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Assume throughout the problems that we work over a field k which is algebraically closed of characteristic zero, and all Lie

algebras and representations are finite dimensional over k, unless the contrary is explicitly stated.

Question 1

Let V be an n-dimensional k-vector space and let F = (0 = F0 < F1 < . . . < Fn =V ) be a complete flag in V. Let b =
bF = {

x ∈ gl(V ) : x (Fi ) ⊆ Fi ,∀i ,1 É i É n
}
.

(a) Find a Cartan subalgebra of b.

(b) Describe the associated Cartan decomposition of b.

Proof. (a) Know from Sheet 2 g= gl(V ) has h=⊕
i End(Li ) where Fi =⊕i

k=1 Li . Let Li = kei . Then h is a set of diagonal

matrices with respect to {e1, ...,en}. Ngl(V )(h) = h.

Note: If h⊆ a⊆ g and h is a Cartan subalgebra of gl(V ), then it is also a Cartan subalgebra of a.

Since h⊆ bF , h is a Cartan subalgebra of bF .

(b)

gl(V ) = Hom

(⊕
i

Li ,
⊕

j
L j

)
=⊕

i , j
Hom(Li ,L j ) =⊕

i , j
L∨

i ⊗L j

h∨ has a basis {εi : 1 É i É n}, where εi : h→ k,
⊕

k fk 7→ fi .

For bF we have bF = ⊕
1ÉiÉ jÉn

L∨
i ⊗L j = h⊕ ⊕

1Éi< jÉn
L∨

i ⊗L j .

Question 2

Let κ denote the Killing form on gln(C), so that κ(x, y) = tr(ad(x)ad(y)), and let h,n+,n− denote the subspaces of

diagonal, strictly upper triangular and strictly lower triangular matrices respectively.

(a) Show that h is orthogonal to n+⊕n−and that the restriction of κ to n+⊕n−is nondegenerate.

[Hint: It is probably useful to calculate the values of the Killing form on matrix coefficients.]

(b) Calculate n⊥+ .

(c) Describe the radical of the restriction of κ to h and conclude that the restriction of κ to sln(C) is nondegener-

ate.

Proof. (a) ad(Ei j )ad(Ek`)(Eαβ) = ad(Ei j )(δ`αEkβ−δ`βEkα) = δk jδ`αEiβ−δiβδ`αEk j −δβkδα j Ei`+δβkδ`i Eα j

tr
(
ad(Ei j )ad(Ek`)

)= ∑
α,β

(
δk jδ`αδiα−δiβδ`αδkαδ jβ−δβkδα jδiαδ`β+δβkδ`iδβ j

)

=




2n −2 i = k = `
−2 i 6= k = `
0 k 6= `

i = j

2nδi`δ j k i 6= j

Let h=⊕
i CEi i . Then κ(Ei i ,E j j ) = 2(n −1)δi j −2. Hence κ is non-degenerate on n+⊕n−.

Since gln = (n+⊕n−)⊕⊥ h, rad(κgln ) = rad(κgl(V )
∣∣
h

).
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κ(Ei i ,E j j ) = 2(n −1)δi j −2 shows that if z =∑
i λiεi ∈ h∩h⊥ = rad(κgln ), then

0 = κ(
∑

i
λiεi ,ε j ) = 2(n −1)λ j −2

∑
i 6= j

λi =⇒ (n −1)λ j =
∑
i 6= j

λi =⇒ λ1 = ·· · =λn

Hence z ∈C idn .

Question 3

Show that the Killing form for sln is given by

κ(x, y) = 2n · tr(x · y)

(where tr(x.y) denotes the ordinary trace, i.e. the trace form for the vector representation).

Proof. For x, y ∈ gln , tn(x, y) = tr
(
x y

)
. Use the calculation in Question 2 or the fact that sln is simple (if and only if ad is

an irrep of sln).

tn is an invariant bilinear form.

Bil(sln)sln ∼= Hom(sln ,sl∨n )sln ∼= Homsln (sln ,sl∨n )

As sln is simple, Schur’s Lemma shows that Homsln (sln ,sl∨n ) is 1-dimensional. Hence Bil(sln)sln =Ctn .

If h = diag(h1, ...,hn), then tr
(
ad(h)2

)=∑
i , j

(hi −h j )2 = 2n
∑

i
h2

i since
∑

i hi = 0.

The next few questions of this exercise sheet classify all the irreducible finite dimensional representations of sl2(C).

Recall that if we let

e =
(

0 1

0 0

)
, h =

(
1 0

0 −1

)
and f =

(
0 0

1 0

)
then e, f and h give a basis of sl2 with relations

[h,e] = 2e, [h, f ] =−2 f and [e, f ] = h

Hence, a representation of sl2(C) consists of a vector space V over C together with three endomorphisms E ,F and H

satisfying

HE −E H = 2E , HF −F H =−2F and EF −F E = H .

(We recover the representation φ : sl2(C) → gl(V ) by setting φ(e) = E ,φ( f ) = F and φ(h) = H .
)

We will also need a partial

ordering on k : since k has characteristic zero it contains a copy ofQ, and we will say that a < b if b−a ∈Q>0. If I ⊆ k is a

finite subset of k we say λ ∈ I is maximal if λ<µ implies µ ∉ I . In the rest of this problem set we always assume that V is

finite dimensional.

Question 4

(a) Show that the endomorphisms E and H satisfy the relation

(H − (λ+2))k E = E(H −λ)k

(Here λ ∈ C and we write λ instead of λ · idV . ) Deduce that if v ∈ V belongs to the generalised λ-eigenspace

of H , then Ev belongs to the generalised (λ+2)-eigenspace.

(b) Deduce a similar statement for the action of F on the generalised eigenspaces of H .
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(c) Let λ be an eigenvalue for H which is a maximal element of the set of eigenvalues of H in the sense described

above. Use a) to show that EVλ = 0.

(d) Use b) to deduce that for large enough n we have F n(v) = 0.

Proof. The result is already familiar to us from the theory of angular momentum in quantum mechanics.

(a) We use induction on k. For k = 0 this is trivial. Suppose it holds for k −1. Then

(H − (λ+2))k E = (H − (λ+2))E(H −λ)k−1 = (E H +2E)(H −λ)k−1 − (λ+2)E(H −λ)k−1 = E(H −λ)k

which completes the induction.

If v ∈Vλ, then (H −λ)k v = 0. So (H − (λ+2))k Ev = 0. We have Ev ∈Vλ+2.

(b) For F we have

(H − (λ−2))k F = E(H −λ)k

If v ∈Vλ, then F v ∈Vλ−2.

(c) Suppose that λ is maximal among the eigenvalues of H . If v ∈Vλ, then Ev ∈Vλ+2. By assumption Vλ+2 = {0}.

Hence EVλ = {0}.

(d) Let λ1, ...,λn be the set of eigenvalues of V . We have the primary decomposition of V

V =
n⊕

i=1
Vλi

Let v =∑n
i=1 vi ∈ V , where each vi ∈ Vλi . If F n vi 6= 0 for infinitely many n ∈N, then λi −2n is an eigenvalue

of H for infinitely many n, which is impossible as V is finite-dimensional. Hence F n vi = 0 for sufficiently

large n. It follows that F n v = 0 for sufficiently large n.

Question 5

(a) Show the relation (for n Ê 1 )

HF n = F n H −2nF n

(b) Show ( n Ê 1 as before)

EF n = F nE +nF n−1H −n(n −1)F n−1

(c) Deduce that, if v ∈V is a vector such that Ev = 0 then

E nF n v = nE n−1F n−1(H − (n −1))v = n!
n∏

i=1
(H − (i −1))v

(d) Let λ be a maximal eigenvalue of H (in the above sense) and let Vλ denote the generalised λ-eigenspace. Use

4( d) and (c) to deduce that H acts diagonalisably on Vλ and that λ is a non-negative integer.

Proof. (a) We use induction on n. For n = 1 this is the given commutator [H ,F ] =−2F . Suppose that it holds for n −1.

Then for n

HF n = (F n−1H −2(n −1)F n−1)F = F n−1HF −2(n −1)F n = F n H −2F n −2(n −1)F n = F n H −2nF n

(b) Again we use induction on n. For n = 1 this is the given commutator [E ,F ] = H . Suppose that it holds for
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n −1. Then for n

EF n = (
F n−1E + (n −1)F n−2H − (n −1)(n −2)F n−2)F

= F n−1EF + (n −1)F n−2HF − (n −1)(n −2)F n−1

= F n−1(F E + [E ,F ])+ (n −1)F n−2(F H + [H ,F ])− (n −1)(n −2)F n−1

= F nE +F n−1H + (n −1)F n−1H −2(n −1)F n−1 − (n −1)(n −2)F n−1

= F nE +nF n−1H −n(n −1)F n−1

(c) By (b) We have

E nF n v = E n−1 (
F nE +nF n−1H −n(n −1)F n−1)v

= nE n−1F n−1H v −n(n −1)E n−1F n−1v

= nE n−1F n−1(H − (n −1))v

For n = 1, we have EF v = (F E +H)v = H v . Inductively we have

E nF n v = n!
n∏

i=1
(H − (i −1))v

(d) Let mH be the minimal polynomial of H on Vλ. By 4.(d), there exists n ∈N such that F n v = 0 for all v ∈ Vλ.

Then

Vλ 3 0 = E nF n v = n!
n∏

i=1
(H − i +1)v

Hence f (x) :=∏n
i=1(x − i +1) is an annihilating polynomial of H on Vλ. f (x) splits implies that mH (x) splits.

Hence H is diagonalisble over Vλ. We have mH (x) = x −λ which is a disivor of f (x). Hence λ ∈ {0, ...,n} is a

non-negative integer.

Question 6

(a) Let λ be a maximal eigenvalue of H as in the previous question, and choose a non-zero vector v ∈ Vλ. We

know by Questions 2 and 3 that Ev = 0 and that λ is an non-negative integer. Show the relations:

HF k v = (λ−2k)F k v

EF k v = k(λ− (k −1))F k−1v

Deduce that Fλ+1v = 0 and that the F i v for 0 É i Éλ are linearly independent and span a simple submodule

of V .

(b) Check that the above relations define an sl2(C)-module for any non-negative integer λ. Deduce that there is

(up to isomorphism) a unique simple module V (λ) of dimension λ+1 for all non-negative integers λ.

Proof. (a) We use induction on k to prove that HF k v = (λ−2k)F k v . For k = 0 this is trivial. Suppose that it holds for

k −1. Then

HF k v = (F H −2F )F k−1v = F HF k−1v −2F k v = F (λ−2(k −1))F k−1v −2F k v = (λ−2k)F k v

We use induction on k to prove that EF k v = k(λ− (k −1))F k−1v . For k = 1:

EF v = H v =λv
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Suppose that it holds for k −1. Then

EF k v = (F E +H)F k−1v

= F EF k−1v +HF k−1v

= F (k −1)(λ− (k −2))F k−2v + (λ−2(k −1))F k−1v

= k(λ− (k −1))F k−1v

When k =λ+1, the first equation gives HFλ+1v =−(λ+2)Fλ+1v . If Fλ+1v 6= 0, then −Fλ+1v is en eigenvector

of H associated with the eigenvalue λ+2. This contradicts the maximality of λ. Hence Fλ+1v = 0.

Note that v,F v, ...,Fλv correspond to different eigenvalues of H . To show that they are linearly independent,

it suffices to show that none of them is zero. Let i ∈ {0, ...,λ} be a minimal integer such that F i v = 0. Then

0 = EF i v = i (λ− i +1)F i−1v

As F i−1v 6= 0, we have i = 0 or λ− i +1 = 0, both of which are impossible. Hence {v,F v, ...,Fλv} is linearly

independent.

Let ei := F i v . We claim that W := span{e0, ...,eλ} is a simple sl2(C)-module. Suppose that I /W is a non-

zero ideal. Let v = ∑λ
i=k ai ei ∈ I where ak 6= 0. Then Fλ−k v = Fλ−k ak ek = ak eλ. Hence eλ ∈ I . Note that

Eei ∈ span{ei−1} \ {0} for i ∈ {1, ...,λ}. Hence e0, ...,eλ ∈ I . We have I =W . W is a simple submodule of V .

(b) Forλ ∈N, let V (λ) be a complex vector space such that E ,F, H ∈ End(V (λ)) satisfies the relations given above.

Let ei = F i v . Then we have

Fei =
{

ei+1 0 É i <λ
0 i =λ

, Eei =
{

i (λ− i +1)ei−1 0 < i Éλ
0 i = 0

, Hei = (λ−2i )ei

It is straightforward to check that [E ,F ]ei = Hei , [H ,E ]ei = 2Eei , and [H ,F ]ei = −2Fei for all i ∈ {0, ...,λ}.

Hence V (λ) = span{e0, ...,eλ} affords a representation of sl2(C) of dimension (λ+1).

To show that it is unique, suppose that W is a simple sl2(C)-module of dimension (λ+ 1). Let µ be the

largest eigenvalue of H . The discussion above shows that W has a simple submodule of dimension (µ+1)

isomorphic to V (µ). If W is simple, then µ=λ and hence W ∼=V (λ) as sl2(C)-modules.

Question 7

Let V be an arbitrary finite dimensional representation of sl2(C).

(a) Let λ ∈ Z be maximal amongst the eigenvalues of H , and let Vλ ⊆ V denote the λ-eigenspace. Suppose that

V has the property that Ev = 0 implies that v ∈Vλ. Show that V is completely reducible.

(b) Consider the endomorphism c = EF + F E + 1
2 H 2. Show that c commutes with E ,F and H .(c is called the

Casimir element.) Deduce from Schur’s lemma that c acts as a scalar on any irreducible representation of

sl2(C). Compute the scalar with which c acts on V (m).

(c) Show that V is completely reducible.

[This result also follows from the more general complete reducibility result due to Weyl, but it is nice to see a more

explicit proof for an algebra as small as sl2.]

Proof. (a) Let W be a maximal submodule (ordered by dimension) of V which is completely reducible. Suppose that

W 6= V . Then V /W 6= 0. Let µ be the largest eigenvalue of H̃ ∈ End(V /W ). Then there exists v ∈ V \ W

such that H v = µv (because µ is also an eigenvalue of H) and H̃(v +W ) = µv +W . Then Ev ∈ Vµ+2 and
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Ẽ(v +W ) = W , which imply that Ev ∈ Vµ+2 ∩W . Since v ∉ W , we must have Ev = 0. By assumption v ∈ Vλ.

Hence µ = λ. Let U = span{v, ...,Fλv} be a simple submodule of V . Then U ∩W = {0} by simplicity. Hence

U ⊕W is a larger completely reducible submodule of V than W , which is a contradiction. In conclusion,

V =W is completely reducible.

(b) We compute the commutators:

[c, H ] = [E , H ]F +E [F, H ]+F [E , H ]+ [F, H ]E =−2EF +2EF −2F E +2F E = 0

[c,E ] = E [F,E ]+ [F,E ]E + 1

2
H [H ,E ]+ 1

2
[H ,E ]H =−E H −HE +HE +E H = 0

[c,F ] = [E ,F ]F +F [E ,F ]+ 1

2
H [H ,F ]+ 1

2
[H ,F ]H = HF +F H −HF −F H = 0

Hence c commutes with E ,F, H , and hence commutes with any element of sl2(C). Let V be a simple sl2(C)-

module. We have c · (α · v) = α · (c · v) for any α ∈ sl2(C) and v ∈ V . In particular c ∈ End(V ). Since V is

irreducible and C is algebraically closed, by Schur’s Lemma, c acts on V as a scalar.

Let V =V (m). Consider v ∈V (m) with highest weight. That is Ev = 0 and H v = mv . Then Q6(a) shows that

cv = (EF +F E + 1

2
H 2)v = (2EF −H + 1

2
H 2)v = (

1

2
m2 +m)v

Therefore c =
(

1

2
m2 +m

)
id on V (m).

(c) Consider the primary decomposition of V into generalised eigenspaces (which are sl2(C)-submodules of V )

of c:

V =⊕̀
i=1

ker(c −λi id)dimV

To show that V is completely reducible, it suffices to show that each generalised eigenspace is completely

reducible. We may assume that c has a unique eigenvalue µ on V .

Let λ be the largest eigenvalue of H in V . Then V has a simple submodule isomorphic to V (λ). By (b) we

have c =
(

1

2
λ2 +λ

)
id restricting on V (λ). Hence µ= 1

2
λ2 +λ.

Suppose that v ∈ kerE . Then (
1

2
λ2 +λ

)
v =µv = c · v =

(
1

2
H 2 +H

)
v

Hence
1

2
(H −λ)(H +λ+2)v = 0

It follows that (H +λ+2)v ∈ Vλ. Since the generalised eigenspaces of H are (H +λ+2)-invariant, we must

have v ∈Vλ. Now by (a), V is completely reducible.


