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Throughout this sheet we assume that all Lie algebras are over a field k.

Assume throughout the problems that we work over a field k which is algebraically closed of characteristic zero, unless

the contrary is explicitly stated.

Question 1

Suppose that g is a Lie ara over the complex numbers. Show that g is nilpotent if and only if any 2-dimensional

subalgebra is Abelian.

Proof. =) Suppose that g is nilpotent. Let h be a 2-dimensional subalgebra of g. Then by Lemma 3.18, h is also nilpo-

tent. Let {x, y} be a basis of h. We have

[x, y] = ad x(y) = ax +by, (ad x)
2

(y) = b ad x(y)

Since h is nilpotent, ad x 2 gl(h) is a nilpotent operator. Hence we must have b = 0. Similarly, that ad y is

nilpotent implies that a = 0. So [x, y] = 0. h is an Abelian subalgebra.

(= Suppose that any 2-dimensional subalgebra of g is Abelian. For x 2 g, consider ad x 2 gl(g). Since g is over

an algebraically closed field, ad x has eigenvalues. For any eigenvector y 2 g of x, we have

[x, y] = ad x(y) =∏y y

Therefore {x, y} spans a 2-dimensional subalgebra of g. By assumption the subalgebra is Abelian. So ∏y = 0.

We thus show that 0 is the unique eigenvalue of ad x. Hence ad x is nilpotent. By Engel’s Theorem, g is

nilpotent.

Question 2

a) Let k be a field of characteristic 2 and let g= sl2(k). Show that g is solvable (and even nilpotent) but that the

natural two-dimensional representation of g is irreducible. Conclude that Lie’s theorem is not true in positive

characteristic.

b) Let C[x] denote a polynomial ring in x, and consider the Lie subalgebra gµ gl(C[x]) generated by the endo-

morphisms given by multiplication by x and
d

d x
. Show that g is a three dimensional nilpotent Lie algebra,

isomorphic to the Heisenberg algebra. Does g fix a line in C[x]? Why doesn’t this contradict Lie’s theorem?

Proof. a) We can write down a basis of sl2(k):

id =
√

1 0

0 1

!
, x =

√
0 1

0 0

!
, y =

√
0 0

1 0

!

where

[x, y] = id, [x, id] = [y, id] = 0

Therefore z(sl2(k)) = spank {id}, and sl2(k)/z(sl2(k)) = spank

©
x + z(sl2(k)), y + z(sl2(k))

™
, where [x+z(sl2(k)), y+

z(sl2(k))] = z(sl2(k)). Hence sl2(k)/z(sl2(k)) is Abelian. By Lemma 3.18, sl2(k) is nilpotent.

The embedding sl2(k) ,! gl2(k) is a natural 2-dimensional representation of sl2(k). If it is reducible, that is,

sl2(k) is a direct sum of two 1-dimensional subrepresentations, then id, x, y can be simultaneously diago-

nalised. But x is clearly not diagonalisable. So the natural 2-dimensional representation is irreducible.

In conclusion, Lie’s Theorem does not hold in positive characteristic.
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b) For typographical reason we write @x for d/dx. For p 2C[x], we have

[x,@x ]p(x) = xp
0
(x)° d

dx
(xp(x)) = xp

0
(x)°p(x)°xp

0
(x) =°p(x)

Hence g is generated by x,@x , id, with the Lie brackets given by

[x,@x ] =° id, [x, id] = [@x , id] = 0

In particular dimg= 3. It is called the Heisenberg algebra, because of the canonical commutation relations

in quantum mechanics:

[x, px ] = ifl id, [x, id] = [px , id] = 0, where px =°ifl@x in the position representation

Suppose that g fixes a subspace V µC[x]. Let p 2V be a polynomial of highest degree. But deg(xp) > deg(p).

So xp ›V , which is a contradiction. Hence g ,! gl(C[x]) is an irreducible representation of g.

This does not contradict Lie’s Theorem because the representation g ,! gl(C[x]) is infinite dimensional.

Question 3

Let V be a finite dimensional vector space, and let F be a flag 0 µV1 µV2 µ . . . µVn°1 µVn =V of subspaces where

dim(Vi ) = i . If nF =
©

x 2 gl(V ) : x (Vi ) µVi°1

™
and bF =

©
x 2 gl(V ) : x (Vi ) µVi

™
, then we have seen in lecture that nF

is an ideal in bF and so we have an exact sequence,

0 °! nF °! bF °! t°! 0

where t is defined to be the quotient bF /nF . Show that this sequence is split, and that there are infinitely many

splitting maps s : t! bF .

Proof. Let {x1, ..., xk } be a basis of nF and {y1 +nF , ..., y`+nF } be a basis of bF /nF .

The exact sequence of Lie algebras

0 nF bF bF /nF 0

is an exact sequence of free k-modules, which splits because free modules are projective. Then bF
ª= nF ©

bF /nF as k-vector spaces. In particular, s : bF /nF ! bF induced by s(yi + nF ) = yi is a splitting map, and

{x1, ..., xk , y1, ..., y`} is a basis of bF .

We need to verify that s is a Lie algebra homomorphism. This is clear, as

s([yi +nF , y j +nF ]) = s([yi , y j ]+nF ) = [yi , y j ] = [s(yi +nF ), s(y j +nF )]

Therefore s : bF /nF ! bF indeed induces a splitting of the short exact sequence of Lie algebras.

Moreover, for a 2 k \ {0,1}, the map sa : bF /nF ! bF given by sa(y1 +nF ) = ay1 and sa(yi +nF ) = yi for 2 … i … `

is also a section of bF ⇣ bF /nF . And s 6= sa . Since k is algebraically closed, in particular it is infinite. We deduce

that there are infinitely many sections s : bF /nF ! bF .

Question 4

Suppose that V is a finite dimensional vector space over an algebraically closed field k of characteristic zero, and

x, y 2 Endk(V ). Suppose that x and y commute with z = [x, y] = x y ° y x. Show that z is nilpotent.
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Proof. If z = 0, then z is trivially nilpotent. Suppose that z 6= 0. Then x, y, z are linearly independent. Then g :=
spank

©
x, y, z

™
is the 3-dimensional Heisenberg algebra. In particular g is nilpotent.

Since k is algebraically closed. z has eigenvalues. Let ∏z be an eigenvalue of z, and W be the corresponding

eigenspace. For v 2W , z(v) =∏z v 2W , and

zx(v) = xz(v)+ [z, x](v) =∏z x(v), z y(v) = y z(v)+ [z, y](v) =∏z y(v)

Hence x(v), y(v) 2 W . W affords a subrepresentation of g ,! glk(V ). By Lie’s Theorem, there exists w 2 W \ {0}

such that

x(w) =∏x w, y(w) =∏y w, z(w) =∏z w

But this implies that

∏z w = z(w) = [x, y](w) = (∏x∏y °∏y∏x )(w) = 0

Hence ∏z = 0. 0 is the only eigenvalue of z. We conclude that z is nilpotent.

Question 5

Recall an element x of a Lie algebra g is said to be regular if

g0,x =
©

y 2 g : 9n > 0,ad(x)
n

(y) = 0
™

has minimal possible dimension. Recall further that if V is a k-vector space and x 2 gl(V ), then we may decompose

V into the generalised eigenspaces of x, that is, V =L
∏V∏, where

V∏ =
©

v 2V : 9n 2N, (x °∏)
n

(v) = 0
™

We define xs 2 gl(V ) to be the linear map given by xs(v) =∏·v for v 2V∏. It is called the semisimple part of x. Clearly

it is a diagonalisable linear map.

i) Let xn = x °xs . Check that xn and xs commute and that xn is nilpotent.

ii) Show that x 2 gl(V ) is regular if and only if xs is regular.

iii) When is a semisimple ( i.e. diagonalisable) element of gl(V ) regular?

iv) Exhibit a Cartan subalgebra of g(V ), and describe the set of all regular elements of gl(V ).

[Hint: For iii) pick a suitable basis of V to identify gl(V ) with gln .]

Proof. i) This is a revision of linear algebra.

For v 2V∏,

[xs , xn](v) = [xs , x °xs](v) = [xs , x](v) = xs x(v)°xxs(v) =∏x(v)°∏x(v) = 0

Since V =L
∏V∏, we have [xs , xn] = 0 on V .

To show that xn is nilpotent, it suffices to show that xn |V∏
is nilpotent for each V∏. We note that there is an

ascending chain of subspaces of V∏:

0 = ker(x °∏)
0 … ker(x °∏)

1 … ker(x °∏)
2 … · · ·

Since V∏ has finite dimension, the chain eventually stablises. From the definition of V∏ we infer that there

exists N > 0 such that V∏ = ker(x °∏)
N

. Note that xs |V∏
=∏ id. For v 2V∏,

x
N

n
(v) = (x °xs)

N
(v) = (x °∏)

N
(v) = 0
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Hence xn |V∏
is nilpotent.

ii) Let x = xs + xn be the Jordan-Chevalley decomposition of x. Since [xs , xn] = 0, then [ad xs ,ad xn] = 0. Also,

xn is nilpotent implies that ad xn is nilpotent. Let N 2N such that (ad xn)
N = 0.

For sufficiently large m 2N, we have

(ad x)
m = (ad xs +ad xn)

m =
mX

k=0

√
m

k

!
(ad xn)

k
(ad xs)

m°k = (ad xs)
m°N+1

N°1X

k=0

√
m

k

!
(ad xn)

k
(ad xs)

N°k°1

If y 2 g0,xs
, then (ad xs)

m°N+1
(y) = 0 for sufficiently large m. The above equation implies that (ad x)

m
(y) = 0.

Hence y 2 g0,x . We have g0,xs
µ g0,x . The other direction of inclusion comes from noting that

(ad xs)
m = (ad x °ad xn)

m =
mX

k=0

√
m

k

!
(°ad xn)

k
(ad x)

m°k = (ad x)
m°N+1

N°1X

k=0

√
m

k

!
(°ad xn)

k
(ad x)

N°k°1

So we have g0,x = g0,xs
. In particular, x is regular if and only if xs is regular.

iii) If x 2 gl(V ) is semisimple, we claim that x is regular if and only if the eigenvalues of x are distinct.

Let {v1, ..., vn} be a basis of V with respect to which x = diag(∏1, ...,∏n). Let Ei j be the matrix with (Ei j )µ∫ =
±iµ± j∫. For y =

X

i , j

ai j Ei j , we have

(ad x(y))µ∫ = [x, y]µ∫ =
X
Ω

(xµΩyΩ∫° yµΩxΩ∫) =
X

i , j ,Ω

(∏µ±µΩai j±iΩ± j∫°∏Ω±Ω∫ai j±iµ±iΩ) = aµ∫(∏µ°∏∫)

Hence ad x(y) =
X

i , j

ai j (∏i °∏ j )Ei j . Inductively we have (ad x)
m

(y) =
X

i , j

ai j (∏i °∏ j )
m

Ei j .

We find that, if y is diagonal, that is, ai j = ªi±i j , then (ad x)
m

(y) = 0 for m   1. Hence g0,x contains all the

diagonal matrices. The dimension dimg0,x   n = dimV .

(= Suppose that the eigenvalues ∏1, ...,∏n of x are distinct. For y 2 g0,x , we have ai j (∏i °∏ j )
m = 0 for all

1 … i , j … n. As ∏i 6=∏ j , ai j = 0 for i 6= j . Hence y is diagonal. We thus have shown that g0,x is exactly the

set of diagonal matrices. It has minimal dimension equal to n. Hence x is regular.

=) Suppose without loss of generality that∏1 =∏2. Then ad x(E12) = 0. Hence E12 2 g0,x . Since g0,x contains

non-diagonal matrices, it is not of minimal dimension. Hence x is not regular.

iv) By Lemma 4.7, if x is regular, then g0,x is a Cartan subalgebra of gl(V ).

Let x 2 gl(V ) be a regular element. By (ii) xs is regular. By (iii) xs has distinct eigenvalues (i.e. each eigenvalue

has algebraic multiplicity 1). But this implies that each generalised eigenspace of x has dimension 1. So in

fact x = xs . We conclude that the regular element in gl(V ) are exactly the elements with distinct eigenvalues.

Question 6

Let g be a nilpotent Lie algebra. Show that the Killing form on g is identically zero.

Proof. We assume that g is finite dimensional. Let ∑ : g≠g! k be the Killing form of g. Let x, y 2 g. Since g is nilpotent,

so is g. Hence ad x, ad y are nilpotent. (ad x) ± (ad y) is also nilpotent. The unique eigenvalue of it is 0. Since

the field k is algebraically closed, the characteristic polynomials of ad x,ad y 2 gl(g) splits over k. And the trace of

(ad x)± (ad y) is just the sum of eigenvalues counting multiplicity.

∑(x, y) = tr
°
(ad x)± (ad y)

¢
= 0
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We conclude that ∑= 0 for a nilpotent Lie algebra.

Question 7

Let k be a field and let sk be the 3-dimensional k-Lie algebra with basis {e0,e1,e2} and structure constants [ei ,ei+1] =
ei+2 (where we read the indices modulo 3, so that we have for example [e2,e0] = e1). Show that sk is a simple Lie

algebra. Show that sR is not isomorphic to sl2(R) but that sC ª= sl2(C).

[Hint: Consider characteristic polynomials.]

Proof. (The more popular way of expressing the structure constant is [ei ,e j ] =P
2

k=0
"i j k ek .)

Let I be a non-zero ideal of sk. Let a0e0 +a1e1 +a2e2 2 I \ {0}. We have

[e1, [e0, a0e0+a1e1+a2e2]] = [e1, a1e2°a2e1] = a1e0 2 I , [e2, [e0, a0e0+a1e1+a2e2]] = [e2, a1e2°a2e1] = a2e0 2 I

If either a1 6= 0 or a2 6= 0, then e0 2 I . If a1 = a2 = 0, then a0 6= 0 and hence e0 2 I . So we will have e0 2 I anyway. By

symmetry we also have e1,e2 2 I . Hence I = sk. sk is a simple Lie algebra.

Let k=C. We define the ladder operators e± = e1 ± ie2. Let e
0
0
= 2ie0. Then we have

[e
0
0

,e±] = 2i[e0,e1 ± ie2] =±2(e1 ± ie2) =±2e±, [e°,e+] = [e1 ° ie2,e1 + ie2] = 2ie0 = e
0
0

We have an Lie algebra isomorphism ' : sC! sl2(C) given by

'(e
0
0

) =
√

1 0

0 °1

!
, '(e+) =

√
0 0

1 0

!
, '(e°) =

√
0 1

0 0

!

Let k=R. We compute the Killing form of sR. The matrix of ade0, ade1 and ade2 are given by

ade0 =

0
B@

0 0 0

0 0 °1

0 1 0

1
CA , ade1 =

0
B@

0 0 1

0 0 0

°1 0 0

1
CA , ade2 =

0
B@

0 °1 0

1 0 0

0 0 0

1
CA

With some tedious computation we find that the Killing form ∑(ei ,e j ) =°±i j . In particular it is negative-definite.

Let x =
√

1 0

0 °1

!
2 sl2(R). We note that

∑(x, x) = tr id2 = 2 > 0

So sR and sl2(R) have different Killing form over R. They cannot be isomorphic as real Lie algebras.


