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Question 1

Let (X ,‖ ·‖) be a real norm vector space satisfying the parallelogram law:

‖x + y‖2 +‖x − y‖2 = 2‖x‖2 +2‖y‖2 for all x, y ∈ X

Define

f (x, y) = 1

4

(‖x + y‖2 −‖x − y‖2) for x, y ∈ X

Show that

(a) f (x, y) = f (y, x)

(b) f (x + z, y) = f (x, y)+ f (z, y).

(c) f (αx, y) =α f (x, y) for all α ∈R.

Conclude that f (x, y) defines an inner product on X .

Proof. (a) For x, y ∈ X :

f (x, y) = 1

4

(∥∥x + y
∥∥2 −∥∥x − y

∥∥2
)
= 1

4

(∥∥y +x
∥∥2 − (−1)2 ∥∥y −x

∥∥2
)
= f (y, x)

(b) For x, y, z ∈ X :

4
(

f (x + z, y)− f (x, y)− f (z, y)
)= ∥∥x + z + y

∥∥2 −∥∥x + z − y
∥∥2 −∥∥x + y

∥∥2 +∥∥x − y
∥∥2 −∥∥z + y

∥∥2 +∥∥z − y
∥∥2

= ∥∥x + z + y
∥∥2 −∥∥x + z − y

∥∥2 + 1

2

(∥∥x + z −2y
∥∥2 +‖x − z‖2

)
− 1

2

(∥∥x + z +2y
∥∥2 +‖x − z‖2

)
= ∥∥x + z + y

∥∥2 −∥∥x + z − y
∥∥2 + 1

2

(∥∥x + z −2y
∥∥2 −∥∥x + z +2y

∥∥2
)

=
(∥∥x + z + y

∥∥2 +∥∥y
∥∥2

)
−

(∥∥x + z − y
∥∥2 +∥∥y

∥∥2
)
+ 1

2

(∥∥x + z −2y
∥∥2 −∥∥x + z +2y

∥∥2
)

= 1

2

(∥∥x + z +2y
∥∥2 +‖x + z‖2

)
− 1

2

(
‖x + z‖2 +∥∥x + z −2y

∥∥2
)
+ 1

2

(∥∥x + z −2y
∥∥2 −∥∥x + z +2y

∥∥2
)

= 0

Hence f (x + z, y) = f (x, y)+ f (z, y).

(c) We proceed the proof in the order Z+ →Z→Q→R.

• For α ∈Z+, f (αx, y) =α f (x, y) follows from (b) and induction on α.

• Note that

f (−x, y) = 1

4

(∥∥−x + y
∥∥2 −∥∥−x − y

∥∥2
)
= 1

4

(∥∥x − y
∥∥2 −∥∥x + y

∥∥2
)
=− f (x, y)

Hence for α ∈Z, if α< 0, then

f (αx, y) =− f (−αx, y) =−(−α) f (x, y) =α f (x, y)

If α= 0, then
f (αx, y) = f (0, y) = f (0+0, y) = f (0, y)+ f (0, y) =⇒ f (0, y) = 0 = 0 f (x, y)

• For α ∈Q, there exists m,n ∈Z such that α= m/n. Note that

f (x, y) = f

(
n · 1

n
x, y

)
= n f

(
1

n
x, y

)
=⇒ f

(
1

n
x, y

)
= 1

n
f (x, y)

Therefore

f (αx, y) = f
(m

n
x, y

)
= m f

(
1

n
x, y

)
= m

n
f (x, y) =α f (x, y)

• For α ∈ R, there exists a sequence {qn} ⊆Q such that qn → α as n →∞. We claim that lim
n→∞

∥∥qn x + y
∥∥ = ∥∥αx + y

∥∥.
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By triangular inequality, ∣∣∥∥qn x + y
∥∥−∥∥αx + y

∥∥∣∣É ∥∥qn x −αx
∥∥É |qn −α|‖x‖→ 0

as n →∞, which proves the claim. Similarly we also have lim
n→∞

∥∥qn x − y
∥∥= ∥∥αx − y

∥∥. Finally,

f (αx, y) = 1

4

(∥∥αx + y
∥∥2 −∥∥αx − y

∥∥2
)
= lim

n→∞
1

4

(∥∥qn x + y
∥∥2 −∥∥qn x − y

∥∥2
)
= lim

n→∞ f (qn x, y) = lim
n→∞qn f (x, y) =α f (x, y)

(b) and (c) implies the linearity in the first slot. Combining (a) we also obtain the linearity in the second slot: For x, y, z ∈ X
and α,β ∈R,

f (x,αy +βz) = f (αy +βz, x) =α f (y, x)+β f (z, x) =α f (x, y)+β f (x, z)

From the definition of norm we also know that f is positive definite. Hence f defines a inner product on X .

Question 2

Let A2(D) be the Bergman space of functions which are holomorphic and square integrable on the unit disk D ⊆ C. Let f ∈
A2(D),0 < s < 1 and |z| < s. Cauchy’s integral formula gives

r f (z) = 1

2π

∫ 2π

0
f
(
z + r e iθ

)
r dθ

for any 0 < r < 1− s

(a) Integrating the above formula in 0 < r < 1− s, show that

f (z) = 1

π(1− s)2

〈
f ,χD(z,1−s)

〉
L2(D)

where D(z,1− s) is the disk of radius 1− s with the centre z.

(b) Deduce that

| f (z)| É ‖ f ‖L2(D)p
π(1− s)

(c) Deduce that if fn is a Cauchy sequence in A2(D) then fn converges uniformly on compact subsets of D.

(d) Deduce that A2(D) is closed in L2(D).

Proof. (a) Integrating the equation above: ∫ 1−s

0
r f (z)dr = 1

2π

∫ 1−s

0

∫ 2π

0
f (z + r eiθ)r dθdr

The left hand side becomes
1

2
π(1− s)2 f (z). Since f ∈ L2(D), and D has finite Lebesgue measure, we have f ∈ L1(D). By

Fubini’s Theorem,

1

2π

∫ 1−s

0

∫ 2π

0
f (z + r eiθ)r dθdr = 1

2π

Ï
D(z,1−s)

f (z)dA = 1

2π

Ï
D

f (z)1D(z,1−s) dA = 〈
f ,1D(z,1−s)

〉
L2(D)

Hence

f (z) = 1

π(1− s)2

〈
f ,1D(z,1−s)

〉
L2(D)

(b) By Cauchy-Schwarz inequality,∣∣∣〈 f ,1D(z,1−s)
〉

L2(D)

∣∣∣É ∥∥ f
∥∥

L2(D)

∥∥1D(z,1−s)
∥∥

L2(D) =
∥∥ f

∥∥
L2(D)

√
m(D(z,1− s)) =p

π(1− s)
∥∥ f

∥∥
L2(D)

Hence

| f (z)| = 1

π(1− s)2

∣∣∣〈 f ,1D(z,1−s)
〉

L2(D)

∣∣∣É ∥∥ f
∥∥

L2(D)p
π(1− s)

(c) Suppose that { fn} is a Cauchy sequence in A2(D). Let K ⊆D be a compact subset. Choose s ∈ (0,1) such that K ⊆ D(0, s).
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Note that for m,n ∈N, by part (b) we have

∥∥ fn − fm
∥∥

L∞(K ) É
∥∥ fn − fm

∥∥
L∞(D(0,s)) = sup

z∈D(0,s)
| fn(z)− fm(z)| É

∥∥ fn − fm
∥∥

L2(D)p
π(1− s)

Then { fn} is a Cauchy sequence in the Banach space (C 0(K ),‖·‖sup). Hence { fn} converges in (C 0(K ),‖·‖sup). In order
words, { fn} converges uniformly in K .

(d) Suppose that { fn} is a sequence in A2(D) such that fn → f as n →∞ for some f ∈ L2(D). Then { fn} is a Cauchy sequence.
By part (c) fn converges normally on D. By Weierstrass’ Theorem in complex analysis we know that the uniform limit f
is holomorphic. f is also square integrable. Hence f ∈ A2(D). We deduce that A2(D) is closed in L2(D).

Question 3

Let K be a non-empty convex set of a real Hilbert space X . Suppose that x ∈ X and y ∈ K . Prove that the following are equiva-
lent:

(1) ‖x − y‖ É ‖x − z‖ for all z ∈ K

(2) 〈x − y, z − y〉 É 0 for all z ∈ K

Proof.

(1) =⇒ (2): Fix z ∈ K . Since K is convex, t z + (1− t )y ∈ K for t ∈ [0,1]. We have∥∥x − y
∥∥É ∥∥x − (

t z + (1− t )y
)∥∥

=⇒ ∥∥x − y
∥∥2 É ∥∥(x − y)+ t (y − z)

∥∥2 = ∥∥x − y
∥∥2 + t 2 ∥∥y − z

∥∥2 −2t
〈

x − y, z − y
〉

=⇒ t 2 ∥∥y − z
∥∥2 −2t

〈
x − y, z − y

〉Ê 0

Let f (t ) := t 2
∥∥y − z

∥∥2 −2t
〈

x − y, z − y
〉

. Then f (t ) Ê 0 for t ∈ [0,1]. Note that f (0) = 0. Hence we must have

f ′(0) =−2
〈

x − y, z − y
〉Ê 0

which implies that
〈

x − y, z − y
〉É 0 as required.

(2) =⇒ (1): For all z ∈ K ,
‖x − z‖2 = ∥∥(x − y)+ (y − z)

∥∥2 = ∥∥x − y
∥∥2 +∥∥y − z

∥∥2 −2
〈

x − y, z − y
〉Ê ∥∥x − y

∥∥2

because
∥∥y − z

∥∥Ê 0 and
〈

x − y, y − z
〉É 0. Hence

∥∥x − y
∥∥É ‖x − z‖ for all z ∈ K .

Question 4

Let Y be a subspace of a Hilbert space X over C and ` : Y →C be a bounded linear functional on Y .

(a) Using the Riesz representation theorem, show that there is a unique extension of ` to a bounded linear functional ˜̀on
X with ‖ ˜̀‖X ∗ = ‖`‖Y ∗ .

(b) By examining the behavior of ˜̀on the orthogonal complement of Y , reprove (a) without using the Riesz representation
theorem.

Proof. (a) By Riesz Representation Theorem, there exists x` ∈ Y such that for any y ∈ Y , `(y) = 〈
y, x`

〉
and ‖x`‖X = ‖`‖Y ∗ . We

claim that ˜̀: x 7→ 〈x, x`〉 is a bounded linear functional on X such that
∥∥ ˜̀∥∥

X ∗ = ‖x`‖X .

• By Cauchy-Schwarz inequality,

∥∥ ˜̀∥∥
X ∗ = sup

x∈X \{0}

| ˜̀(x)|
‖x‖X

= sup
x∈X \{0}

| 〈x, x`〉 |
‖x‖X

É sup
x∈X \{0}

‖x‖X ‖x`‖X

‖x‖X
= ‖x`‖X

• ‖x`‖2
X = 〈x`, x`〉 = ˜̀(x`) É ∥∥ ˜̀∥∥

X ∗ ‖x`‖X . Hence ‖x`‖X É ∥∥ ˜̀∥∥
X ∗ .

We deduce that
∥∥ ˜̀∥∥

X ∗ = ‖x`‖X = ‖`‖Y ∗ .



















































































































































































































































































































































4

To check that ˜̀ is unique, let `′ : X →C be a bounded linear functional such that `′|Y = ` and
∥∥`′∥∥X ∗ = ‖`‖Y ∗ . Then by

Riesz Representation Theorem there exists x ′
`
∈ X such that `′(x) = 〈

x, x ′
`

〉
for any x ∈ X and

∥∥x ′
`

∥∥
X
= ∥∥`′∥∥X ∗ .

For y ∈ Y ,
0 = `(y)−`(y) = ˜̀(y)−`′(y) = 〈

y, x`−x ′
`

〉
Hence x`−x ′

`
∈ Y ⊥. Also note that x` ∈ Y . By Pythagoras’ Theorem,∥∥x ′

`

∥∥2
X = ∥∥x`+ (x ′

`−x`)
∥∥2

X = ‖x`‖2
X +∥∥x`−x ′

`

∥∥2
X =⇒ ∥∥x`−x ′

`

∥∥
X = 0

because ‖x`‖X = ∥∥x ′
`

∥∥
X

. We deduce that x` = x ′
`

and hence `′ = ˜̀.

(b) First, since Y is dense in Y , ` has a unique continuous extension on Y . So without loss of generality we assume that Y
is closed. By Projection Theorem, we have X = Y ⊕Y ⊥. We therefore can define ˜̀as follows. For x ∈ X , x = y + y⊥ for
unique y ∈ Y and y⊥ ∈ Y ⊥. Let ˜̀(x) = ˜̀(y + y⊥) := `(y). In this way, we have

∥∥ ˜̀∥∥
X ∗ = sup

x∈X \{0}

| ˜̀(x)|
‖x‖X

= sup
x∈X \{0}

|`◦PY (x)|
‖x‖X

É sup
x∈X \{0}

|`◦PY (x)|
‖PY (x)‖X

= sup
y∈Y \{0}

|`(y)|∥∥y
∥∥

X

= ‖`‖Y ∗

where PY : X → Y is the projection operator onto Y , and

‖`‖Y ∗ = sup
y∈Y \{0}

|`(y)|∥∥y
∥∥

X

= sup
y∈Y \{0}

| ˜̀(y)|∥∥y
∥∥

X

É sup
y∈X \{0}

| ˜̀(x)|
‖x‖X

= ∥∥ ˜̀∥∥
X ∗

Hence ‖`‖Y ∗ = ∥∥ ˜̀∥∥
X ∗ .

To check that ˜̀ is unique, let `′ : X →C be a bounded linear functional such that `′|Y = ` and
∥∥`′∥∥X ∗ = ‖`‖Y ∗ . (I did not

finish this part.)

Question 5

For each of the cases below, determine −− in any order −− (i) the orthogonal complement of Y in X , (ii) if Y is dense in X ,
and (iii) if Y is closed in X . Here all spaces are over the real.

(a) X = L2(−1,1),Y =
{

f ∈ X :
∫ 1

−1
f (x)d x = 0

}
.

(b) X = `2,Y = {(an) ∈ X : a2 = a4 = . . . = 0}.

(c) X = L2(0,1),Y =C [0,1].

In (a) and (b) you may find it useful to rewrite the identities defining the space Y as an orthogonal relation e.g. a2 = 0 means
〈a,e2〉 = 0.

Proof. (a) Y =
{

f ∈ X :
∫ 1

−1
f (x)dx = 0

}
= {

f ∈ X :
〈

f ,1(−1,1)
〉= 0

}= span{1(−1,1)}⊥

It is clear that span{1(−1,1)} is a closed subset of X . By Corollary 1.2.6 we have Y ⊥ = span{1(−1,1)}⊥⊥ = span{1(−1,1)}. By
Proposition 1.2.3.(i), Y is also closed in X . Since Y 6= X , Y is not dense in X .

Y is not dense in X . Consider g = 1(−1,1) ∈ Y ⊥. For any sequence { fn} ∈ Y , by Pythagoras’ Theorem,

∥∥ fn − g
∥∥2

2 =
∥∥ fn

∥∥2
2 +

∥∥g
∥∥2

2 Ê
∥∥g

∥∥2
2 =

∫ 1

−1
dx = 2

It is impossible that
∥∥ fn − g

∥∥
2 → 0 as n →∞. So g ∉ Y .

(b) Y = {{an} ∈ X : a2 = a4 = ·· · = 0} = {{an} ∈ X : ∀k ∈Z+ 〈{an},e2k〉 = 0} = span{e2k : k ∈Z+}⊥

By Proposition 1.2.3.(i), Y is closed in X . Since Y 6= X , Y is not dense in X .

By Proposition 1.2.3 and Corollary 1.2.6,

Y ⊥ = span{e2k : k ∈Z+}⊥⊥ = span{e2k : k ∈Z+}
⊥⊥ = span{e2k : k ∈Z+} =

{ ∞∑
k=1

ak e2k :
∞∑

k=1
a2

k <∞
}
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(c) We claim that Y is dense in X . It follows from the (much stronger) fact that C∞
c (Ω) is dense in Lp (Ω), where 1 É p <∞,

for any open subsetΩ ∈Rn , which is Lemma 2.9 in B4.3 Distribution Theory.

Since Y = X 6= Y , Y is not closed in X . Finally,

Y ⊥ = Y
⊥ = X ⊥ = {0}

Question 6

Let Y be the set of all g ∈ L2(−π,π) such that g (t−π) = g (t ) for almost all t ∈ (0,π). Show that Y is a closed subspace of L2(−π,π)
and identify Y ⊥. Assume that f ∈ L2(−π,π) and supposed f = g + g⊥ where g ∈ Y and g⊥ ∈ Y ⊥. Find g and g⊥.

Calculate

d := inf
{‖h − g‖L2(−π,π) : g ∈ Y

}
where h(t ) = t and specify the element g at which the infimum is attained.

Proof. First, it is clear that Y is a linear subspace od L2(−π,π). To show closedness, suppose that {gn} is a sequence in Y such that
gn → g as n →∞ for some g ∈ L2(−π,π). For each gn , let

An := {t ∈ (0,π) : gn(t −π) 6= gn(t )}

Each An is null. Hence
∞⋃

n=0
An is also null. For t ∈ (0,π)\

∞⋃
n=0

An , gn(t−π) = gn(t ) for each n ∈N. Hence g (t−π) = lim
n→∞gn(t−π) =

lim
n→∞gn(t ) = g (t ). It follows that g ∈ Y . We deduce that Y is closed.

Suppose that h ∈ Y ⊥. For any g ∈ Y , we have

0 =
∫ π

−π
g (x)h(x)dx =

∫ π

0
g (x)h(x)+ g (x −π)h(x −π)dx =

∫ π

0
g (x)(h(x)+h(x −π))dx

The integral is zero for any g ∈ L2(0,π). By the Fundamental Lemma of the Calculus of Variation (Lemma 3.18 in B4.3 Distri-
bution Theory), we deduce that h(x −π)+h(x) = 0 almost everywhere on (0,π). That is,

Y ⊥ = {
h ∈ L2(−π,π) : h(x −π) =−h(x) a.e. on t ∈ (0,π)

}
For f ∈ L2(−π,π), we have

∀x ∈ (0,π) f (x) = g (x)+ g⊥(x), f (x −π) = g (x −π)+ g⊥(x −π) = g (x)− g⊥(x)

Hence we can set

g (x) = f (x)+ f (x −π)

2
1(0,π) + f (x)+ f (x +π)

2
1(−π,0), g⊥(x) = f (x)− f (x −π)

2
1(0,π) + f (x)− f (x +π)

2
1(−π,0)

where g ∈ Y and g⊥ ∈ Y ⊥.

Let PY : X → Y be the projection operator onto Y . By Pythagoras’ Theorem, for f ∈ X and g ∈ Y ,∥∥ f − g
∥∥2 = ∥∥ f −PY ( f )

∥∥2 +∥∥PY ( f )− g
∥∥2 É ∥∥ f −PY ( f )

∥∥2

Hence inf
g∈Y

∥∥ f − g
∥∥ is obtained if and only if g = PY ( f ).

For h(t ) = t , we have

PY (h)(t ) = h(x)+h(x −π)

2
1(0,π) + h(x)+h(x +π)

2
1(−π,0) =

(
x − π

2

)
1(0,π) +

(
x + π

2

)
1(−π,0)

and

(h −PY (h))(t ) = h(x)−h(x −π)

2
1(0,π) + h(x)−h(x +π)

2
1(−π,0) = π

2
1(0,π) − π

2
1(−π,0)
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The minimal distance from h to Y is given by

d = ‖h −PY (h)‖2 =
√∫ π

−π

(π
2

)2
dx =

p
2

2
π3/2





