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Throughout this sheet we assume that all Lie algebras are over a field k.

Assume throughout the problems that we work over a field k which is algebraically closed of characteristic zero, unless
the contrary is explicitly stated.

Question 1

Suppose that g is a Lie ara over the complex numbers. Show that g is nilpotent if and only if any 2-dimensional
subalgebra is Abelian.

Proof. = Suppose that g is nilpotent. Let h be a 2-dimensional subalgebra of g. Then by Lemma 3.18, b is also nilpo-

tent. Let {x, y} be a basis of . We have a0 a guerk nls , dodr <l to
Aedue noko 4 o way, e oy
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[x,yl =adx(y) = ax + by, (adx)z(y) =badx(y) ’ nidpsert

Since b is nilpotent, ad x € gl(h) is a nilpotent operator. Hence we must have b = 0. Similarly, that ad y is
nilpotent implies that a = 0. So [x, y] = 0. b is an Abelian subalgebra. (e oy rde =2 1Q #3, od ef o2 L,

K 369 €, dur(5@) =il -2)
< Suppose that any 2-dimensional subalgebra of g is Abelian. For x € g, consider ad x € gl(g). Since g is over

an algebraically closed field, ad x has eigenvalues. For any eigenvector y € g of x, we have
[x, yl =adx(y) = Ayy

Therefore {x, y} spans a 2-dimensional subalgebra of g. By assumption the subalgebra is Abelian. So 1, = 0.
We thus shgw that 0 is the unique eigenvalue of ad x. Hence ad x is nilpotent. By Engel’s Theorem, g is
nilpotent. GDJ' O

Question 2

a) Let k be a field of characteristic 2 and let g = s, (k). Show that g is solvable (and even nilpotent) but that the
natural two-dimensional representation of g is irreducible. Conclude that Lie’s theorem is not true in positive
characteristic.

b) Let C[x] denote a polynomial ring in x, and consider the Lie subalgebra g < gl(C[x]) generated by the endo-
morphisms given by multiplication by x and %. Show that g is a three dimensional nilpotent Lie algebra,
isomorphic to the Heisenberg algebra. Does g fix a line in C[x]? Why doesn'’t this contradict Lie’s theorem?
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Proof. a) We can write down a basis of sl,(k): F shoud goif oub exphdly © &lidh-o o
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[x,y] =id, [x,id] = [y,id] =0

where

Therefore 3(slx(k)) = span, {id}, and sl» (k)/3(sl2(k)) = span, {x + 3(s12(k)), y + 3(sl2 (k) }, where [x+3(s2(k)), y+
3(sl2 (k)] = 3(sl2(k)). Hence sl (k)/3(sl2(k)) is Abelian. By Lemma 3.18, sl (k) is nilpotent.

see. ool
The embedding sl, (k) — gl, (k) is a natural 2-dimensional representation of sl (k). If it is reducible, that is,
sl (k) is a direct sum of two 1-dimensional sGbrepresentations, then id, x, y can be simultaneously diago-
nalised. But x is clearly not diagonalisable/So the natural 2-dimensional representation is irreducible.
In conclusion, Lie’s Theorem does not hold in positive chara%ic.
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b) For typographical reason we write d, for d/dx. For p € C[x], we have

d
[x,0x]p(x) = xp'(x) - T (P = xp'(x) — p(x) —xp'(x) = —p(x)
Hence g is generated by x, 0, id, with the Lie brackets given by
[x» 6)6] = _idr [x’id] = [6x»id] = 0

In particular dim g = 3. It is called the Heisenberg algebra, because of the canonical commutation relations
in quantum mechanics:

[x, px] = ifid, [x,id] = [py,id] =0, where p, = —ifid, in the position representation.
V_s\mé nolldh o ‘

Suppose that g fixes a subspace V < C[x]. Let p € V be a polynomial of highest degree. But deg(xp) > deg(p).
So xp ¢ V, which is a contradiction. Hence g — gl(C[x]) is an irreducible representation of g.

This does not contradict Lie’s Theorem because the representation g/~ gl(C[x]) is infinite dimensional. O
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Let V be a finite dimensional vector space, and let # beaflag0c V, c Vo, <...c V,,_; € V,, = V of subspaces where

dim (V;) =i.Ifng = {x e gl(V): x (V;) € Vi1 } and bg = {x € gl(V) : x (V;) < V;}, then we have seen in lecture that ng
is an ideal in b& and so we have an exact sequence,

Question 3

0—ng —bg—t—0

where t is defined to be the quotient bz /ng. Show that this sequence is split, and that there are infinitely many
splitting maps s: t — bg.

Proof. Let{xy, ..., x;} be a basis of ng and {y; + ng,..., y¢ + ng} be a basis of bz /ng.

The exact sequence of Lie algebras ez, b beker o emplun
0 > g > ba > bging —— 0 oo o s & Ao
wd a 59&176""5 an
is an exact sequence of free k-modules, which splits because free module jective. Then bg = ng @
bz /ng as k-vector spaces. In particular, s: bgz/ng — bg induced by s(y; + ng) = y; is a splitting map, and
{X1,..0, Xk Y1, ..., ¢} is a basis of bg. emomonghism™ o b®
Agdran  An o5 st

We need to verify that s is a Lie algebra homomorphism. This is clear, as .
’0 &

A (‘A'“aﬁo
stlyi+ng,yj+ngl) =s(lyi, yjl+ng) =y, yjl = [s(yi + ng), s(y; + ng)l iﬁ‘;ﬁ@ we B9

P camenl?:
Therefore s: bg/ng — bg indeed induces a splitting of the short exact sequence of Lie algebras.
Moreover, for a € k\{0,1}, the map s,: bg/ng — bg given by s,(y1 +ng) = ay; and s,(y; +ng)/=y;for2<i</¢
is also a section of bgz — bg/ng. And s # s,. Since k is algebraically closed, in particular it is infinite. We deduce
that there are infinitely many sections s: bg/ng — bg.

Question 4

Suppose that V is a finite dimensional vector space over an algebraically closed field k of characteristic zero, and
x,y € Endy (V). Suppose that x and y commute with z = [x, y] = xy/— yx. Show that z is nilpotent.
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Proof. 1If z = 0, then z is trivially nilpotent. Suppose that z # 0. Then x, y,z are linearly independent. Then g :=
spany {x, y, z} is the 3-dimensional Heisenberg algebra. In particula/rg/ls nilpotent. Srug. Va8 S v

Since k is algebraically closed. z has eigenvalues. Let 1, be an eigenvalue of z, and W be the corresponding
eigenspace. Forve W, z(v) = 1,v € W, and

zx(v) = xz(v) + [z, x] (V) = A,x(v), zy(v)=yz() + [z, yl1(v) = A,y (V)

Hence x(v), y(v) € W. W affords a subrepresentation of g — gl, (V). By Lie’s Theorem, there exists w € W\ {0}

such that oot Ao wed. o
xw)=Aw,  yw)=Ayw,  zw)=Aw — s consides
But this implies that {"C‘,J(Z) - d)m(\'@ I

Aw = z(w) = [x, yl(w) = AxAy = AyA) (w) =0

Hence A, = 0. 0 is the only eigenvalue of z. We conclude that z is nilpotent. O

Question 5

Recall an element x of a Lie algebra g is said to be regular if
gox = {y€g:3In>0,adx)"(y) =0}

has minimal possible dimension. Recall further that if V is a k-vector space and x € gl(V), then we may decompose
V into the generalised eigenspaces of x, that is, V =@, V,, where

Vy={veV:IneN, (x—1)"(v) =0}
We define x; € gl(V) to be the linear map given by x;(v) = A-v for v € V). It is called the semisimple part of x. Clearly
itis a diagonalisable linear map.
i) Let x, = x — x;5. Check that x, and x; commute and that x, is nilpotent.
ii) Show that x € gl(V) is regular if and only if x; is regular.
iii) When is a semisimple (i.e. diagonalisable) element of gl(V) regular?
iv) Exhibit a Cartan subalgebra of g(V), and describe the set of all regular elements of gl(V).

[Hint: For iii) pick a suitable basis of V to identify gl(V) with gl,,.]

Proof. 1) This is arevision of linear algebra.

For v e Vy,
[xs, Xn](V) = [x5, X = X5] (V) = [x5, X] (V) = X5X(V) — xx5(v) = Ax(v) = Ax(v) =0

Since V =@, V), we have [x;, x;,] =00on V.

To show that x;, is nilpotent, it suffices to show that x|y, is nilpotent for each V. We note that there is an
ascending chain of subspaces of V:

0=ker(x— /1)0 < ker(x — /1)1 < ker(x — /1)2 < .-

Since V) has finite dimension, the chain eventually stablises. From the definition of V) we infer that there
exists N > 0 such that V) = ker(x —1)V. Note that Xsly, = Aid. For v e V3,

DN =@x-x)Nw) = x-MHNw) = (/
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ii) Let x = x5+ x;, be the Jordan-Chevalley decomposition of x. Since [xg, x,;] = 0, then [ad x,,ad x,,] = 0. Also,
Xy, is nilpotent implies that ad x,, is nilpotent. Let N € N such that (ad x,,)¥ = 0.

Hence x,|y, is nilpotent.

For sufficiently large m € N, we have

m N-1
(adx)™ = (adxs +adx,)" = )_ (’:) (ad x,)*(ad x)" % = (ad x;) ™ N*! > (’:)(adxn)k(adxs)N_k_1
k=0 k=0

If y € go.x,, then (ad x,)™ N*1(y) = 0 for sufficiently large m. The above equation implies that (ad x)""*(y) = 0.
Hence y € go,x. We have g x, < go,x. The other direction of inclusion comes from noting that

m N-1
(adxy)™ = (adx—adx,)" = )_ (IZ)(— adx,)*@dx)™* = (adx)™ N*+! > (r;:)(_ adx,) @dx)N k1
k=0 k=0

So we have go x = go,x,. In particular, x is regular if and only if x; is regular.
iii) If x € gl(V) is semisimple, we claim that x is regular if and only if the eigenvalues of x are distinct.

Let {vy, ..., v} be a basis of V with respect to which x = diag(A4,, ..., 4,). Let E;; be the matrix with (E; )y =
8iubjv. For y=) " a;;E;j, we have
ij

(adx(y))pv =[x, J/]pv = Z(xppypv - _Vppxpv) = Z (Ap6ppaij6ip5jv - /lpapvaij(siyéip) = a/,w(/lp -Ay)
p Lk L x w0 gempine o i adlss, e ges
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Hence adx(y) = )_ a;j(A; — ;) E;;. Inductively we have (adx)"™(y) = )_ a;j(A; — 1;)"Ejj. i o @ fd lertacl)
ij - ij
We find that, if y is diagonal, that is, a;; = {;6,;;, then (ad x)™(y) = 0 for m = 1. Hence gy, contains all the
diagonal matrices. The dimension dimgg x = n=dim V.

uppose that the eigenvalues A, ..., 4, of x are distinct. For y € go x, we have a;;(A; — Aj)m =0 for all
<i,j<n.AsA;#Aj, a;j=0fori# j. Hence y is diagonal. We thus have shown that go  is exactly the
et of diagonal matrices. It has minimal dimension equal to 7. Hence x is regular.

Suppose without loss of generality that A; = A,. Then ad x(E;2) = 0. Hence Ej» € go,x. Since go,, contains
non-diagonal matrices, it is not of minimal dimension. Hence x is not regular.

iv) By Lemma 4.7, if x is regular, then g x is a Cartan subalgebra of gl(V).

Let x € gl(V) be aregular element. By (ii) x; is regular. By (iii) x; has distinct eigenvalues (i.e. each eigenvalue
has algebraic multiplicity 1). But this implies that each generalised eigenspace of x has dimension 1. So in
fact x = x;. We conclude that the regular element in gl(V) are exactly the elements with distinct eigenvalues.
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Question 6

Let g be a nilpotent Lie algebra. Show that the Killing form on g is identically zero.

Proof. We assume that g is finite dimensional. Let x: g ® g — k be the Killing form of g. Let x, y € g. Since g is nilpotent,
so is g. Hence ad x, ad y are nilpotent. (ad x) o (ad y) is also nilpotent. The unique eigenvalue of it is 0. Since
the field k is algebraically closed, the characteristic polynomials d x,ad y € gl(g) splits over k. And the trace of

P . . . o s (4
(ad x) o (ad y) is just the sum of eigenvalues counting multiplicity. (ale - C 24 ‘)CQL %) B C @97

x(x,y) =tr((adx) o (ady)) =0 o)
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We conclude that x = 0 for a nilpotent Lie algebra. O

Question 7

Let k be a field and let s be the 3-dimensional k-Lie algebra with basis {ey, e1, e»} and structure constants [e;, e;+1] =
e;+2 (where we read the indices modulo 3, so that we have for example [e;, ey] = e1). Show that sy is a simple Lie
algebra. Show that s is not isomorphic to sl (R) but that s¢ = sl (C).

[Hint: Consider characteristic polynomials.]
Proof. (The more popular way of expressing the structure constant is [e;, e;] = Zi:o €jjkek-)
Let I be a non-zero ideal of sy. Let ageg + a;e; + azes € 1\{0}. We have
le1,[eo, apeo+are1 +azer]] = le1, a1e2—aze1]l = a1ep € 1, [e2, [eq, apeo+arer+azer]] = ez, arex—aze1] = azep € 1

If either a; #0 or a, #0, then eg € I. If a1 = a2 = 0, then ay # 0 and hence ¢ € I. So we will have e € I anyway. By
symmetry we also have ej, e, € I. Hence I = sy. si is a simple Lie algebra.

Let k = C. We define the ladder operators e, = e; +ie;. Let e() = 2iey. Then we have
[e{,,ei] =2ileg, e1 tiey] = +2(e; tiey) = +2e4, le_,e ] =[e] —iep, e +ies] = 2ieg = e6

We have an Lie algebra isomorphism ¢: s¢ — s[5 (C) given by

(10 (o0 (o1
(p(eo)—(o _1), <p(e+)—(1 0), <p(e_)—(0 0)

Let k = R. We compute the Killing form of sg. The matrix of ad ey, ad e; and ad e, are given by

0 0 O 0 0 1 0 -1 0
adeg=10 0 -1}, ade;=| 0 0 O0f, adex=|1 0 O
01 O -1 0 O 0O 0 O

With some tedious computation we find that the Killing form « (e;, e;) = —6;. In particular it is negative-definite.

1 O
Let x = (0 ) € sl (R). We note that

-1
K(x,x)=tridp =2>0

So sg and s[> (R) have different Killing form over R. They cannot be isomorphic as real Lie algebras. O



