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Question 1

(a) Show that each of the following numbers is algebraic

1/2,
p−5,

p
17+p

19,e2πi /7

(b) Assuming that the polynomials you have found are irreducible, what are the (absolute) conjugates of these numbers,
and

(c) Calculate their (absolute) traces and norms.

Proof. First we recall the following facts from B3.1 Galois Theory:

• If α is algebraic overQ, the conjugates of α is the roots of the minimal polynomial mα of α in the splitting field.

• Suppose that the minimal polynomial of α overQ is

mα(x) = xn +
n−1∑
k=0

ak xk

Then the trace and norm of α are given by

TrQ(α)
Q

(α) =−an−1, NormQ(α)
Q

(α) = (−1)n a0

• The conjugates of α have the same trace and norm with α.

(1) Let α= 1/2. Since 1/2 ∈Q, 1/2 is algebraic overQwith minimal polynomial m(x) = x −1/2.

The conjugates of 1/2 are 1/2 itself. TrQ
Q

(1/2) = NormQ

Q
(1/2) = 1/2.

(2) Let α=p−5. Then α2 +5 = 0. Hence
p−5 is algebraic overQwith minimal polynomial m(x) = x2 +5.

The conjugates of
p−5 are

p−5 and −p−5.

From the minimal polynomial we know that the trace of
p−5 is 0 and the norm of

p−5 is 5.

(3) Let α=p
17+p

19.

α=p
17+p

19 =⇒ (α−p
17)2 = (

p
19)2

=⇒ α2 −2
p

17α= 2

=⇒ (α2 −2)2 = (2
p

17α)2

=⇒ α4 −72α2 +4 = 0

Hence
p

17+p
19 is algebraic overQ. It remains to show that m(x) = x4 −72x2 +4 is irreducible overQ. The easiest way

is to compute all the roots of m.

(x2 −2)2 = (2
p

17x)2 =⇒ (x2 −2
p

17x −2)(x2 +2
p

17x −2) = 0 =⇒ x2 −2
p

17x −2 = x2 +2
p

17x −2 = 0

Using the quadratic formula we find that the 4 roots are exactly ±p17±p
19. This shows that m is irreducible, because

it does not have rational linear or quadratic factors. Hence m is the minimal polynomial of α. The conjugates of α are
±p17±p

19. The trace is 0, and the norm is 4.

(4) Let α = e2πi/7. We know that α is a primitive 7th root of unity in C. Hence it is algebraic over Q and the minimal
polynomial is the 7th cyclotomic polynomial

m(x) =Φ7(x) = x6 +x5 +x4 +x3 +x2 +x +1

The conjugates of α are all primitive 7th roots of unity. Since 7 is a prime, the conjugates of α are α,α2,α3,α4,α5,α6.

The trace of α is -1, and the norm of α is 1.
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Question 2

(a) Let K =Q(θ) where θ2 = d ,d ∈ Z not a square. Describe the embeddings σ1,σ2 of K into C. Are the fields σ1(K ), σ2(K )
different?

(b) Let K =Q(φ) whereφ3 = d ,d ∈Z not a cube. Describe the embeddingsσ1,σ2,σ3 of K intoC. Are the fieldsσ1(K ),σ2(K ),
σ3(K ) different?

Proof. Suppose that σ : K →C is an embedding (i.e. injective ring homomorphism). Then in particular σ fixes the prime subfieldQ.
When K =Q(θ), σ is uniquely determined by σ(θ), which is a conjugate of θ in C.

(a) Since θ2 = d and θ ∉ Q, the conjuagte of θ is ±θ. The embeddings σ1,σ2 are given by σ1(θ) = θ and σ2(θ) = −θ. Note
that K |Q is a normal extension, because −θ ∈ K =Q(θ). Hence the embeddings have the same image in C.

(b) Since φ3 = d and φ ∉ Q, the conjugates of φ are φ, φω, φω2, where ω := −1+p
3i

2
is a primitive 3rd root of unity in C.

The embeddings σ1,σ2,σ3 are given by σ1(φ) = φ, σ2(φ) = φω, and σ3(φ) = φω2. The extension K | Q is not normal,
because K =Q(φ) ∈R and ω ∉R. In fact the images σ1(K ), σ2(K ) and σ3(K ) are distinct.

Question 3

Let K =Q(α),α3 = m,m not a cube. Evaluate ∆
(
1,α,α2

)2
by the formula ∆ = det

(
σi w j

)
. Write down the traces of 1,α, . . . ,α4

and hence evaluate ∆
(
1,α,α2

)2
by the formula involving traces.

Proof. The conjugates of α are α, αω, and αω2, where ω is a primitive 3rd root of unity in C. Hence

∆(1,α,α2) = det

 1 1 1
α αω αω2

α2 α2ω2 α2ω

= det

3 1 1
0 αω αω2

0 α2ω2 α2ω

= 3(α3ω2 −α3ω) = 3mω(ω−1)

And
∆2(1,α,α2) = 9m2ω2(ω−1)2 =−27m2

Alternatively we compute the traces:

TrK
Q(1) = 3

TrK
Q(α) =α+αω+αω2 = 0

TrK
Q(α2) =α2 +α2ω2 +α2ω= 0

TrK
Q(α3) = 3m

TrK
Q(α4) =α4 +α4ω+α4ω2 = 0

By Lemma 2.3,

∆2(1,α,α2) = det

 TrK
Q

(1) TrK
Q

(α) TrK
Q

(α2)

TrK
Q

(α) TrK
Q

(α2) TrK
Q

(α3)

TrK
Q

(α2) TrK
Q

(α3) TrK
Q

(α4)

= det

3 0 0
0 0 3m
0 3m 0

=−27m2

Question 4

Suppose that β is a root of X 3+p X +q = 0, where X 3+p X+ q is an irreducible polynomial in Z[X ]. Verify that 1,β,β2,β3 have
traces 3,0,−2p,−3q, respectively, and compute Tr

(
β4

)
. Deduce that ∆

(
1,β,β2

)2 =−4p3 −27q2.

Proof. Suppose that β1 :=β,β2,β3 are the roots of x3 +px +q . By Vieta’s Theorem we have

β1 +β2 +β3 = 0, β1β2 +β2β3 +β3β1 = p, β1β2β3 =−q
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Then

tr(1) = 3

tr(β) =β1 +β2 +β3 = 0

tr(β2) =β2
1 +β2

2 +β2
3 = (β1 +β2 +β3)2 −2(β1β2 +β2β3 +β3β1) =−2p

tr(β3) = tr(−pβ−q) =−p tr(β)− tr(q) =−3q

tr(β4) = tr(−pβ2 −qβ) =−p tr(β2)−q tr(β) = 2p2

By Lemma 2.3,

∆2(1,β,β2) = det

 tr(1) tr(β) tr(β2)
tr(β) tr(β2) tr(β3)

tr(β2) tr(β3) tr(β4)

= det

 3 0 −2p
0 −2p −3q

−2p −3q 2p2

=−4p3 −27q2

Question 5

Suppose that α is a root of a monic irreducible polynomial f (X ) ∈ Z[X ]. Prove that if deg( f ) = n and K =Q(α) then

∆2 (
1,α, . . . ,αn−1)= (−1)n(n−1)/2 NormK /Q

(
f ′(α)

)
Proof. Let α1 :=α,α2, ...,αn be the roots of f . Since K |Q is separable and f is irreducible, the roots are distinct. By Lemma 2.5, we

have
∆2(1,α, ...,αn−1) = ∏

i< j
(α j −αi )2

Since f is monic, we have

f (x) =
n∏

i=1
(x −αi ) =⇒ f ′(x) =

n∑
i=1

∏
j 6=i

(x −α j ) =⇒ f ′(αk ) =
n∑

i=1

∏
j 6=i

(αk −α j ) = ∏
j 6=k

(αk −α j )

Hence
n∏

k=1
f ′(αk ) =

n∏
k=1

∏
j 6=k

(αk −α j ) = (−1)
n(n−1)

2

n∏
k< j

(α j −αk )2 = (−1)
n(n−1)

2 ∆2(1,α, ...,αn−1)

On the other hand, by the definition of norm,

NormK
Q( f ′(α)) =

n∏
i=1

σi ( f ′(α)) =
n∏

i=1
f ′(σi (α)) =

n∏
i=1

f ′(αi )

where f ′ commutes with the field embeddings σi :α 7→αi because f ′ is a polynomial. Now we can combine the results and
obtain

∆2(1,α, ...,αn−1) = (−1)
n(n−1)

2 NormK
Q( f ′(α))

Question 6

Suppose that [K :Q] = n, and that there are r real embeddings and s pairs of complex embeddings of K intoC, where r +2s = n.
Show that if w = {w1, . . . , wn} is an integral basis for OK then the sign of ∆(w)2 is (−1)s .

Proof. Let τ : z 7→ z be the complex conjugation. Then τ ∈ Gal(C | Q). Consider the determinant ∆(w1, ..., wn) = det(σi (w j ))n
i , j=1,

where σ1, ...,σn are the embeddings of K into C, and the action of τ on it. Since the determinant is a polynomial in the
elements σi (w j ), we have

τ (∆(w1, ..., wn)) = det(τ◦σi (w j ))n
i , j=1

The action of τ on each individual σi (w j ) is equivalent to exchanging the σi with its conjugate embedding. Therefore the
action of τ on the determinant is exchanging 2s of n rows. We have

τ (∆(w1, ..., wn)) = (−1)s∆(w1, ..., wn)

In particular, if s is even, then ∆(w1, ..., wn) ∈ R and hence ∆2(w1, ..., wn) Ê 0; if s is odd, then ∆(w1, ..., wn) ∈ Ri and hence
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∆2(w1, ..., wn) É 0. We conclude that ∆2(w1, ..., wn) has the sign (−1)s .

Question 7. Stickelberger’s Theorem

With the notation of the preceding question, let M be a splitting field containing K . WriteΩ for the matrix
(
σi

(
w j

))
, and write

P for the sum of the terms in the expansion of det(Ω) that occur with positive sign, and N for the sum of the terms which occur
with negative sign; so ∆(w) = P −N and P +N is the "permanent". Show that P +N and P N are both invariant by Gal(M/Q),
so are both rational integers. Deduce that ∆(K )2 ≡ 0,1 mod 4.

Proof. (I suppose that the question means that M is the Galois closure of K |Q.)

The expansion of the determinant is given by:

∆(w1, ..., wn) = ∑
ρ∈Sn

sgn(ρ)
n∏

i=1
σρ(i )(wi ) = ∑

ρ∈An

n∏
i=1

σρ(i )(wi )− ∑
ρ∈Sn \An

n∏
i=1

σρ(i )(wi )

For a field embedding σi : K ,→ C, by normality of the extension M |Q, we have σi (K ) ⊆ M . Let γ ∈ Gal(M |Q). Then γ◦σi

is also an embedding K ,→ C. In particular, Gal(M | Q) acts on the set of embeddings {σ1, ...,σn} by permutation. Here we
identify Gal(M |Q) as a subgroup of Sn .

If γ ∈ An , then

γ(P ) = ∑
ρ∈An

n∏
i=1

γ◦σρ(i )(wi ) = ∑
ρ∈An

n∏
i=1

σγ◦ρ(i )(wi ) = ∑
ρ∈An

n∏
i=1

σρ(i )(wi ) = P

γ(N ) = ∑
ρ∈Sn \An

n∏
i=1

γ◦σρ(i )(wi ) = ∑
ρ∈Sn \An

n∏
i=1

σγ◦ρ(i )(wi ) = ∑
ρ∈Sn \An

n∏
i=1

σρ(i )(wi ) = N

If γ ∈ Sn \ An , then

γ(P ) = ∑
ρ∈An

n∏
i=1

γ◦σρ(i )(wi ) = ∑
ρ∈An

n∏
i=1

σγ◦ρ(i )(wi ) = ∑
ρ∈Sn \An

n∏
i=1

σρ(i )(wi ) = N

γ(N ) = ∑
ρ∈Sn \An

n∏
i=1

γ◦σρ(i )(wi ) = ∑
ρ∈Sn \An

n∏
i=1

σγ◦ρ(i )(wi ) = ∑
ρ∈An

n∏
i=1

σρ(i )(wi ) = P

Hence for γ ∈ Gal(M |Q),
γ(P +N ) = P +N , γ(P N ) = P N

Hence P + N ,P N ∈ Q. Furthermore, since σi (w j ) ∈ OK , we have P + N ,P N ∈ OK . Since Z is integrally closed, we have
P +N ,P N ∈Z.

Finally,
∆2(K ) =∆2(w1, ..., wn) = (P −N )2 = (P +N )2 −4P N ≡ (P +N )2 ≡ 0,1 mod 4

because every square in Z is 0,1 mod 4.
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