Peize Liu St. Peter's College University of Oxford

Problem Sheet 1 B3.3: Algebraic Number Theory

Question 1

(a) Show that each of the following numbers is algebraic

$$1/2, \sqrt{-5}, \sqrt{17} + \sqrt{19}, e^{2\pi i/7}$$

- (b) Assuming that the polynomials you have found are irreducible, what are the (absolute) conjugates of these numbers, and
- (c) Calculate their (absolute) traces and norms.

Proof. First we recall the following facts from B3.1 Galois Theory:

- If α is algebraic over \mathbb{Q} , the conjugates of α is the roots of the minimal polynomial m_{α} of α in the splitting field.
- Suppose that the minimal polynomial of α over \mathbb{Q} is

$$m_{\alpha}(x) = x^n + \sum_{k=0}^{n-1} a_k x^k$$

Then the trace and norm of α are given by

$$\operatorname{Tr}_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha) = -a_{n-1}, \quad \operatorname{Norm}_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha) = (-1)^n a_0$$

- The conjugates of α have the same trace and norm with α .
- (1) Let $\alpha = 1/2$. Since $1/2 \in \mathbb{Q}$, 1/2 is algebraic over \mathbb{Q} with minimal polynomial m(x) = x 1/2. The conjugates of 1/2 are 1/2 itself. $\operatorname{Tr}_{\mathbb{Q}}^{\mathbb{Q}}(1/2) = \operatorname{Norm}_{\mathbb{Q}}^{\mathbb{Q}}(1/2) = 1/2$.
- (2) Let $\alpha = \sqrt{-5}$. Then $\alpha^2 + 5 = 0$. Hence $\sqrt{-5}$ is algebraic over $\mathbb Q$ with minimal polynomial $m(x) = x^2 + 5$. The conjugates of $\sqrt{-5}$ are $\sqrt{-5}$ and $-\sqrt{-5}$. From the minimal polynomial we know that the trace of $\sqrt{-5}$ is 0 and the norm of $\sqrt{-5}$ is 5.
- (3) Let $\alpha = \sqrt{17} + \sqrt{19}$.

$$\alpha = \sqrt{17} + \sqrt{19} \implies (\alpha - \sqrt{17})^2 = (\sqrt{19})^2$$

$$\implies \alpha^2 - 2\sqrt{17}\alpha = 2$$

$$\implies (\alpha^2 - 2)^2 = (2\sqrt{17}\alpha)^2$$

$$\implies \alpha^4 - 72\alpha^2 + 4 = 0$$

Hence $\sqrt{17} + \sqrt{19}$ is algebraic over \mathbb{Q} . It remains to show that $m(x) = x^4 - 72x^2 + 4$ is irreducible over \mathbb{Q} . The easiest way is to compute all the roots of m.

$$(x^2 - 2)^2 = (2\sqrt{17}x)^2 \implies (x^2 - 2\sqrt{17}x - 2)(x^2 + 2\sqrt{17}x - 2) = 0 \implies x^2 - 2\sqrt{17}x - 2 = x^2 + 2\sqrt{17}x - 2 = 0$$

Using the quadratic formula we find that the 4 roots are exactly $\pm\sqrt{17}\pm\sqrt{19}$. This shows that m is irreducible, because it does not have rational linear or quadratic factors. Hence m is the minimal polynomial of α . The conjugates of α are $\pm\sqrt{17}\pm\sqrt{19}$. The trace is 0, and the norm is 4.

(4) Let $\alpha = e^{2\pi i/7}$. We know that α is a primitive 7th root of unity in \mathbb{C} . Hence it is algebraic over \mathbb{Q} and the minimal polynomial is the 7th cyclotomic polynomial

$$m(x) = \Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

The conjugates of α are all primitive 7th roots of unity. Since 7 is a prime, the conjugates of α are α , α^2 , α^3 , α^4 , α^5 , α^6 .

The trace of α is -1, and the norm of α is 1.

Α

Question 2

- (a) Let $K = \mathbb{Q}(\theta)$ where $\theta^2 = d, d \in \mathbb{Z}$ not a square. Describe the embeddings σ_1, σ_2 of K into \mathbb{C} . Are the fields $\sigma_1(K), \sigma_2(K)$ different?
- (b) Let $K = \mathbb{Q}(\phi)$ where $\phi^3 = d$, $d \in \mathbb{Z}$ not a cube. Describe the embeddings $\sigma_1, \sigma_2, \sigma_3$ of K into \mathbb{C} . Are the fields $\sigma_1(K), \sigma_2(K), \sigma_3(K)$ different?

Proof. Suppose that $\sigma: K \to \mathbb{C}$ is an embedding (i.e. injective ring homomorphism). Then in particular σ fixes the prime subfield \mathbb{Q} . When $K = \mathbb{Q}(\theta)$, σ is uniquely determined by $\sigma(\theta)$, which is a conjugate of θ in \mathbb{C} .

- (a) Since $\theta^2 = d$ and $\theta \notin \mathbb{Q}$, the conjuagte of θ is $\pm \theta$. The embeddings σ_1, σ_2 are given by $\sigma_1(\theta) = \theta$ and $\sigma_2(\theta) = -\theta$. Note that $K \mid \mathbb{Q}$ is a normal extension, because $-\theta \in K = \mathbb{Q}(\theta)$. Hence the embeddings have the same image in \mathbb{C} .
- (b) Since $\phi^3 = d$ and $\phi \notin \mathbb{Q}$, the conjugates of ϕ are ϕ , $\phi \omega$, $\phi \omega^2$, where $\omega := \frac{-1 + \sqrt{3}i}{2}$ is a primitive 3rd root of unity in \mathbb{C} . The embeddings $\sigma_1, \sigma_2, \sigma_3$ are given by $\sigma_1(\phi) = \phi$, $\sigma_2(\phi) = \phi \omega$, and $\sigma_3(\phi) = \phi \omega^2$. The extension $K \mid \mathbb{Q}$ is not normal, because $K = \mathbb{Q}(\phi) \in \mathbb{R}$ and $\omega \notin \mathbb{R}$. In fact the images $\sigma_1(K)$, $\sigma_2(K)$ and $\sigma_3(K)$ are distinct.

add more details

Question 3

Let $K = \mathbb{Q}(\alpha)$, $\alpha^3 = m$, m not a cube. Evaluate $\Delta(1, \alpha, \alpha^2)^2$ by the formula $\Delta = \det(\sigma_i w_j)$. Write down the traces of $1, \alpha, ..., \alpha^4$ and hence evaluate $\Delta(1, \alpha, \alpha^2)^2$ by the formula involving traces.

Proof. The conjugates of α are α , $\alpha\omega$, and $\alpha\omega^2$, where ω is a primitive 3rd root of unity in \mathbb{C} . Hence

$$\Delta(1,\alpha,\alpha^2) = \det \begin{pmatrix} 1 & 1 & 1 \\ \alpha & \alpha\omega & \alpha\omega^2 \\ \alpha^2 & \alpha^2\omega^2 & \alpha^2\omega \end{pmatrix} = \det \begin{pmatrix} 3 & 1 & 1 \\ 0 & \alpha\omega & \alpha\omega^2 \\ 0 & \alpha^2\omega^2 & \alpha^2\omega \end{pmatrix} = 3(\alpha^3\omega^2 - \alpha^3\omega) = 3m\omega(\omega - 1)$$

And

$$\Delta^{2}(1,\alpha,\alpha^{2}) = 9m^{2}\omega^{2}(\omega - 1)^{2} = -27m^{2}$$

Alternatively we compute the traces:

$$\begin{split} &\operatorname{Tr}_{\mathbb{Q}}^K(1) = 3 \\ &\operatorname{Tr}_{\mathbb{Q}}^K(\alpha) = \alpha + \alpha\omega + \alpha\omega^2 = 0 \\ &\operatorname{Tr}_{\mathbb{Q}}^K(\alpha^2) = \alpha^2 + \alpha^2\omega^2 + \alpha^2\omega = 0 \\ &\operatorname{Tr}_{\mathbb{Q}}^K(\alpha^3) = 3m \\ &\operatorname{Tr}_{\mathbb{Q}}^K(\alpha^4) = \alpha^4 + \alpha^4\omega + \alpha^4\omega^2 = 0 \end{split}$$

By Lemma 2.3,

$$\Delta^{2}(1,\alpha,\alpha^{2}) = \det \begin{pmatrix} \operatorname{Tr}_{\mathbb{Q}}^{K}(1) & \operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha) & \operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha^{2}) \\ \operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha) & \operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha^{2}) & \operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha^{3}) \\ \operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha^{2}) & \operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha^{3}) & \operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha^{4}) \end{pmatrix} = \det \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 3m \\ 0 & 3m & 0 \end{pmatrix} = -27m^{2}$$

Question 4

Suppose that β is a root of $X^3 + pX + q = 0$, where $X^3 + pX + q$ is an irreducible polynomial in $\mathbb{Z}[X]$. Verify that $1, \beta, \beta^2, \beta^3$ have traces 3, 0, -2p, -3q, respectively, and compute $\mathrm{Tr}(\beta^4)$. Deduce that $\Delta(1, \beta, \beta^2)^2 = -4p^3 - 27q^2$.

Proof. Suppose that $\beta_1 := \beta, \beta_2, \beta_3$ are the roots of $x^3 + px + q$. By Vieta's Theorem we have

$$\beta_1 + \beta_2 + \beta_3 = 0$$
, $\beta_1 \beta_2 + \beta_2 \beta_3 + \beta_3 \beta_1 = p$, $\beta_1 \beta_2 \beta_3 = -q$

Then

$$tr(1) = 3$$

$$tr(\beta) = \beta_1 + \beta_2 + \beta_3 = 0$$

$$tr(\beta^2) = \beta_1^2 + \beta_2^2 + \beta_3^2 = (\beta_1 + \beta_2 + \beta_3)^2 - 2(\beta_1 \beta_2 + \beta_2 \beta_3 + \beta_3 \beta_1) = -2p$$

$$tr(\beta^3) = tr(-p\beta - q) = -p tr(\beta) - tr(q) = -3q$$

$$tr(\beta^4) = tr(-p\beta^2 - q\beta) = -p tr(\beta^2) - q tr(\beta) = 2p^2$$

By Lemma 2.3,

$$\Delta^{2}(1, \beta, \beta^{2}) = \det \begin{pmatrix} \text{tr}(1) & \text{tr}(\beta) & \text{tr}(\beta^{2}) \\ \text{tr}(\beta) & \text{tr}(\beta^{2}) & \text{tr}(\beta^{3}) \\ \text{tr}(\beta^{2}) & \text{tr}(\beta^{3}) & \text{tr}(\beta^{4}) \end{pmatrix} = \det \begin{pmatrix} 3 & 0 & -2p \\ 0 & -2p & -3q \\ -2p & -3q & 2p^{2} \end{pmatrix} = -4p^{3} - 27q^{2} \qquad \Box$$

Question 5

Suppose that α is a root of a monic irreducible polynomial $f(X) \in \mathbb{Z}[X]$. Prove that if $\deg(f) = n$ and $K = \mathbb{Q}(\alpha)$ then

$$\Delta^2\left(1,\alpha,\ldots,\alpha^{n-1}\right)=(-1)^{n(n-1)/2}\operatorname{Norm}_{K/\mathbb{Q}}\left(f'(\alpha)\right)$$

Proof. Let $\alpha_1 := \alpha, \alpha_2, ..., \alpha_n$ be the roots of f. Since $K \mid \mathbb{Q}$ is separable and f is irreducible, the roots are distinct. By Lemma 2.5, we have

$$\Delta^2(1,\alpha,...,\alpha^{n-1}) = \prod_{i < j} (\alpha_j - \alpha_i)^2$$

Since f is monic, we have

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i) \implies f'(x) = \sum_{i=1}^{n} \prod_{j \neq i} (x - \alpha_j) \implies f'(\alpha_k) = \sum_{i=1}^{n} \prod_{j \neq i} (\alpha_k - \alpha_j) = \prod_{j \neq k} (\alpha_k - \alpha_j)$$

Hence

$$\prod_{k=1}^n f'(\alpha_k) = \prod_{k=1}^n \prod_{j \neq k} (\alpha_k - \alpha_j) = (-1)^{\frac{n(n-1)}{2}} \prod_{k < j}^n (\alpha_j - \alpha_k)^2 = (-1)^{\frac{n(n-1)}{2}} \Delta^2(1, \alpha, ..., \alpha^{n-1})$$

On the other hand, by the definition of norm,

$$\operatorname{Norm}_{\mathbb{Q}}^{K}(f'(\alpha)) = \prod_{i=1}^{n} \sigma_{i}(f'(\alpha)) = \prod_{i=1}^{n} f'(\sigma_{i}(\alpha)) = \prod_{i=1}^{n} f'(\alpha_{i})$$

where f' commutes with the field embeddings $\sigma_i : \alpha \mapsto \alpha_i$ because f' is a polynomial. Now we can combine the results and obtain

$$\Delta^{2}(1, \alpha, ..., \alpha^{n-1}) = (-1)^{\frac{n(n-1)}{2}} \operatorname{Norm}_{\mathbb{Q}}^{K}(f'(\alpha))$$

Question 6

Suppose that $[K:\mathbb{Q}]=n$, and that there are r real embeddings and s pairs of complex embeddings of K into \mathbb{C} , where r+2s=n. Show that if $w=\{w_1,\ldots,w_n\}$ is an integral basis for \mathcal{O}_K then the sign of $\Delta(w)^2$ is $(-1)^s$.

Proof. Let $\tau: z \mapsto \overline{z}$ be the complex conjugation. Then $\tau \in \operatorname{Gal}(\mathbb{C} \mid \mathbb{Q})$. Consider the determinant $\Delta(w_1, ..., w_n) = \det(\sigma_i(w_j))_{i,j=1}^n$, where $\sigma_1, ..., \sigma_n$ are the embeddings of K into \mathbb{C} , and the action of τ on it. Since the determinant is a polynomial in the elements $\sigma_i(w_i)$, we have

$$\tau(\Delta(w_1,...,w_n)) = \det(\tau \circ \sigma_i(w_j))_{i,j=1}^n$$

The action of τ on each individual $\sigma_i(w_j)$ is equivalent to exchanging the σ_i with its conjugate embedding. Therefore the action of τ on the determinant is exchanging 2s of n rows. We have

$$\tau (\Delta(w_1,...,w_n)) = (-1)^s \Delta(w_1,...,w_n)$$

In particular, if s is even, then $\Delta(w_1,...,w_n) \in \mathbb{R}$ and hence $\Delta^2(w_1,...,w_n) \ge 0$; if s is odd, then $\Delta(w_1,...,w_n) \in \mathbb{R}$ and hence

 $\Delta^2(w_1,...,w_n) \le 0$. We conclude that $\Delta^2(w_1,...,w_n)$ has the sign $(-1)^s$.

Question 7. Stickelberger's Theorem

With the notation of the preceding question, let M be a splitting field containing K. Write Ω for the matrix $(\sigma_i(w_j))$, and write P for the sum of the terms in the expansion of $\det(\Omega)$ that occur with positive sign, and N for the sum of the terms which occur with negative sign; so $\Delta(w) = P - N$ and P + N is the "permanent". Show that P + N and PN are both invariant by $\operatorname{Gal}(M/\mathbb{Q})$, so are both rational integers. Deduce that $\Delta(K)^2 \equiv 0, 1 \mod 4$.

Proof. (I suppose that the question means that M is the Galois closure of $K \mid \mathbb{Q}$.)

The expansion of the determinant is given by:

$$\Delta(w_1, ..., w_n) = \sum_{\rho \in S_n} \operatorname{sgn}(\rho) \prod_{i=1}^n \sigma_{\rho(i)}(w_i) = \sum_{\rho \in A_n} \prod_{i=1}^n \sigma_{\rho(i)}(w_i) - \sum_{\rho \in S_n \setminus A_n} \prod_{i=1}^n \sigma_{\rho(i)}(w_i)$$

For a field embedding $\sigma_i : K \hookrightarrow \mathbb{C}$, by normality of the extension $M \mid \mathbb{Q}$, we have $\sigma_i(K) \subseteq M$. Let $\gamma \in \text{Gal}(M \mid \mathbb{Q})$. Then $\gamma \circ \sigma_i$ is also an embedding $K \hookrightarrow \mathbb{C}$. In particular, $\text{Gal}(M \mid \mathbb{Q})$ acts on the set of embeddings $\{\sigma_1, ..., \sigma_n\}$ by permutation. Here we identify $\text{Gal}(M \mid \mathbb{Q})$ as a subgroup of S_n .

If $\gamma \in A_n$, then

$$\gamma(P) = \sum_{\rho \in A_n} \prod_{i=1}^n \gamma \circ \sigma_{\rho(i)}(w_i) = \sum_{\rho \in A_n} \prod_{i=1}^n \sigma_{\gamma \circ \rho(i)}(w_i) = \sum_{\rho \in A_n} \prod_{i=1}^n \sigma_{\rho(i)}(w_i) = P$$

$$\gamma(N) = \sum_{\rho \in S_n \setminus A_n} \prod_{i=1}^n \gamma \circ \sigma_{\rho(i)}(w_i) = \sum_{\rho \in S_n \setminus A_n} \prod_{i=1}^n \sigma_{\gamma \circ \rho(i)}(w_i) = \sum_{\rho \in S_n \setminus A_n} \prod_{i=1}^n \sigma_{\rho(i)}(w_i) = N$$

If $\gamma \in S_n \setminus A_n$, then

$$\gamma(P) = \sum_{\rho \in A_n} \prod_{i=1}^n \gamma \circ \sigma_{\rho(i)}(w_i) = \sum_{\rho \in A_n} \prod_{i=1}^n \sigma_{\gamma \circ \rho(i)}(w_i) = \sum_{\rho \in S_n \setminus A_n} \prod_{i=1}^n \sigma_{\rho(i)}(w_i) = N$$
$$\gamma(N) = \sum_{\rho \in S_n \setminus A_n} \prod_{i=1}^n \gamma \circ \sigma_{\rho(i)}(w_i) = \sum_{\rho \in S_n \setminus A_n} \prod_{i=1}^n \sigma_{\gamma \circ \rho(i)}(w_i) = \sum_{\rho \in A_n} \prod_{i=1}^n \sigma_{\rho(i)}(w_i) = P$$

Hence for $\gamma \in Gal(M \mid \mathbb{Q})$,

$$\gamma(P+N) = P+N, \qquad \gamma(PN) = PN$$

Hence $P+N,PN\in\mathbb{Q}$. Furthermore, since $\sigma_i(w_j)\in\mathcal{O}_K$, we have $P+N,PN\in\mathcal{O}_K$. Since \mathbb{Z} is integrally closed, we have $P+N,PN\in\mathbb{Z}$.

Finally,

$$\Delta^{2}(K) = \Delta^{2}(w_{1},...,w_{n}) = (P-N)^{2} = (P+N)^{2} - 4PN \equiv (P+N)^{2} \equiv 0,1 \mod 4$$

because every square in \mathbb{Z} is 0, 1 mod 4.