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0 Introduction

0.1 Background of Inverse Scattering Transform

The method of inverse scattering transform is first developed to solve the initial value problem of the Korteweg-
de Vries equation:

∂u

∂t
−6u

∂u

∂x
+ ∂3u

∂x3 = 0, u(x,0) = u0(x)

Later this method is applied to a wider class of non-linear PDEs, which is known as integrable systems. We
briefly summarise the inverse scattering transform applying to the KdV equation. For the details please refer
to Ablowitz [2].

The one-dimensional scattering problem in quantum mechanics is to find the solution to the time-independent
Schrödinger’s equation

Lψ(x) :=
(
− d2

dx2 +u(x)

)
ψ(x) = Eψ(x)

subjected to the condition that the potential function u(x) → 0 sufficiently rapid as |x| → ∞. Specifically,
u(x) satisfies the integrability condition ∫

R
(1+|x|) |u(x)|dx <∞ (0.1)
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which ensures that the Hamiltonian L has finitely many discrete positive eigenvalues.1 The point spectrum
of L is {κ2

1, ...,κ2
N } and the continuous spectrum is E(k) =−k2 for k ∈R.

A right-to-left scattering wave function is given by

ψ(x) ∼ e−ikx + r (k)eikx , x →+∞
ψ(x) ∼ a(k)e−ikx , x →−∞

where r (k) is the reflection coefficient and a(k) is the transmission coefficient. In this way we have the
scattering data S = (κ1, ...,κN ;r (k), a(k)), associated to the potential function u(x).

The problem of finding the scattering data from given potential function is called the direct scattering. The
inverse problem of reconstructing the potential from the scattering data is called inverse scattering.

Next we shall show the connection of scattering problem with the KdV equation. We introduce the time t as
a parameter of the Hamiltonian operator L:

L(t ) =− ∂2

∂x2 +u(x, t )

The eigenvalues of L will depends on t in general. Consider an operator A which governs the time evolution
of the wave function:

Aψ= ∂ψ

∂t

We have the following theorem:

Theorem 0.1. Lax’s Theorem

The eigenvalues of L(t ) is independent of t if and only if the operator A satisfies

dL

dt
+ [L, A] = 0 (0.2)

which is called the Lax equation. The pair (L, A) is called a Lax pair.

Proof. Immediate by differentiating the Schrödinger’s equation.

For the KdV equation, through direct computation we can verify that the operator

A :=−4
∂3

∂x3 +6u
∂

∂x
+3

∂u

∂x

satisfies that Lax equation (0.2) if and only if ut = 6uux −uxxx , which is exactly the KdV equation. Therefore
we say that the KdV equation arises as the compatibility equation for L and A.

Lax theorem tells us the discrete spectrum of the Hamiltonian operator L(t ) is time independent. Further-
more, we shall prove in Proposition 2.5 that the operator A determines the time evolution of the scattering
data r (k, t ) and a(k, t ) by the Lax equation.

Now we can put the steps together to give a scheme for the inverse scattering transform:

1. Given the initial data u(x,0), we can obtain the scattering data S(0) = (κ1, ...,κN ;r (k,0), a(k,0)) at t = 0
by solving the direct scattering problem;

2. Using the Lax equation we can solve the scattering data S(t ) = (κ1, ...,κN ;r (k, t ), a(k, t )) at any given
time;

3. For each t , we solve the inverse scattering problem to obtain the solution u(x, t ) to the KdV equation.

1See §2.2 of [2] which explains different types of integrability conditions for u(x) and gives references for the proofs.
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0.2 Dispersionless Korteweg-de Vries Equation

We study the initial value problem of Korteweg-de Vries equation in the dispersionless limit. We begin with
considering the rescaled KdV equation. (Our choice of the coefficients agrees with Wheeler [8].)

∂u

∂t
−6u

∂u

∂x
+ε2 ∂

3u

∂x3 = 0, u(x,0) = u0(x) (0.3)

It arises as the compatibility equation for the following Lax pair:

L =−ε2 ∂2

∂x2 +u(x, t ), A =−4ε2 ∂3

∂x3 +6u
∂

∂x
+3

∂u

∂x

The corresponding equations are

Lψ=λ2ψ, Aψ= ∂ψ

∂t
, (λ ∈C)

We make the WKB approximation

ψ(x,λ, t ) = exp

(
i

ε
S(x,λ, t )

)
for some function S(x,λ, t ), which is called the action. We substitute the ansatz into the Lax equations and
demand that ε→ 0. To the leading order, we obtain the Hamilton-Jacobi equations:(

∂S

∂x

)2

=λ2 −u (0.4)

4

(
∂S

∂x

)3

+6u
∂S

∂x
= ∂S

∂t
(0.5)

Put p := ∂S

∂x
. Then S is the Hamilton’s prinicipal function generated by the Hamiltonian

H(x, p, t ) :=−4p3 −6u(x, t )p

The Lax theorem implies thatλ2 = u−p2 is a constant of motion along the Hamiltonian flow. We have

0 = ∂λ2

∂t
+ {λ2, H } = ∂u

∂t
−6u

∂u

∂x
(0.6)

which is the equation obtained by taking ε→ 0 formally in the KdV equation, and is hence called the dis-
persionless KdV (dKdV) equation2.

1 Method of Characteristics

The initial value problem of the dKdV equation can be solved by the method of characteristics. Following
the convention in [2], we assume that the initial data u0(x) is smooth and satisfies the integrability condition
(0.1). We parametrise the data curve as

u(s) = u0(s), x(s) = s, t (s) = 0, at τ= 0

Then we solve the initial value problems for the system of ODEs

dt

dτ
= 1,

dx

dτ
=−6u,

du

dτ
= 0

We obtain the solution u(x, t ) in the following implicit form:

u = u0(x +6ut ) (1.7)

2also known as the inviscid Burgers’ equation.
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For x0 ∈Rwhere du0/dx 6= 0, by inverse function theorem there exists a neighbourhood (x0 −δ, x0 +δ) such
that the solution takes the form

x +6u(x, t )t = w(u) (1.8)

which is the form obtain by Tsarëv in Theorem 10 of [7] for a broader class of systems called semi-Hamiltonian
systems. We shall refer (1.8) as the Tsarëv’s hodograph formula.

In (1.7), we take the derivative with respect to x:

∂u

∂x
= u′

0(x +6ut )

1−6tu′
0(x +6ut )

We observe that at some finite time t = t0, ∂u/∂x =∞ at some x ∈R, where the solution ceases to be single-
valued. This is the well-known phenomenon of the breaking wave.

2 Inverse Scattering Transform

2.1 Solving the Action

Next we turn back to the WKB approximation and dKdV equation. We investigate the inverse scattering
problem for the action S(x,λ, t ).

Without loss of generality we assume that u0 Ê 0 on R. Equation (0.4) gives

p(x,λ, t ) = ∂S

∂x
= (

λ2 −u(x, t )
)1/2

(2.9)

where we choose the square root with a cut on the intervalλ ∈ [−pu(x, t ),
p

u(x, t )
]⊆R and the branch such

that Im p Ê 0 for λ ∈R. We integrate the equation to obtain that

S(x,λ, t ) =λx +
∫ x

x0

(
λ2 −u(s, t )

)1/2
ds + f (λ, t )

for some x0 ∈R and entire function f (λ, t ). Given the integrability condition we have∫ x0

−∞

((
λ2 −u(s, t )

)1/2 −λ
)

ds <∞

We can replace f (λ, t ) by

f (λ, t )+λx0 +
∫ x0

−∞

((
λ2 −u(s, t )

)1/2 −λ
)

ds

So we have

S(x,λ, t ) =λx +
∫ x

−∞

((
λ2 −u(s, t )

)1/2 −λ
)

ds + f (λ, t ) (2.10)

Next we consider the time evolution of S. Taking the derivative with respect to t :

∂S

∂t
(x,λ, t ) =

∫ x

−∞
∂

∂t

((
λ2 −u(s, t )

)1/2 −λ
)

ds + ∂ f

∂t
(λ, t )

where the differentiation under the integral sign is justified by DCT.

In the limit x → ±∞, p = λ+ O(λ−1). By (0.5) we have
∂S

∂t
(x,λ, t ) ∼ 4λ3. Therefore

∂ f

∂t
(λ, t ) = 4λ3. By

integration we have

f (λ, t ) = g (λ)+4λ3t

for some entire function g (λ). The action is now expressed as

S(x,λ, t ) =λx +4λ3t +
∫ x

−∞

((
λ2 −u(s, t )

)1/2 −λ
)

ds + g (λ)
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We have the freedom to choose g (λ), as it does not contain physical quantities (x, t ). It is safe to set g (λ) = 0,
and we obtain that

S(x,λ, t ) =λx +4λ3t +
∫ x

−∞

((
λ2 −u(s, t )

)1/2 −λ
)

ds (2.11)

On the λ-plane, the action S(x,λ, t ) is holomorphic in C \
[−pu(x, t ),

p
u(x, t )

]
. From (2.11) we observe

that
S(x,λ, t ) =λx +4λ3t +O(λ−1), as |λ|→∞

In this section we only consider the initial curve u0(x) with one “hump”. More specifically, there exists
xm ∈R such that

• um := u0(xm) = supx∈Ru0(x);

• u0 is monotonically increasing for x ∈ (−∞, xm);

• u0 is monotonically decreasing for x ∈ (xm ,+∞).

• u0 Ê 0 for all x ∈R.

We know from the solution obtained by the method of characteristics that the above condition also holds
for u(x, t ) for a finite time interval t ∈ (0, t0).

For λ ∈ (−pum ,
p

um
)
, there exist x−(λ, t ) < x+(λ, t ) such that u(x±(λ, t ), t ) =λ2.

We define the following auxiliary functions, which play the role of scattering data (will be shown in the next
subsection):

ω(λ, t ) :=λx−(λ, t )+
∫ x−(λ,t )

−∞

((
λ2 −u(s, t )

)1/2 −λ
)

ds, (2.12)

σ(λ, t ) :=−λx+(λ, t )+
∫ +∞

x+(λ,t )

((
λ2 −u(s, t )

)1/2 −λ
)

ds (2.13)

τ(λ, t ) :=
∫ x+(λ,t )

x−(λ,t )

√
u(s, t )−λ2 ds (2.14)

Remark. The integrand
√

u(s, t )−λ2 should be understood as the positive sqaure root of a real function
in the usual sense. Note that this is different from the complex square root

(
λ2 −u(s, t )

)1/2
, which in fact

changes sign under the map λ 7→ −λ.

Proposition 2.1

1. For 0 <λ2 < u(x, t ), the real part of S(x,λ, t ) is independent of x and t , and we have

ReS(x,λ, t ) = 4λ3t +ω(λ, t )

2. For u(x, t ) < λ2 < um and x > x+(λ, t ), the imaginary part of S(x,λ, t ) is independent of x and t ,
and we have

ImS(x,λ, t ) = τ(λ, t )

Proof. For real λ we note that p = (
λ2 −u(s, t )

)1/2 ∈ R when λ2 < u(x, t ) and 0 < λ2 < u(x, t ) ∈ iR when
λ2 > u(x, t ).

Therefore, for 0 <λ2 < u(x, t ), by (2.11) and (2.12),

S(x,λ, t ) = 4λ3t +ω(λ, t )+λ(x −x−(λ, t ))+
∫ x

x−(λ,t )

((
λ2 −u(s, t )

)1/2 −λ
)

ds

= 4λ3t +ω(λ, t )+ i
∫ x

x−(λ,t )

√
u(s, t )−λ2 ds
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Hence
ReS(x,λ, t ) = 4λ3t +ω(λ, t )

For u(x, t ) <λ2 < um and x > x+(λ, t ),

ImS(x,λ, t ) = Im

(∫ x

−∞
(
λ2 −u(s, t )

)1/2
ds

)
= τ(λ, t )

For the time-dependence, we note from (0.5) that p ∈R implies that ∂S/∂t ∈R, and that p ∈ iR implies
that ∂S/∂t ∈ iR. When λ2 < u(x, t ), p ∈ iR, and then ReS is time-independent. When λ2 > u(x, t ),
p ∈R, and then ImS is time-independent.

Corollary 2.2

The time-evolution of ω(λ, t ) and τ(λ, t ) are given by

ω(λ, t ) =ω0(λ)−4λ3t (2.15)

τ(λ, t ) = τ0(λ) (2.16)

2.2 WKB Method for Direct Scattering

We review the direct scattering problem of the Schrödinger’s equation in the WKB approximation, following
Section 10.6 in Bender & Orszag [4]. In particular, the reflection and transmission coefficients are given in
terms of the real and imaginary parts of the action.

Starting from the Schrödinger’s equation

−ε2 ∂

∂x2ψ(x,λ, t )+u(x, t )ψ(x,λ, t ) =λ2ψ(x,λ, t )

Assuming a left-to-right direct scattering, we can write down the asymptotics of the wave function:

ψ(x,λ, t ) ∼
{

e−iλx/ε+r (λ, t )eiλx/ε, x →−∞
ρ(λ, t )e−iλx/ε, x →+∞ (2.17)

where r (λ, t ) and ρ(λ, t ) are the reflection and transmission coefficients respectively.

For λ2 > um , the whole real line is classically allowed. We have r (λ, t ) = 0 and ρ(λ, t ) = 1 trivially. Now we
focus on the case 0 < λ2 < um , where x ∈ (x−(λ, t ), x+(λ, t )) is classically forbidden. Our main result is the
following:

Proposition 2.3

For 0 <λ2 < um , the reflection and transmission coefficients are given by

r (λ, t ) = iexp

(
−2iω

ε

)
(2.18)

ρ(λ, t ) = exp

(
−τ+ i (ω+σ)

ε

)
(2.19)

Proof. First we write down the corresponding WKB wave functions in the classically allowed regions:

ψ±(x,λ, t ) = A±
(λ2 −u(x, t ))1/4

exp

(
± i

ε

∫ x−(λ,t )

x

√
λ2 −u ds

)
= A± e±iλx−(λ,t )/ε

(λ2 −u(x, t ))1/4
exp

(
± i

ε

(
−λx +

∫ x−(λ,t )

x

(√
λ2 −u −λ

)
ds

))
, x ∈ (−∞, x−(λ, t ))
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ψ±(x,λ, t ) = C±
(λ2 −u(x, t ))1/4

exp

(
± i

ε

∫ x

x+(λ,t )

√
λ2 −u ds

)
= C± e∓iλx+(λ,t )/ε

(λ2 −u(x, t ))1/4
exp

(
± i

ε

(
λx +

∫ x

x+(λ,t )

(√
λ2 −u −λ

)
ds

))
, x ∈ (x+(λ, t ),+∞)

which gives

ψ±(x,λ, t ) ∼


A±λ−1/2 exp

(
± i

ε
(−λx +ω(λ, t ))

)
, x →−∞

C±λ−1/2 exp

(
± i

ε
(λx +σ(λ, t ))

)
, x →+∞

(2.20)

By comparing (2.17) and (2.20) we obtain that

A+λ−1/2 eiω(λ,t )/ε = 1 A−λ−1/2 e−iω(λ,t )/ε = r (λ, t )

C+λ−1/2 eiσ(λ,t )/ε = 0 C−λ−1/2 e−iσ(λ,t )/ε = ρ(λ, t )

Then the WKB wave functions are given by

ψ(x,λ, t ) =



(
λ2

λ2 −u

)1/4 (
e−iω/ε exp

(
i

ε

∫ x−

x

√
λ2 −u(s, t )ds

)
+r eiω/ε exp

(
− i

ε

∫ x−

x

√
λ2 −u(s, t )ds

))
, x ∈ (−∞, x−)(

λ2

λ2 −u

)1/4

ρeiσ/ε exp

(
− i

ε

∫ x

x+

√
λ2 −u(s, t )ds

)
, x ∈ (x+,+∞)

Next we consider the classically forbidden region. At the turning points x±(λ, t ), the WKB connection
formulae are given by(

λ2

λ2 −u

)1/4

exp

(
i

ε

∫ x−

x

√
λ2 −u(s, t )ds

)
∼

(
λ2

u −λ2

)1/4

exp

(
πi

4
− 1

ε

∫ x

x−

√
u(s, t )−λ2 ds

)
(

λ2

λ2 −u

)1/4

exp

(
− i

ε

∫ x

x+

√
λ2 −u(s, t )ds

)
∼

(
λ2

u −λ2

)1/4

exp

(
πi

4
+ 1

ε

∫ x+

x

√
u(s, t )−λ2 ds

)
They allow us to express ψ(x,λ, t ) for x < x+ in terms of the transmission coefficient ρ(λ, t ):

ψ(x,λ, t ) =
(

λ2

λ2 −u

)1/4

ρeiω/ε exp

(
1

ε

∫ x+

x−

√
u(s, t )−λ2 ds

)(
exp

(
i

ε

∫ x−

x

√
λ2 −u(s, t )ds

)
+ iexp

(
− i

ε

∫ x−

x

√
λ2 −u(s, t )ds

))
By comparing coefficients we obtain that

r (λ, t ) = ie−2iω/ε

ρ(λ, t ) = exp

(
−1

ε

∫ x+

x−

√
u(s, t )−λ2 ds

)
e−i(ω+σ)/ε

Therefore we associate the real part of S with the reflection coefficient, and the imaginary part of S with the
transmission coefficient. They are effective for different ranges of x.

Corollary 2.4

The reflection and transmission coefficients are related to the action by

r (λ, t ) = ie8iλ3t exp(−2iReS(x,λ, t )/ε), 0 <λ2 < u(x, t ) (2.21)

|ρ(λ, t )| = exp(− ImS(x,λ, t )/ε), u(x, t ) <λ2 < um , x > x+(λ, t ) (2.22)
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The time-evolution of the scattering data can in fact be determined for the full KdV equation. The following
is a standard result from Ablowitz [2] and Dunajski [9].

Proposition 2.5

The time-evolution of r (λ, t ) and ρ(λ, t ) are given by

r (λ, t ) = r0(λ)e8iλ3t/ε (2.23)

ρ(λ, t ) = ρ0(λ) (2.24)

Proof. By Lax theorem, Lψ=λ2ψ implies that

L

(
∂ϕ

∂t
− Aϕ

)
=λ2

(
∂ϕ

∂t
− Aϕ

)
where

ϕ(x,λ, t ) := ψ(x,λ, t )

ρ(λ, t )
∼


1

ρ(λ, t )
e−iλx/ε+ r (λ, t )

ρ(λ, t )
eiλx/ε, x →−∞

e−iλx/ε, x →+∞
Therefore we have

∂ϕ

∂t
− Aϕ∼


(
∂ρ−1

∂t
+ 4iλ3

ε

)
ρ−1 e−iλx/ε+

(
∂(rρ−1)

∂t
− 4iλ3

ε

)
rρ−1 eiλx/ε, x →−∞

4iλ3

ε
e−iλx/ε, x →+∞

Note that

ξ(x,λ, t ) := ∂ϕ

∂t
− Aϕ− 4iλ3

ε
∈ kerL, lim

x→∞ξ(x,λ, t ) = 0

We must have ξ= 0. We therefore use the asymptotics at x →+∞ to deduce that

∂ρ−1

∂t
+ 4iλ3

ε
= 4iλ3

ε
,

∂(rρ−1)

∂t
− 4iλ3

ε
= 4iλ3

ε

The time-dependence for the scattering data is given by

r (λ, t ) = r (λ,0)e8iλ3t/ε, ρ(λ, t ) = ρ(λ,0)

Remark. Combining the results of Proposition 2.5 and Proposition 2.3, we can also deduce that time-
dependence of ω(λ, t ), σ(λ, t ) and τ(λ, t ) as in Corollary 2.2.

2.3 Inverse Scattering

In Geogjaev [5], an inversion formula for u(x, t ) in terms of the real part of S(x,λ, t ) is discovered by solving
the corresponding Riemann-Hilbert problem.

Recall that

ω(λ, t ) :=λx−(λ, t )+
∫ x−(λ,t )

−∞

((
λ2 −u(s, t )

)1/2 −λ
)

ds (2.12)

For convenience we put
Σ(x,λ, t ) := S(x,λ, t )−4λ3t

Therefore we have ω(λ, t ) = ReΣ(x,λ, t ) for λ ∈ (−pu(x, t ),
p

u(x, t )
)⊆R.

Now the problem has become a Riemann-Hilbert problem on theλ-plane. The following proof follows from
Section 7.3.2 of Ablowitz & Fokas [3] (see also Section 1.4 of Wheeler [8]). For convenience we suppress the
(x, t )-dependence.
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Proposition 2.6. The Scalar Riemann-Hilbert Problem

Suppose that Σ is holomorphic on C \
[−pu,

p
u

]
satisfying ReΣ±(λ) = ω(λ) for λ ∈ (−pu,

p
u

)
, where

ω is Hölder continuous on
(−pu,

p
u

)
. Then we have

Σ(λ) = (
u −λ2)1/2

(
1

πi

∫ p
u

−pu

ω(ζ)√
u −ζ2(ζ− z)

dζ+H(λ)

)

where H(λ) is holomorphic in C \
{−pu,

p
u

}
. H(λ) can be uniquely determined by specifying the

principal parts of the Laurent series of Σ(λ) at λ=±pu and λ=∞.

Remark. Note that (u−λ2)1/2 is a holomorphic branch of the square root function on the complex analysis,
whereas

√
u −ζ2 in the integrand should be understood in the usual sense of taking the positive sqaure root

of a positive number.

Lemma 2.7. Plemelj Formulae

Let L be a simple, smooth, locally connected curve and let ϕ(τ) be Hölder continuous on L. Then the
Cauchy-type integral

Φ(λ) := 1

2πi

∫
L

ϕ(λ)

τ−λ
has the limiting valuesΦ±(ξ) as λ approaches L from the left and the right, respectively, and ξ is not an
endpoint of L. These limits are given by

Φ±(ξ) =±1

2
ϕ(ξ)+ 1

2πi
−
∫

L

ϕ(τ)

τ−ξ dτ

where the principal value integrals are defined by

−
∫

L

ϕ(τ)dτ

τ−ξ = lim
ε→0

∫
L\B(ξ,ε)

ϕ(τ)dτ

τ−ξ

Proof. See Lemma 7.2.1 of Ablowitz & Fokas [3].

Proof of Proposition 2.6.
We seek a solution of the form of a Cauchy-type integral:

Σ(λ) =
∫ p

u

−pu

f (ζ)

ζ−λ dλ

By Plemelj formulae, we have

Σ±(ξ) =±1

2
f (ξ)+ 1

2πi
−
∫ p

u

−pu

f (ζ)

ζ−ξ dζ

for ξ ∈ (−pu,
p

u
)
. Since ReΣ+(ξ) = ReΣ−(ξ), we have

0 = Re(Σ+(ξ)−Σ−(ξ)) = Re f (ξ)

Hence f is purely imaginary, and we have ImΣ+(ξ) = − ImΣ−(ξ). Therefore we have the problem
expressed in the standard form:

Σ+(ξ) =−Σ−(ξ)+2ω(ξ)

First we consider the corresponding homogeneous problem

T+(ξ) =−T−(ξ)

9



Taking logarithm:
logT+(ξ) = logT−(ξ)+πi

Hence by Plemelj formulae,

T (λ) = exp

(
1

2πi

∫ p
u

−pu

πi

ζ−λ dλ+h(λ)

)
= eh̃(λ) (u −λ2)1/2

where h̃(λ) is an arbitrary entire function. We take h̃ = 0 and return to the inhomogeneous problem:

Σ+(ξ)

T+(ξ)
= Σ−(ξ)

T−(ξ)
+ 2ω(ξ)

T+(ξ)

Clearly ω/T+ is Hölder continuous on
(−pu,

p
u

)
, with integrable singularities at the endpoints. By

Plemelj formulae we have

Σ(λ)

T (λ)
= 1

2πi

∫ p
u

−pu

2ω(λ)

T+(λ)(ζ−λ)
dλ+H(λ)

where H(λ) is holomorphic in C\
{−pu,

p
u

}
. Therefore we obtain the solution

Σ(λ) = (
u −λ2)1/2

(
1

πi

∫ p
u

−pu

ω(ζ)√
u −ζ2(ζ−λ)

dζ+H(λ)

)

Let Σ̃ be another solution to the problem which has the same principal parts of the Laurent series

as S at λ = ±pu and λ = ∞. the let Ω := Σ− Σ̃. Then
Σ− Σ̃

T
satisfies the homogeneous problem

Ω+(ξ) =Ω−(ξ) for ξ ∈ (−pu,
p

u
)
.

By Cauchy’s integral formula,Ω satisfies the condition if and only ifΩ is holomorphic inC\
{−pu,

p
u

}
.

But by assumption, Ω has removable singularities at λ=±pu, and is bounded as λ→∞. Hence by
Liouville’s TheoremΩ is constant.

Proposition 2.8. Cauchy Integral Representation of the Action

The action can be expressed by ω(λ, t ) via the following Cauchy-type integral formula:

S(x,λ, t ) = 4λ3t +x
(
λ2 −u(x, t )

)1/2 + 1

πi

∫ p
u(x,t )

−pu(x,t )

ω(ζ, t )

ζ−λ

(
u(x, t )−λ2

)1/2√
u −ζ2

dζ (2.25)

Proof. We apply the previous proposition to our problem. It remains to analyse the limits λ→ ±pu and
|λ|→∞ in order to determine H(λ).

In the limits λ,ξ→ ±pu, we note that ω(ξ) is bounded. Therefore by Lemma 7.2.2 of Ablowitz &
Fokas [3] the integral

1

πi

∫ p
u

−pu

ω(ζ)√
u −ζ2(ζ− z)

dζ= O
(
(ξ±p

u)−1/2)
But since

p
u −λ2 = O

(
(λ±p

u)1/2
)
, the boundedness of the solution at the endpoints is assured. As

|λ|→∞, we have
Σ(λ) =λx +O(λ−1)

Then we have H(λ) = O(1) as |λ| → ∞. Therefore H is in fact entire and bounded, and hence is
constant by Liouville’s Theorem. We have

H(λ) = xi
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Then Σ(x,λ, t ) is given by

Σ(x,λ, t ) = x
(
λ2 −u(x, t )

)1/2 + 1

πi

∫ p
u(x,t )

−pu(x,t )

ω(ζ, t )

ζ−λ

(
u(x, t )−λ2

)1/2√
u −ζ2

dζ

The result follows.

Theorem 2.9. Tsarëv’s hodograph Formula

The left half of solution u(x, t ) to the initial value problem of the dKdV equation is generated by the
implicit equation:

x +6ut = 1

π

∫ p
u

−pu

dω0

dλ

dλp
u −λ2

(2.26)

Proof. From (2.11) we have

µ(x,λ, t ) := ∂S

∂λ
= x +12λ2t +

∫ x

−∞

(
λ(

λ2 −u(s, t )
)1/2

−1

)
ds (2.27)

Since the integral ∫ x

−∞

(√
u(x, t )

u(x, t )−u(s, t )
−1

)
ds <∞

µ is bounded at λ=±pu(x, t ). From (2.25) we find that

µ(x,λ, t ) = 12λ2t + λp
λ2 −u

(
x + 1

πi

∫ p
u

−pu

ω(ζ, t )√
ζ2 −u(ζ−λ)

dζ

)
+

√
λ2 −u

∂

∂λ

(
x + 1

πi

∫ p
u

−pu

ω(ζ, t )√
ζ2 −u(ζ−λ)

dζ

)

For µ to be bounded at λ=±pu(x, t ), we must have

x + 1

πi

∫ p
u

−pu

ω(ζ, t )√
ζ2 −u(ζ−p

u)
dζ= 0, x + 1

πi

∫ p
u

−pu

ω(ζ, t )√
ζ2 −u(ζ+p

u)
dζ= 0

We can add these two equations up and do integration by parts. Note that the integral in fact diverges
and we can only calculate its principal value.

0 = x + 1

πi

∫ p
u

−pu

λω(λ, t )

(λ2 −u)3/2
dλ= x + 1

π

∫ p
u

−pu

λω(λ, t )

(u −λ2)3/2
dλ

= x + 1

π

(
ω(λ, t )p

u −λ2

∣∣∣∣
p

u

λ=−pu
−

∫ p
u

−pu

∂ω

∂λ

1p
u −λ2

dλ

)

= x − 1

π

∫ p
u

−pu

∂ω

∂λ

1p
u −λ2

dλ (2.28)

We substitute the time dependence (2.2) into the above integral, and use the formula∫ p
u

−pu

λ2

p
u −λ2

dλ= π

2
u

We obtain the Tsarëv’s hodograph formula for dKdV:

x +6ut = 1

π

∫ p
u

−pu

dω0

dλ

dλp
u −λ2

Given the initial curve u0, the RHS is a well-defined function of u. We need to compare it with the result
obtained from the method of characteristics and determine the range of x of which the hodograph formula
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is valid.

Remark. We remark that ω0(λ) depends on x−(λ), which only uses the information of u0 in the range x <
xm . So we do not expect (2.26) to be valid for x > xm . This is because we are doing a left-to-right scattering.
If we instead consider the right-to-left scattering, we will have a σ0(λ) instead in the hodograph formula:

x +6ut =− 1

π

∫ p
u

−pu

dσ0

dλ

dλp
u −λ2

σ0(λ) contains the information of u0 for x > xm . The two patches of the solution correspond to the two
regions in which u0(x) is invertible.

2.4 Verification of Hodograph Formula

Let v0 be the inverse of u0 when x < xm . By comparing (1.8) and (2.26), we note that

w(u) := 1

π

∫ p
u

−pu

dω0

dλ

dλp
u −λ2

= 2

π

∫ p
u

0

dω0

dλ

dλp
u −λ2

(2.29)

should be equal to v0(u). We present a direct proof of this by evaluating the integral explicitly.

By definition x−(λ,0) = v0(λ2). From (2.12) we have

ω0(λ) =λv0(λ2)+
∫ v0(λ2)

−∞

(√
λ2 −u0(s)−λ

)
ds (2.30)

Taking derivative:

dω0

dλ
= v0(λ2)+2λ2v ′

0(λ2)+
∫ v0(λ2)

−∞
∂

∂λ

(√
λ2 −u0(s)−λ

)
ds +2λv ′

0(λ2)

(√
λ2 −u0(v0(λ2))−λ

)
= v0(λ2)+

∫ v0(λ2)

−∞

(
λ√

λ2 −u0(s)
−1

)
ds

= lim
δ→−∞

(∫ v0(λ2)

δ

λ√
λ2 −u0(s)

ds +δ
)

Substituting the expression above into w(u):

π

2
w(u) =

∫ p
u

0
lim

δ→−∞

(∫ v0(λ2)

δ
f (λ, s)ds + δp

u −λ2

)
dλ

= lim
δ→−∞

(∫ p
u

0

∫ v0(λ2)

δ
f (λ, s)ds dλ+δ

∫ p
u

0

dλp
u −λ2

)
(MCT)

= lim
δ→−∞

(∫ v0(u)

δ

∫ p
u

p
u0(s)

f (λ, s)dλds −
∫ δ

−∞

∫ p
u0(s)

0
f (λ, s)dλds +δ

∫ p
u

0

dλp
u −λ2

)

where f (λ, s) := λ√
(u −λ2)(λ2 −u0(s))

. From elementary calculus we know that

∫ p
u

0

dλp
u −λ2

= π

2
,

∫ p
u

p
u0(s)

λdλ√
(u −λ2)(λ2 −u0(s))

= 1

2

∫ u

u0(s)

dξ√
(u −ξ)(ξ−u0(s))

= π

2

Therefore we have

π

2
w(u) = lim

δ→−∞

(
π

2
(v0(u)−δ)−

∫ δ

−∞

∫ p
u0(s)

0
f (λ, s)dλds + π

2
δ

)

= π

2
v0(u)+ lim

δ→−∞

∫ δ

−∞

∫ p
u0(s)

0
f (λ, s)dλds

12



= π

2
v0(u)

Hence we have w(u) = v0(u) as claimed.

We perform a numerical simulation to compare v0 and w with the test initial curve u0(x) = e−x2
. The plots

are shown below.

(a) Plot of u0(x) = exp
(−x2

)
(b) Plot of x−(λ)

(c) Plot of ω0(λ) (d) Plot of
dω0

dλ
(λ)

(e) Plot of u0(x) (orange line) and w−1(x) (blue line)

References

[1] Mason, L., and Stone, W. Inverse Scattering for the Schrödinger Equation in the WKB Approximation.
Draft. 2019.

[2] Ablowitz, M. J., and Clarkson, P. A. Solitons, nonlinear evolution equations and inverse scattering. Vol.
149. Cambridge University Press, 1991.

13



[3] Ablowitz, M. J., and Fokas, A. S. Complex variables: introduction and applications. Cambridge University
Press, 2003.

[4] Bender, C. M., and Orszag, S. A. Advanced mathematical methods for scientists and engineers I: Asymp-
totic methods and perturbation theory. Springer Science & Business Media, 2013.

[5] Geogjaev, V. V. “The quasiclassical limit of the inverse scattering problem method.” Singular Limits of
Dispersive Waves. Springer, Boston, MA, 1994. 53-59.

[6] Gibbons, J., and Kodama, Y. “Solving dispersionless Lax equations.” Singular limits of dispersive waves.
Springer, Boston, MA, 1994. 61-66.

[7] Tsarëv, S. P. “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph
method.” Mathematics of the USSR-Izvestiya 37.2 (1991): 397.

[8] Wheeler, M. An Introduction To Riemann-Hilbert Problems And Their Applications. Diss. PhD thesis, The
University of Melbourne, Department of Mathematics and Statistics, 2005.

[9] Dunajski, M. Solitons, instantons, and twistors. Vol. 19. Oxford University Press, 2010.

14


	Introduction
	Background of Inverse Scattering Transform
	Dispersionless Korteweg-de Vries Equation

	Method of Characteristics
	Inverse Scattering Transform
	Solving the Action
	WKB Method for Direct Scattering
	Inverse Scattering
	Verification of Hodograph Formula


