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Assume throughout the problems that we work over a field k which is algebraically closed of characteristic zero, and all Lie
algebras and representations are finite dimensional over k, unless the contrary is explicitly stated.

Question 1

Let V be an n-dimensional k-vector space and let & = (0= Fy < F; <...< F;, = V) be a complete flag in V. Let b =
ber ={xegl(V):x(F;) S F;,Vi,1<i<n}.

(a) Find a Cartan subalgebra of b.

(b) Describe the associated Cartan decomposition of b.

Proof. (a) Know from Sheet 2 g = gl(V) has h = @; End(L;) where F; = 69;;:1 L;. Let L; = ke;. Then b is a set of diagonal
matrices with respect to {ey, ..., e,}. Ngiv) (H) =h.

Note: If h < a < g and h is a Cartan subalgebra of gl(V), then it is also a Cartan subalgebra of a.
Since ) € bz, b is a Cartan subalgebra of bg.
(b)
gl(V) =Hom

@Li’®l‘j) = @Hom(Li,Lj) = @LY ®Lj

J i,j Lj
hY has a basis {¢;: 1 <i < n}, where ¢; : h — k, Dy fr — fi-

Forby wehaveby= @ L/®Li=he @ L/sL;. O

1<isjs<n 1<i<j<n

Question 2

Let x denote the Killing form on gl,,(C), so that x(x, y) = tr(ad(x)ad(y)), and let h,n,,n_ denote the subspaces of
diagonal, strictly upper triangular and strictly lower triangular matrices respectively.

(a) Show that b is orthogonal to n; @ n_and that the restriction of x to n; @ n_is nondegenerate.
[Hint: It is probably useful to calculate the values of the Killing form on matrix coefficients.]
(b) Calculate ni.

(c) Describe the radical of the restriction of x to f) and conclude that the restriction of x to s[,(C) is nondegener-
ate.

Proof. (a) ad(E;j)ad(Ek)(Eqp) =ad(E;j)(6raErp—0¢pEka) =0kjOraEip—0ipdraErj—0pkdajEic+0pk0¢iEaj
tr(ad(E;j)ad(Exp)) = ) (6kj0¢abia —0ip0ra0kad jp— O pibajbiadop+0pk0¢i0p;)
a,p
2n—-2 i=k=¢
-2 i£Zk=0¢ i=j
0 k#/¢
2nb;e6 i i #]

Leth =€P;CE;i. Then k(E;;, Ejj) =2(n— 1)6,'j — 2. Hence « is non-degenerate onn, & n_.

Since gl,, = (ny ®n_) ol b, rad(x®») = rad (x9'V) |h)'



K(E;i;,Ejj) =2(n—1)6;; —2 shows thatifz=3;1;6; € hn [)L =rad(x%"), then

OZK(ZAI'E,',EJ‘)22(11—1)/1]'—221,' = (n—l))LjZZ/li = A==y,
i i£] i#]

O

Hence z € Cid,,.

Question 3

Show that the Killing form for sl,, is given by
K(x,y) =2n-tr(x-y)

(where tr(x.y) denotes the ordinary trace, i.e. the trace form for the vector representation).

Proof. For x,yegl,, t,(x,y) = tr(xy). Use the calculation in Question 2 or the fact that sl,, is simple (if and only if ad is
an irrep of sl;,).

t, is an invariant bilinear form.
Bil(s[,,)*" = Hom(sl,, s[}))*" = Homg  (sl,,s!})

As s, is simple, Schur’s Lemma shows that Homg, (5[,1,5[;) is 1-dimensional. Hence Bil(s(,,)?" = Ct,,.

O

If h = diag(hy, ..., hy), then tr(ad(W)?) = Y _(h; — hj)* =2n_ h% since ¥.; h; =0.
ij i
The next few questions of this exercise sheet classify all the irreducible finite dimensional representations of s[5 (C).

e:(o 1} h=(1 0 ) nd f=(0 0)
00 0 -1 1 0

then e, f and h give a basis of s[, with relations

Recall that if we let

[h,e] =2e, [h,fl=-2f and e fl=h

Hence, a representation of sl»(C) consists of a vector space V over C together with three endomorphisms E, F and H
satisfying
HE-EH=2E, HF-FH=-2F and EF-FE=H.

(We recover the representation ¢ : s[;(C) — gl(V) by setting ¢(e) = E, ¢(f) = F and ¢(h) = H.) We will also need a partial
ordering on k : since k has characteristic zero it contains a copy of @, and we will say that a< bif b—ae€ Q.. If I ckisa
finite subset of k we say A € I is maximal if A < g implies u ¢ I. In the rest of this problem set we always assume that V is
finite dimensional.

Question 4
(a) Show that the endomorphisms E and H satisfy the relation
(H-A+2)*E=EH-1*

(Here A € C and we write A instead of A-idy. ) Deduce that if v € V belongs to the generalised A-eigenspace
of H, then Ev belongs to the generalised (A + 2)-eigenspace.

(b) Deduce a similar statement for the action of F on the generalised eigenspaces of H.



(c) Let A be an eigenvalue for H which is a maximal element of the set of eigenvalues of H in the sense described
above. Use a) to show that EV) = 0.

(d) Use b) to deduce that for large enough n we have F"(v) = 0.

Proof. The result is already familiar to us from the theory of angular momentum in quantum mechanics.

(a) We use induction on k. For k = 0 this is trivial. Suppose it holds for k—1. Then
(H-A+2)*E=(H-A+2)EH-V)*"1 = (EH+2E)(H- V)1 - A +2)E(H- 1)1 = E(H - 1)F

which completes the induction.
If ve V), then (H— 1) v =0.So (H—(1+2))*Ev=0. We have Ev € Vj .

(b) For F we have
(H-(A—-2)*F=EMH- 1)k

IfveV,, then FveVy_,.

(c) Suppose that 1 is maximal among the eigenvalues of H. If v € V), then Ev € V) ;5. By assumption V), = {0}.
Hence EV) = {0}.

(d) LetAy,...,A, be the set of eigenvalues of V. We have the primary decomposition of V
n
V=W,
i=1

Letv= 1(121 vi € V, where each v; € V. If F"'v; # 0 for infinitely many n € N, then 1; — 2n is an eigenvalue
of H for infinitely many n, which is impossible as V is finite-dimensional. Hence F"v; = 0 for sufficiently
large n. It follows that F"v = 0 for sufficiently large n. O

Question 5

(@) Show the relation forn=1)
HF"=F"H-2nF"

(b) Show ( n =1 as before)
EF"=F'"E+nF" 'H-n(n-1)F"!

(c) Deduce that, if v € V is a vector such that Ev =0 then

E"F"v=nE" 'F" Y (H-(n-D)v=n![[(H-(-D)v
i=1

(d) Let A be amaximal eigenvalue of H (in the above sense) and let V), denote the generalised 1-eigenspace. Use
4(d) and (c) to deduce that H acts diagonalisably on V) and that A is a non-negative integer.

Proof. (a) We use induction on n. For n =1 this is the given commutator [H, F] = —2F. Suppose that it holds for n — 1.
Then for n

HF"=(F" 'H-2n-1)F" YF=F"'HF-2(n-1)F"=F"H-2F"-2(n-1)F" = F"H - 2nF"

(b) Again we use induction on n. For n =1 this is the given commutator [E, F] = H. Suppose that it holds for



n—1. Then for n

EF"=(F"'E+(n-1DF"?H-(n-1)(n-2)F" )F
=F"EF+(n-1)F" ?HF - (n-1)(n-2)F"!
= F"" Y FE+(E,F)+(n-1)F"2(FH+[H,F])— (n—-1)(n—-2)F"!
=F'"E+F" 'H+(n-1)F"'H-2n-1)F" ' —=(n-1)(n-2)F"!
=F"E+nF" 'H-nn-1F"*!

(c) By (b) We have

E"F'v=E""' (F"E+nF" 'H-n(n-1DF" v
=nE" 'F" 1Hy-nn-1)E"'F" 1y
=nE"'F" Y (H-(n-1D)v

For n =1, we have EFv = (FE + H)v = Hv. Inductively we have

E"F'v=n![[(H-(G-1)v
i=1

(d) Let my be the minimal polynomial of H on V}. By 4.(d), there exists n € N such that F”v =0 for all v € V).
Then

n
Vi30=E"F'v=n![[(H-i+1v
i=1

Hence f(x) := H;’Zl (x—1i+1) is an annihilating polynomial of H on V). f(x) splits implies that mg(x) splits.
Hence H is diagonalisble over V)}. We have m;(x) = x — A which is a disivor of f(x). Hence 1 € {0,...,n} is a
non-negative integer. O

Question 6

(a) Let A be a maximal eigenvalue of H as in the previous question, and choose a non-zero vector v € V). We
know by Questions 2 and 3 that Ev = 0 and that A is an non-negative integer. Show the relations:

HF*y = -2k F*v
EF*y=k(A— (k-1)FF 1y

Deduce that FAM*!y = 0 and that the Fiv for 0 < i < A are linearly independent and span a simple submodule
of V.

(b) Check that the above relations define an sl, (C)-module for any non-negative integer A. Deduce that there is
(up to isomorphism) a unique simple module V(1) of dimension A + 1 for all non-negative integers A.

Proof. (a) We use induction on k to prove that HF¥v = (A — 2k) F¥v. For k = 0 this is trivial. Suppose that it holds for
k—1. Then

HF*y=(FH-2F)F* 'y =FHF* 'y -2Ffv = FA-2(k-1)F* 'v-2Fkv = A - 2k) FFv

We use induction on k to prove that EF*y=k(A-(k-1)F*¥y. Fork=1:

EFv=Hv=Av



Suppose that it holds for k— 1. Then

EF*v=(FE+ H)F v
= FEF*'v+ HFF 1y
=F(k—-1D)A-(k-2)F2v+QA-2(k-1)F- 1y
=k(A—(k—1))F* 1y

When k = A+1, the first equation gives HFM!'y = —(A+2) FM 1y, If FA1y £0, then —FA*1 v is en eigenvector
of H associated with the eigenvalue A + 2. This contradicts the maximality of 1. Hence FA*1v =0.

Note that v, Fv,..., F v correspond to different eigenvalues of H. To show that they are linearly independent,

it suffices to show that none of them is zero. Let i € {0, ..., A} be a minimal integer such that F'v = 0. Then
0=EFv=iA-i+1)F v

As Fi7ly #£0, we have i = 0 or A — i + 1 = 0, both of which are impossible. Hence {v, Fv, . Flulis linearly

independent.

Let e; := Fiv. We claim that W := spanf{ey, ..., e;} is a simple sl,(C)-module. Suppose that I <W is a non-

zero ideal. Let v = Z?:k aje; € I where a; # 0. Then FA**y = FA~%g,.ei. = are;. Hence e, € I. Note that

Ee; € span{e;_1}\ {0} for i € {1,...,A}. Hence ey, ...,ey € I. We have I = W. W is a simple submodule of V.
(b) For A €N, let V(1) be acomplexvector space such that E, F, H € End(V (1)) satisfies the relations given above.

Let e; = Flv. Then we have

e; 0<si<A iA—i+1ei—; O0<is<A
Fei:{ i+l , Eel-z{ ( Jei-1 R He; = (A-2i)e;

It is straightforward to check that [E, Fle; = He;, [H,Ele; = 2Ee;, and [H, Fle; = —2Fe; for all i € {0,..., A}.
Hence V(1) = spanfey, ..., e;} affords a representation of s[, (C) of dimension (1 +1).

To show that it is unique, suppose that W is a simple sl,(C)-module of dimension (A +1). Let u be the
largest eigenvalue of H. The discussion above shows that W has a simple submodule of dimension ( + 1)
isomorphic to V(u). If W is simple, then u = A and hence W = V(A) as sl,(C)-modules. O

Question 7
Let V be an arbitrary finite dimensional representation of sl, (C).

(a) Let A € Z be maximal amongst the eigenvalues of H, and let V) < V denote the A-eigenspace. Suppose that
V has the property that Ev = 0 implies that v € V). Show that V is completely reducible.

(b) Consider the endomorphism ¢ = EF + FE + %HZ. Show that ¢ commutes with E,F and H.(c is called the
Casimir element.) Deduce from Schur’s lemma that c acts as a scalar on any irreducible representation of
5l (C). Compute the scalar with which c acts on V(m).

(c) Show that V is completely reducible.

[This result also follows from the more general complete reducibility result due to Weyl, but it is nice to see a more
explicit proof for an algebra as small as s,.]

Proof. (a) Let W be a maximal submodule (ordered by dimension) of V which is completely reducible. Suppose that
W # V. Then V/W # 0. Let u be the largest eigenvalue of H € End(V/W). Then there exists v € V\ W
such that Hv = pv (because p is also an eigenvalue of H) and Hw+W) = puv+W. Then Ev € V> and



(b)

(©

E(v+ W) = W, which imply that Ev € V,,,» " W. Since v ¢ W, we must have Ev = 0. By assumption v € V).
Hence p = A. Let U = span{y, .. Flvibea simple submodule of V. Then Un W = {0} by simplicity. Hence
U e W is a larger completely reducible submodule of V than W, which is a contradiction. In conclusion,
V = W is completely reducible.

We compute the commutators:

[c, H|=[E,HIF+E[FH|+F[E,H|+[FH|E=-2EF+2EF-2FE+2FE=0
1 1

[c, E1=E[EE|+|[FEIE+ EH[H’E] +§[H,E]H= -EH-HE+HE+EH=0
1 1

¢, F1=[E,F]F + F[E, F] +EH[H,F]+E[H,F]H:HF+FH—HF—FH=0

Hence ¢ commutes with E, F, H, and hence commutes with any element of s[,(C). Let V be a simple sl (C)-
module. We have ¢ (¢-v) = a-(c-v) for any a € sl,(C) and v € V. In particular ¢ € End(V). Since V is
irreducible and C is algebraically closed, by Schur’s Lemma, c acts on V as a scalar.

Let V = V(m). Consider v € V(m) with highest weight. Thatis Ev =0 and Hv = mv. Then Q6(a) shows that

1 2 1 2 1 2
cv=(EF+FE+SH)v=QEF—H+ZH)v=(Gm" +my

1
Therefore ¢ = (5 m? + m) id on V(m).

Consider the primary decomposition of V into generalised eigenspaces (which are s[, (C)-submodules of V)

of c:
0

V =@ker(c - A;id)4mV
i=1

To show that V is completely reducible, it suffices to show that each generalised eigenspace is completely
reducible. We may assume that ¢ has a unique eigenvalue pon V.

Let A be the largest eigenvalue of H in V. Then V has a simple submodule isomorphic to V(A). By (b) we
have ¢ = (é/lz + )L) id restricting on V(A). Hence pu = é/lz + A.
Suppose that v € ker E. Then
(%/12+7L)v=uv:c-v= (%H2+H)u
Hence

%(H—A)(H+A+2)v:0

It follows that (H + A +2)v € V). Since the generalised eigenspaces of H are (H + A + 2)-invariant, we must
have v € V). Now by (a), V is completely reducible. O



