\phi: \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(V)$ by setting $\phi(e) = E, \phi(f) = F$ and $\phi(h) = H$.) We will also need a partial ordering on k: since k has characteristic zero it contains a copy of \mathbb{Q} , and we will say that a < b if $b - a \in \mathbb{Q}_{>0}$. If $I \subseteq k$ is a finite subset of k we say $\lambda \in I$ is maximal if $\lambda < \mu$ implies $\mu \notin I$. In the rest of this problem set we always assume that V is *finite dimensional*.

Question 4

(a) Show that the endomorphisms E and H satisfy the relation

$$(H - (\lambda + 2))^k E = E(H - \lambda)^k$$

(Here $\lambda \in \mathbb{C}$ and we write λ instead of $\lambda \cdot \mathrm{id}_V$.) Deduce that if $v \in V$ belongs to the generalised λ -eigenspace of H, then Ev belongs to the generalised ($\lambda + 2$)-eigenspace.

(b) Deduce a similar statement for the action of F on the generalised eigenspaces of H.

- (c) Let λ be an eigenvalue for H which is a maximal element of the set of eigenvalues of H in the sense described above. Use a) to show that $EV_{\lambda} = 0$.
- (d) Use b) to deduce that for large enough n we have $F^n(v) = 0$.

Proof. The result is already familiar to us from the theory of angular momentum in quantum mechanics.

(a) We use induction on k. For k = 0 this is trivial. Suppose it holds for k - 1. Then

$$(H - (\lambda + 2))^k E = (H - (\lambda + 2))E(H - \lambda)^{k-1} = (EH + 2E)(H - \lambda)^{k-1} - (\lambda + 2)E(H - \lambda)^{k-1} = E(H - \lambda)^k$$

which completes the induction.

If $v \in V_{\lambda}$, then $(H - \lambda)^k v = 0$. So $(H - (\lambda + 2))^k Ev = 0$. We have $Ev \in V_{\lambda+2}$.

(b) For *F* we have

$$(H-(\lambda-2))^k F = E(H-\lambda)^k$$

If $v \in V_{\lambda}$, then $Fv \in V_{\lambda-2}$.

- (c) Suppose that λ is maximal among the eigenvalues of H. If $v \in V_{\lambda}$, then $Ev \in V_{\lambda+2}$. By assumption $V_{\lambda+2} = \{0\}$. Hence $EV_{\lambda} = \{0\}$.
- (d) Let $\lambda_1,...,\lambda_n$ be the set of eigenvalues of V. We have the primary decomposition of V

$$V = \bigoplus_{i=1}^{n} V_{\lambda_i}$$

Let $v = \sum_{i=1}^n v_i \in V$, where each $v_i \in V_{\lambda_i}$. If $F^n v_i \neq 0$ for infinitely many $n \in \mathbb{N}$, then $\lambda_i - 2n$ is an eigenvalue of H for infinitely many n, which is impossible as V is finite-dimensional. Hence $F^n v_i = 0$ for sufficiently large n.

Question 5

(a) Show the relation (for $n \ge 1$)

$$HF^n = F^n H - 2nF^n$$

(b) Show ($n \ge 1$ as before)

$$EF^{n} = F^{n}E + nF^{n-1}H - n(n-1)F^{n-1}$$

(c) Deduce that, if $v \in V$ is a vector such that Ev = 0 then

$$E^{n}F^{n}v = nE^{n-1}F^{n-1}(H - (n-1))v = n! \prod_{i=1}^{n} (H - (i-1))v$$

- (d) Let λ be a maximal eigenvalue of H (in the above sense) and let V_{λ} denote the generalised λ -eigenspace. Use 4(d) and (c) to deduce that H acts diagonalisably on V_{λ} and that λ is a non-negative integer.
- *Proof.* (a) We use induction on n. For n = 1 this is the given commutator [H, F] = -2F. Suppose that it holds for n 1. Then for n

$$HF^{n} = (F^{n-1}H - 2(n-1)F^{n-1})F = F^{n-1}HF - 2(n-1)F^{n} = F^{n}H - 2F^{n} - 2(n-1)F^{n} = F^{n}H - 2nF^{n}$$

(b) Again we use induction on n. For n = 1 this is the given commutator [E, F] = H. Suppose that it holds for

n-1. Then for n

$$\begin{split} EF^n &= \left(F^{n-1}E + (n-1)F^{n-2}H - (n-1)(n-2)F^{n-2}\right)F \\ &= F^{n-1}EF + (n-1)F^{n-2}HF - (n-1)(n-2)F^{n-1} \\ &= F^{n-1}(FE + [E,F]) + (n-1)F^{n-2}(FH + [H,F]) - (n-1)(n-2)F^{n-1} \\ &= F^nE + F^{n-1}H + (n-1)F^{n-1}H - 2(n-1)F^{n-1} - (n-1)(n-2)F^{n-1} \\ &= F^nE + nF^{n-1}H - n(n-1)F^{n-1} \end{split}$$

(c) By (b) We have

$$E^{n}F^{n}v = E^{n-1} (F^{n}E + nF^{n-1}H - n(n-1)F^{n-1})v$$

$$= nE^{n-1}F^{n-1}Hv - n(n-1)E^{n-1}F^{n-1}v$$

$$= nE^{n-1}F^{n-1}(H - (n-1))v$$

For n = 1, we have EFv = (FE + H)v = Hv. Inductively we have

$$E^n F^n v = n! \prod_{i=1}^n (H - (i-1)) v$$

(d) Let m_H be the minimal polynomial of H on V_{λ} . By 4.(d), there exists $n \in \mathbb{N}$ such that $F^n v = 0$ for all $v \in V_{\lambda}$. Then

$$V_{\lambda} \ni 0 = E^n F^n v = n! \prod_{i=1}^n (H - i + 1) v$$

Hence $f(x) := \prod_{i=1}^{n} (x-i+1)$ is an annihilating polynomial of H on V_{λ} . f(x) splits implies that $m_{H}(x)$ splits. Hence H is diagonalisble over V_{λ} . We have $m_{H}(x) = x - \lambda$ which is a disivor of f(x). Hence $\lambda \in \{0, ..., n\}$ is a non-negative integer.

Question 6

(a) Let λ be a maximal eigenvalue of H as in the previous question, and choose a non-zero vector $v \in V_{\lambda}$. We know by Questions 2 and 3 that Ev = 0 and that λ is an non-negative integer. Show the relations:

$$HF^{k} v = (\lambda - 2k)F^{k} v$$
$$EF^{k} v = k(\lambda - (k-1))F^{k-1} v$$

Deduce that $F^{\lambda+1}v = 0$ and that the F^iv for $0 \le i \le \lambda$ are linearly independent and span a simple submodule of V.

- (b) Check that the above relations define an $\mathfrak{sl}_2(\mathbb{C})$ -module for any non-negative integer λ . Deduce that there is (up to isomorphism) a unique simple module $V(\lambda)$ of dimension $\lambda+1$ for all non-negative integers λ .
- *Proof.* (a) We use induction on k to prove that $HF^kv = (\lambda 2k)F^kv$. For k = 0 this is trivial. Suppose that it holds for k-1. Then

$$HF^k v = (FH - 2F)F^{k-1}v = FHF^{k-1}v - 2F^k v = F(\lambda - 2(k-1))F^{k-1}v - 2F^k v = (\lambda - 2k)F^k v$$

We use induction on k to prove that $EF^k v = k(\lambda - (k-1))F^{k-1}v$. For k = 1:

$$EFv = Hv = \lambda v$$

Suppose that it holds for k-1. Then

$$EF^{k}v = (FE + H)F^{k-1}v$$

$$= FEF^{k-1}v + HF^{k-1}v$$

$$= F(k-1)(\lambda - (k-2))F^{k-2}v + (\lambda - 2(k-1))F^{k-1}v$$

$$= k(\lambda - (k-1))F^{k-1}v$$

When $k = \lambda + 1$, the first equation gives $HF^{\lambda+1}v = -(\lambda+2)F^{\lambda+1}v$. If $F^{\lambda+1}v \neq 0$, then $-F^{\lambda+1}v$ is en eigenvector of H associated with the eigenvalue $\lambda + 2$. This contradicts the maximality of λ . Hence $F^{\lambda+1}v = 0$.

Note that $v, Fv, ..., F^{\lambda}v$ correspond to different eigenvalues of H. To show that they are linearly independent, it suffices to show that none of them is zero. Let $i \in \{0, ..., \lambda\}$ be a minimal integer such that $F^iv = 0$. Then

$$0 = EF^{i} \nu = i(\lambda - i + 1)F^{i-1} \nu$$

As $F^{i-1}v \neq 0$, we have i=0 or $\lambda-i+1=0$, both of which are impossible. Hence $\{v,Fv,...,F^{\lambda}v\}$ is linearly independent.

Let $e_i := F^i v$. We claim that $W := \operatorname{span}\{e_0, ..., e_{\lambda}\}$ is a simple $\mathfrak{sl}_2(\mathbb{C})$ -module. Suppose that $I \triangleleft W$ is a non-zero ideal. Let $v = \sum_{i=k}^{\lambda} a_i e_i \in I$ where $a_k \neq 0$. Then $F^{\lambda-k} v = F^{\lambda-k} a_k e_k = a_k e_{\lambda}$. Hence $e_{\lambda} \in I$. Note that $Ee_i \in \operatorname{span}\{e_{i-1}\} \setminus \{0\}$ for $i \in \{1, ..., \lambda\}$. Hence $e_0, ..., e_{\lambda} \in I$. We have I = W. W is a simple submodule of V.

(b) For $\lambda \in \mathbb{N}$, let $V(\lambda)$ be a complex vector space such that $E, F, H \in \operatorname{End}(V(\lambda))$ satisfies the relations given above. Let $e_i = F^i v$. Then we have

$$Fe_i = \begin{cases} e_{i+1} & 0 \leq i < \lambda \\ 0 & i = \lambda \end{cases}, \qquad Ee_i = \begin{cases} i(\lambda - i + 1)e_{i-1} & 0 < i \leq \lambda \\ 0 & i = 0 \end{cases}, \qquad He_i = (\lambda - 2i)e_i$$

It is straightforward to check that $[E, F]e_i = He_i$, $[H, E]e_i = 2Ee_i$, and $[H, F]e_i = -2Fe_i$ for all $i \in \{0, ..., \lambda\}$. Hence $V(\lambda) = \operatorname{span}\{e_0, ..., e_{\lambda}\}$ affords a representation of $\mathfrak{sl}_2(\mathbb{C})$ of dimension $(\lambda + 1)$.

To show that it is unique, suppose that W is a simple $\mathfrak{sl}_2(\mathbb{C})$ -module of dimension $(\lambda+1)$. Let μ be the largest eigenvalue of H. The discussion above shows that W has a simple submodule of dimension $(\mu+1)$ isomorphic to $V(\mu)$. If W is simple, then $\mu=\lambda$ and hence $W\cong V(\lambda)$ as $\mathfrak{sl}_2(\mathbb{C})$ -modules. \square

Question 7

Let V be an arbitrary finite dimensional representation of $\mathfrak{sl}_2(\mathbb{C})$.

- (a) Let $\lambda \in \mathbb{Z}$ be maximal amongst the eigenvalues of H, and let $V_{\lambda} \subseteq V$ denote the λ -eigenspace. Suppose that V has the property that Ev = 0 implies that $v \in V_{\lambda}$. Show that V is completely reducible.
- (b) Consider the endomorphism $c = EF + FE + \frac{1}{2}H^2$. Show that c commutes with E, F and H.(c) is called the Casimir element.) Deduce from Schur's lemma that c acts as a scalar on any irreducible representation of $\mathfrak{sl}_2(\mathbb{C})$. Compute the scalar with which c acts on V(m).
- (c) Show that V is completely reducible.

[This result also follows from the more general complete reducibility result due to Weyl, but it is nice to see a more explicit proof for an algebra as small as \$\infty\$[2.]

Proof. (a) Let W be a maximal submodule (ordered by dimension) of V which is completely reducible. Suppose that $W \neq V$. Then $V/W \neq 0$. Let μ be the largest eigenvalue of $\widetilde{H} \in \operatorname{End}(V/W)$. Then there exists $v \in V \setminus W$ such that $Hv = \mu v$ (because μ is also an eigenvalue of H) and $\widetilde{H}(v + W) = \mu v + W$. Then $Ev \in V_{\mu+2}$ and

 $\widetilde{E}(v+W)=W$, which imply that $Ev\in V_{\mu+2}\cap W$. Since $v\notin W$, we must have Ev=0. By assumption $v\in V_\lambda$. Hence $\mu=\lambda$. Let $U=\operatorname{span}\{v,...,F^\lambda v\}$ be a simple submodule of V. Then $U\cap W=\{0\}$ by simplicity. Hence $U\oplus W$ is a larger completely reducible submodule of V than W, which is a contradiction. In conclusion, V=W is completely reducible.

(b) We compute the commutators:

$$[c, H] = [E, H]F + E[F, H] + F[E, H] + [F, H]E = -2EF + 2EF - 2FE + 2FE = 0$$

$$[c, E] = E[F, E] + [F, E]E + \frac{1}{2}H[H, E] + \frac{1}{2}[H, E]H = -EH - HE + HE + EH = 0$$

$$[c, F] = [E, F]F + F[E, F] + \frac{1}{2}H[H, F] + \frac{1}{2}[H, F]H = HF + FH - HF - FH = 0$$

Hence c commutes with E, F, H, and hence commutes with any element of $\mathfrak{sl}_2(\mathbb{C})$. Let V be a simple $\mathfrak{sl}_2(\mathbb{C})$ -module. We have $c \cdot (\alpha \cdot v) = \alpha \cdot (c \cdot v)$ for any $\alpha \in \mathfrak{sl}_2(\mathbb{C})$ and $v \in V$. In particular $c \in \operatorname{End}(V)$. Since V is irreducible and \mathbb{C} is algebraically closed, by Schur's Lemma, c acts on V as a scalar.

Let V = V(m). Consider $v \in V(m)$ with highest weight. That is Ev = 0 and Hv = mv. Then Q6(a) shows that

$$cv = (EF + FE + \frac{1}{2}H^2)v = (2EF - H + \frac{1}{2}H^2)v = (\frac{1}{2}m^2 + m)v$$

Therefore $c = \left(\frac{1}{2}m^2 + m\right)$ id on V(m).

(c) Consider the primary decomposition of V into generalised eigenspaces (which are $\mathfrak{sl}_2(\mathbb{C})$ -submodules of V) of c:

$$V = \bigoplus_{i=1}^{\ell} \ker(c - \lambda_i \operatorname{id})^{\dim V}$$

To show that V is completely reducible, it suffices to show that each generalised eigenspace is completely reducible. We may assume that c has a unique eigenvalue μ on V.

Let λ be the largest eigenvalue of H in V. Then V has a simple submodule isomorphic to $V(\lambda)$. By (b) we have $c = \left(\frac{1}{2}\lambda^2 + \lambda\right)$ id restricting on $V(\lambda)$. Hence $\mu = \frac{1}{2}\lambda^2 + \lambda$.

Suppose that $v \in \ker E$. Then

$$\left(\frac{1}{2}\lambda^2 + \lambda\right)\nu = \mu\nu = c \cdot \nu = \left(\frac{1}{2}H^2 + H\right)\nu$$

Hence

$$\frac{1}{2}(H-\lambda)(H+\lambda+2)v=0$$

It follows that $(H + \lambda + 2)v \in V_{\lambda}$. Since the generalised eigenspaces of H are $(H + \lambda + 2)$ -invariant, we must have $v \in V_{\lambda}$. Now by (a), V is completely reducible.