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Question 1

Let (X, || - 1) be a real norm vector space satisfying the parallelogram law:
I+ yI2 +lx -y =20 x]% + 2]l yl1? forall x, y € X
Define
1 2 2
fx,y= 1 (Ilx+ylII* = llx=yl7) forx,ye X

Show that
@ f,y=fyx
) fx+z,)=flx, 1+ f(z ).
(© flax,y)=af(x,y) forallacR.

Conclude that f(x, y) defines an inner product on X.

Proof. (a) Forx,yeX:
1 1
Fnp= L (e bl = L (ol - 02yl = s/

(b) Forx,y,z€ X:

e Ry () R o o PO ) Py F O ERO R ER
1 1
= ||x+z+y||2— Hx+z—yn2 + 3 (”x+z—2y||2+ ||x—z||2) -3 (||x+z+2y||2 + ||x—z||2)
1
_ ||x+z+y||2—“x+z—y“2+5(||x+z—2y||2—||x+z+2y||2)
1
= (Il + 2+ yI7+ 101?) = (et 2= P+ 1307 + 5 (I 2 =20 ) = e+ 2+ 29
1 1 1
:E(||x+z+2y||2+||x+z||2)—§(||x+z||2+||x+z—2y||2)+E(||x+z—2y||2— x+z+2y]?)
=0 /
Hence f(x+z,) = f(x,y) + f(z,¥).
(c) We proceed the proofin the order Z, — 7 — Q —R.
e ForaeZ,, f(ax,y) = af(x,y) follows from (b) and induction on a. -/
e Note that

(=1 =+ ¥I) = e

1 1
fexp = ey - -x-yl?) = 3

Hence for a € Z, if @ < 0, then

flax,)==f(ax,y)=-(a)f(x,y) =af(x,y) /

If ¢ =0, then
flax,y)=f0,y)=f0+0,y)=f(0,y)+ f(0,y) = f(0,y)=0=0f(x,y)

e For a € Q, there exists m, n € Z such that « = m/n. Note that
flx )—f(” o )‘"f(lx )zf(lx )‘lf(x ) /
Y= n’Y— n»)’ n'y_n Y

Therefore 1 /
m m
flax,y)= f(;x,y) = mf(;x,y) = ;f(x,y) =af(x,y)

* For a € R, there exists a sequence {g,} < Q such that g, — @ as n — co. We claim that nlglolo ||qnx+ y|| = ||ax+ y“





















By triangular inequality,
[lnx+y]l = lax+yl <[ gnx - ax] <1gn - atlixl =0

as n — oo, which proves the claim. Similarly we also have lim | gnx—y| = ||@x - y|. Finally,

7

1 1 . .
flaxy = (lax+y|* - fax-y) = lim 2 (lqnx+y]* = [gux=yI?) = im f(gnx.) = lim guf(x.y) = af(x,y)
O

(b) and (c) implies the linearity in the first slot. Combining (a) we also obtain the linearity in the second slot: For x,y,z€ X
and o, BeR,

fx,ay+Bz)=flay+Pz,x)=af(y,x)+pf(z,x)=af(x,y)+Bf(x,2)

From the definition of norm we also know that f is positive definite. Hence f defines a inner product on X.

Question 2

Let A%(D) be the Bergman space of functions which are holomorphic and square integrable on the unit disk D < C. Let f €
A2(D),0<s<1and|z|<s. Cauchy’s integral formula gives

1 2n .
rf(z)=—f f(z+re’9) rdo
27 Jo

foranyO<r<1l-s

(a) Integrating the above formulain 0 < r <1 —s, show that

1
fz)= PR <f’XD(Z,1—S)>L2([D)

where D(z,1 - s) is the disk of radius 1 — s with the centre z.

(b) Deduce that

11l 22y

If(2)] < m

(c) Deduce that if f,, is a Cauchy sequence in A?(D) then f;, converges uniformly on compact subsets of [.

(d) Deduce that A%(D) is closed in L2(D).

Proof. (a) Integrating the equation above:

1-s 1 1-s p27 )
f rf(z)drz—/ fz+re®)yrdodr
0 21 Jo 0

1
The left hand side becomes En(l —-8)2f \(9/ Since f € L?(D), and D has finite Lebesgue measure, we have f € L' (D). By
Fubini’s Theorem,
1 1-s p2n 1

. 1
fz+re®)rdodr = —ffD(z 1_s)f(z) dA= E[Lf(z)lD(z,l—s) dA=(f,1pE1-9) 2

go 0 27

Hence /
1

f(2) = 70—s)? (fs 1D(z,1—8)>L2(D)

(b) By Cauchy-Schwarz inequality,

‘(f’ lD(Zv1—5)>L2([D)‘ <|flew oei-9lpe = 1flpe VrDE1-9)=VEd -9 |20

Hence
1712 m)

1
lf(2)]= T0—s)? |<fy1D(z,1fs)>L2([D)| < v —s) v

(c) Suppose that {f},} is a Cauchy sequence in A’(D). LetK<Dbea compact subset. Choose s € (0,1) such tyt K< D(,s).



























Note that for m, n € N, by part (b) we have

V- fuleoy

Va(l-5)

Then {f,,} is a Cauchy sequence in the ‘B;ttach space (COE, 1Al sup)- Hence {f,} converges in (CYK), I-lsup). In order
words, {f,} converges uniformly in K.

1fn = Finll oy < | fo = Finll oo, = SUP 1fn(@) = fm(2)] <
2€D(0,5)

By part (c) f,, converges normally on D. By Weierstrass’ Theorem in complex analysis we know that the ugfform limit f

(d) Suppose that {f,} is a sequence in A?(D) such that f,, — f as n — oo for some f € L?(D). Then {f,,} is a Ca‘L;l;}sequence.
O

is holomorphic. f is also square integrable. Hence f € A%(D). We deduce that A?(D) is closed in L?(D).

Question 3

Let K be a non-empty convex set of a real Hilbert space X. Suppose that x € X and y € K. Prove that the following are equiva-
lent:

1) lx-yl<lx-z|foralzeK

() (x—y,z—yy<Oforallze K

Proof.

(1) = (2): Fixze€ K. Since K is convex, tz+ (1 - )y € K for t € [0,1]. We have

v

= ey <l@-p+ey-2|° = x-yI*+ |y -2l -20(x-y,2-y)

[x=yl<[x=(tz+a-ny)]

— 2 |y-z|* -2t(x=y,2-y)>0
Let f(1):= £2 ”y—z“2 —2t<x—y,z—y>. Then f(#) = 0 for ¢ € [0, 1]. Note that f(0) = 0. Hence we must have
flO==2(x-yz-y)=0 /

which implies that (x — y,z— y) <0 as required.

(2) = (1): Forallze K,
Ix=2l?= =+ -] = [x=y|* +[|y-2]* -2(x-pz-y) = [ x-y|

because |y —z|| =0and (x-y,y—z) <0. Hence |x— y| < lx—z| forall ze K. v O

Question 4
Let Y be a subspace of a Hilbert space X over C and ¢: Y — C be a bounded linear functional on Y.

(a) Using the Riesz representation theorem, show that there is a unique extension of ¢ to a bounded linear functional /on
X with [[€]lx+ = [1€]ly=.

(b) By examining the behavior of ¢ on the orthogonal complement of Y, reprove (a) without using the Riesz representation

theorem.

roof. (a iesz Representation Theorem, there exists x, € Y such that for any y € Y, ={(yx¢)and llx,ll x = I€]ly+. We
P (a) By Riesz R ion Th h i Y such that fi yyeY, l(y)=(y d llxellx = 1141 Wi
claim that £: x — (x, x,) is a bounded linear functional on X such that ||| . = llx, IIX./

e By Cauchy-Schwarz inequality,

Mk Pt Y i st assumed 17 = sup 12l |6, %) | _ lxlx lxellx
X~ =

c\osed aud 5 ) ot be a vexvor Ixlx  xexvoy I1xlx  xexvioy  Ixlx

Flr st etendl We deduce that || ¢|

i o =l = 11y,
(LY "z

J

lxell x

o Il x. Hence |lx,llx < 7]

. ||x1||§(=(xz,xg>:l7(xg)s ||(7| o




















































































































































































































































































































































To check that 7 is unique, let ' : X — C be a bounded linear functional such that ¢'|y = ¢ and ||€’ x+ = I€lly+. Then by
Riesz Representation Theorem there exists x/, € X such that ¢'(x) = (x, x,) forany x € X and | x, |, =

Foryey,
0=L( LW =L -0 W) =(yxe—x,)

Hence x, — x’[ € Y. Also note that x, € Y. By Pythagoras’ Theorem,

el = e + e = x5 = xel + xe =gy = Nxe =gl =0 /

because ||x¢ll x = ||x We deduce that x, = x} and hence ¢’ = 7.

olx

(b) {First, since Y is dense in Y, ¢ has a unique continuous %nsion on Y. So without loss of generality we assume that Y
is closed. By Projection Theorem, we have X = Y @ YYWe therefore can define ¢ as follows. For x € X, x = y + y= for
unique ye Y and yt € Y*. Let £(x) = 0(y + y1) := l(yz./}ﬁ this way, we have

@l _ 1oyl Y eoPy@l )

X

=€y~
xEX\{O} Ixlx  xexvoy lxllx rexvio IPy(®)lx er\{O} Il % /

where Py : X — Y is the projection operator onto Y, and

Wy = sup VO 1O 1000
er\{o}Hy”X er\{O}HJ’”X yexvo 1xllx

N

Hence || 4| y+ = ||l7|

X+
To check that ¢ is unique, let ¢ : X — C be a bounded linear functional such that ¢'|y = ¢ and €] = I1€lly+. U did not

finish this part.) /]/o Le 0,’\:%560( i CAQ . Show Hhat ,,ece_ssa_n{,) ’6(VL) foj

Question 5

For each of the cases below, determine —— in any order —— (i) the orthogonal complement of Y in X, (ii) if Y is dense in X,
and (iii) if Y is closed in X. Here all spaces are over the real.

1

() X=L2(—1,1),Y={f€X:f f(x)dx:O}.
-1

(b) X=0Y={apn)eX:ay=as=...=0}.

(c) X=120,1),Y =Cl[0,1].

In (a) and (b) you may find it useful to rewrite the identities defining the space Y as an orthogonal relation e.g. a, = 0 means
(a,e2) =0

Proof. (a) Y:{feX:f_llf(x)dxzo}:{fEX:(f,l(_l,l)):0}:span{1(_1'1)}i\/ /

V4
It is clear that span{l(_; 1)} is a closed subset of X. By Corollary 1.2.6 we have Y = span{l(_1 1)}** = span{ly1)}. By
Proposition 1.2.3.(i), Y is also closed in X. Since Y # X, Y is not dense in X. \/

Y is not dense in X. Consider g = 1(_; 1) € Y. For any sequence {f,,} € Y, by Pythagoras’ Theorem,
1
5= 8llz = Mallz + g2 > 18l = f_l dx=2

It is impossible that “ fn— g||2 —0asn—o0.S0g¢Y. v /
b) Y={aeX:ap=as=---=0}={{a,} € X: Yk€Z, ({ay}, ex) =0} =spanfey: keZ}*
By Proposition 1.2.3.(i), Y is closed in X. Since Y # X, Y isnotdensein X.

By Proposition 1.2.3 and Corollary 1.2.6, /

11 o0 o0
Yt =span{ey: keZ, )t =spanfeyr: k€Z,}  =spanfey: k€Z,} = { Y arew: Y ai< oo}
k=1 k=1




























































































































































































































































(c) We claim that Y is dense in X. It follows from the (much stronger) fact that CZ°(Q) js dense in L”(Q2), where 1 < p < oo,
for any open subset Q € R”, which is Lemma 2.9 in B4.3 Distribution Theory.

Yr=Y =xt=0 / 0

Since Y = X # Y, Y is not closed in X. Finally,

Question 6

Let Y be the set of all g € L?(—m, m) such that g(t—m) = g(t) for almost all £ € (0, ). Show that Y is a closed subspace of L? (-, )
and identify Y. Assume that f € L>(—, ) and supposed f = g+ g+ where ge Y and g* € Y*. Find g and g*.

Calculate
d:.= lnf{”h— g”LZ(—ﬂ,T[) :8€ Y}

where h(t) = t and specify the element g at which the infimum is attained.

Proof. \First, it is clear that Y is a linear subspace od L?(—, 7). To show closedness, suppose that {g,} is a sequence in Y such that
n — g as n — oo for some g € L?(~n, ). For each gy, let

Use tue
o\
oSAM

Ap:={te(0,m): gn(t—m) # gn(t)}

Qaﬁ\( Each A, is null. Hence U Ay isalsonull. For £ € (0, 7))\ U Ay, gn(t—m) = g,(t) foreach n e N. Hence g(t—n) = lim g,(t—n) =
=0 n=0 izoe
\’ Ld“(‘ﬁ hm gn(t) gn. It follows that g € Y. We deduce that Y is closed. HO w b wow l’tnm\j
o Suppose that he Y. Forany g € Y, we have Haxr e 30! ise Loyl
0
5¢9 ex.s 457
n
\N’*‘F i‘}(ﬁl 0:[ g(x)h(x) dx:f gx)h(x)+gx—m)h(x—m) dx:f gx)(h(x)+ h(x—m))dx
o \,UL - 0 0
o q}\’
S"'\’ The integral is zero for any g € L2(0, 7). By the Fundamental Lemma of the Calculus of Variation (Lemma 3.18 in B4.3 Distri-

bution Theory), we deduce that k(x — 7) + h(x) = 0 almost everywhere on (0, 7). That is,
Yt ={hel*(-mn): h(x-m) =—-h(x)a.e.onte (O,n)}/
R U

’r ewn(ter
VxeOm f)=gx)+g (x), flx-m=gx-m+g-(x-m=gx) -g" (x) Fw-clson

For f e L% (-7, 1), we have

Hence we can set

_f(x)+f(x—ﬂ)1 fX)+ fx+m) fx) - flx—m) +f(x)—f(x+7r)

glx) = 5 ©m + > / 170, gt(x )—— ©,m) fl(—n,\o)/

where g€ Yand gt e Yt

Let Py : X — Y be the projection operator onto Y. By Pythagoras’ Theorem, for f€e Xand g€ Y,
If-gl? =17 -PrnI*+ Py -gl* <l f - Prpl?
Hence inf | f - g| is obtained if and only if g = Py (). \/
ge

For h(t) = t, we have

h(x)+ h(x—m) h(x)+ h(x+m) b4 b4 |/
Py (h)(1) = flw,n) + fl(—nm = (x— 5) Lom+ (x+ E) 1(-7,0)
and h(x) - hx - ) h(x) - h(x+ )
X)—h(x-7 X)—h(x+7m T
(h—Py(W) (1) = > lom+ > 1m0 = El(o,n) - 51(—7:,0) /


































































































































































































































































































































































































































































































































































The minimal distance from % to Y is given by

T2 V2
d=\h-Pyh)|,= f 2 dx= =787
1h=Py(lp=y/| (5] dx==






