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Abstract

We summarise the path integral quantisation of the Polyakov action for the bosonic strings.

The gauge symmetries of the string worldsheet are fixed by the Faddeev–Popov procedure

which introduces the unphysical ghost fields. We discuss the covariant quantisation and the

conformal field theory of the ghost fields, from which we derive the Weyl anomaly and show

that it is cancelled for the critical spacetime dimension D = 26. Then we outline the BRST

quantisation scheme which identifies the physical Hilbert space as the cohomology class of the

BRST charge. We also prove its equivalence to the old covariant quantisation.
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Conventions and Notations

Throughtout the report, we adopt the natural units c = ~ = 1. We adopt the Einstein summation

convention, where the greek letters µ, ν, ... are summed from 0 to D, and the latin letters a, b, i, j, ...

are summed from 1 to 2. In §3.1 only the letters i, j, k, ... are summed from 1 to dim g.

The background spacetime is the D-dimensional Minkowski spacetime (RD, η), where (ηµν) =

diag(−1,+1, . . . ,+1). The spacetime coordinates are denoted by X = (Xµ), with µ going from

0 to D − 1. The coordinates on the string worldsheet is denoted by (ξa) = (ξ1, ξ2) = (σ, τ).

The worldsheet metric is denoted by γ = γabdξ
adξb. Further conventions of complex coordinates

on the worldsheet are described in §2.2. In particular, the complex δ-function is normalised as

δ2(z, z) = δ(x)δ(y)/2. For an operator A on a Hilbert space, we use A† for its adjoint.

i



Introdution

Bosonic string theory was developed in the late 1960s, initially as a candidate for the theory

of strong interactions. Now it is considered as a prototype of the more general string theory,

which is believed by many to be the theory of quantum gravity. Bosonic string theory is not

a realistic model, as it contains only bosons in its spectrum, and suffers from the presence of

tachyons. However, it provides a framework of string theory and leads to superstring theory after

incorporating the supersymmetry. There are three equivalent models for the quantum bosonic

strings: old covariant, lightcone, and path integral quantisation. In this report, we investigate

the path integral quantisation of bosonic strings in a flat background spacetime.

The path integral quantisation of bosonic strings follows the broader scheme of path integral

quantisation of gauge theories, which is studied in quantum field theory. In 1967, Faddeev &

Popov [1] developed a gauge fixing procedure for the path integral quantisation of the Yang–

Mills theory by introducing the ghost fields, now known as the Faddeev–Popov ghosts. In 1981,

Polyakov [2] adopted the procedure to give a path integral quantisation of the bosonic strings.

We discuss this method in Section 1, following the treatment in Chapter 3 of Polchinski [3].

The novelty of bosonic strings in the path integral quantisation scheme is the Weyl symmetry of

the Polyakov action. This leads to the two-dimensional conformal field theory, which is studied

in Belavin, Polyakov & Zamolodchikov [4]. We briefly review some results of conformal field

theory in §2.2 and §2.3, including the operator product expansion, which is used to compute the

central charge of the string system. The techniques can be found in Chapter 2 of Polchinski

[3] and Chapter 4 of Tong [5]. After quantisation, the Weyl invariance of the Polyakov action

may be anomalous. We prove in §2.4 that the Weyl anomaly is cancelled if and only if the total

central charge of the system with ghosts vanishes. This leads to the critical spacetime dimension

D = 26 as a consistency condition, which agrees with the results from the old covariant and the

lightcone quantisation. In §3.2, we also show that this is necessary for the BRST operator to be

nilpotent.

In 1975–1976, Becchi, Rouet, & Stora [6] and Tyutin [7] discovered the BRST symmetry for

the non-Abelian gauge theory. In 1979, Kugo & Ojima [8] formulated the BRST operator and

associated the physical observables with the BRST cohomology. Kato & Ogawa [9] constructed

the BRST operator for bosonic string theory and proved a version of the no ghost theorem.

In Section 3 we outline the BRST quantisation scheme and its application to bosonic strings,

following Chapter 4 of Polchinski [3] and Section 3.2 of Green, Schwarz & Witten [10]. This

improved method does not require a manual choice of gauge, but rather encodes the gauge

symmetry in the Lie algebra cohomology. We discuss the homological algebra background in

§3.1. The physical Hilbert space of bosonic strings is constructed in §3.3 by BRST quantisation,

which is equivalent to the Hilbert space in old covariant quantisation. Finally we will quote the

no ghost theorem, referring the proof to Section 4.4 of Polchinski [3]. A more mathematical

treatment can be found in Figueroa-O’Farrill [11].

1 Faddeev–Popov Procedure

1.1 Polyakov Path Integral

We begin by recalling the classical theory of bosonic strings. Let Σ be the string worldsheet

parametrised by (ξa) = (σ, τ). The Polyakov action of a bosonic string is given by

SP[γ,X] = − 1

4πα′

∫
Σ

dτ dσ
√
−det γ γab

∂Xµ

∂ξa
∂Xν

∂ξb
ηµν , (1.1)
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where α′ is a constant called the Regge slope, γ = γabdξ
adξb is a metric on the worldsheet,

and (Xµ) are the spacetime coordinates. The Polyakov action (1.1) has the following symme-

tries:

• Global Poincaré symmetry.

Xµ(σ, τ) 7−→ ΓµνX
ν(σ, τ) + cµ; γab(σ, τ) 7−→ γab(σ, τ).

• Local diffeomorphism (σ, τ) 7−→ (σ̃, τ̃).

Xµ(σ, τ) 7−→ X̃(σ̃, τ̃) = X(σ, τ); γab(σ, τ) 7−→ γ̃ab(σ̃, τ̃) =
∂ξc

∂ξ̃a

∂ξd

∂ξ̃b
γcd(σ, τ).

• Weyl transformation.

Xµ(σ, τ) 7−→ Xµ(σ, τ); γab(σ, τ) 7−→ e2ω(σ,τ) γab(σ, τ).

By Noether’s Theorem, the stress–energy tensor of the string worldsheet is given by

T ab =
4π√
−det γ

∂SP

∂γab
. (1.2)

where the choice of normalisation constant agrees with Blumenhagen, Lüst & Theisen [12].

Lemma 1.1

The stress-energy tensor is traceless: T aa = 0.

Proof. Consider a variation of the metric by a Weyl transformation δγab = 2ωγab. This is a

symmetry of the action, so δSP = 0. Therefore we have

0 =
∂SP

∂γab
δγab = − ω

2πα′

√
−det γ T abγab,

which implies that T aa = T abγab = 0.

The covariant path integral quantisation of the bosonic strings begins with considering the par-

tition function associated to the Polyakov action.

Z =

∫
D [γ]D [X] eiSP[γ,X] . (1.3)

There are redundancies in the metric γ, because different metrics may be related by a gauge

transformation and hence correspond to the same physical configuration. Therefore we would

like to integrate over a space quotient by the gauge symmetries. Let G be the gauge group of

thw worldsheet. We would like to express the Polyakov path integral in the form

Z =

∫
G

dζ Zphys[γ̂], (1.4)

where Zphys[γ̂] fixes the worldsheet metric γ̂ and corresponds to the path integral over all physi-

cally distinct configurations.
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1.2 Faddeev–Popov Ghosts

A gauge transformation ζ ∈ G of the worldsheet is a composition of a local diffeomorphism and

a Weyl transformation. So

ζ : γab(ξ) 7−→ ζ(γ)ab(ξ̃) = e2φ(ξ) ∂ξ
c

∂ξ̃a

∂ξd

∂ξ̃b
γcd(ξ).

Let g be the Lie algebra of G. An infinitesimal gauge transformation (ω, v) ∈ g is parametrised

by a conformal factor ω and a vector field va:

ξa 7−→ ξa + va; γ̂ab 7−→ γ̂ab + 2ωγ̂ab + ∇̂avb + ∇̂bva.

We fix a worldsheet metric γ̂, called the fiducial metric. The Faddeev–Popov determinant

∆FP(γ) is a functional determinant defined by the following identity:

1 = ∆FP(γ)

∫
G

dζ δ(γ − ζ(γ̂)),

where dζ is the Haar measure of the gauge group G and is gauge invariant.

Lemma 1.2

The Faddeev–Popov determinant ∆FP(γ) is gauge invariant.

Proof. This follows directly from the definition and the gauge invariance of the measure dζ:

∆FP(ζ(γ))−1 =

∫
G

dζ ′ δ(ζ(γ)− ζ ′(γ̂)) =

∫
G

dζ ′ δ
(
γ − ζ−1ζ ′(γ̂)

)
=

∫
G

d(ζ−1ζ ′) δ
(
γ − ζ−1ζ ′(γ̂)

)
= ∆FP(γ)−1.

Now we insert the identity (1.2) into the Polyakov path integral (1.3):

Z =

∫
G

dζ

∫
D [γ]D [X] ∆FP(γ)δ(γ − ζ(γ̂)) eiSP[γ,X]

=

∫
G

dζ

∫
D [X] ∆FP(ζ(γ̂)) eiSP[ζ(γ̂),X]

=

∫
G

dζ

∫
D [ζ(X)] ∆FP(ζ(γ̂)) eiSP[ζ(γ̂),ζ(X)]

=

∫
G

dζ

∫
D [X] ∆FP(γ̂) eiSP[γ̂,X] . (1.5)

where, in the fourth line, we used the gauge invariance of the Faddeev–Popov determinant. Note

that the integrand of (1.5) is independent of the gauge transformation ζ. Comparing (1.5) with

(1.4) we obtain the physical partition function:

Zphys[γ̂] =

∫
D [X] ∆FP(γ̂) eiSP[γ̂,X] . (1.6)

From now on we drop the subscript and regard (1.6) as the Polyakov path integral we need. Next

we would like to evaluate the Faddeev–Popov determinant.
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Proposition 1.3. Ghost Fields

With some extra assumption on the topology of the worldsheet, the Faddeev–Popov deter-

minant can be expressed as a formal path integral:

∆FP(γ̂) =

∫
D [b]D [c] eiSgh[γ̂,b,c], (1.7)

where b = (bij) and c = (ci) are Grassmann-valued fields, and b is symmetric and traceless,

called the ghost fields, and Sgh[γ̂, b, c] is the ghost action, given by

Sgh[γ̂, b, c] = − i

2π

∫
Σ

dσ dτ
√
−det γ̂ γ̂ijbjk∇̂ick, (1.8)

where ∇̂ is the Levi-Civita connection associated with the fiducial metric γ̂.

Proof. We adapt the proof from §3.3 of Polchinski [3].

Let (ω, v) ∈ g be an infinitesimal gauge transformation:

γ̂ab 7−→ γ̂ab + 2ωγ̂ab + ∇̂avb + ∇̂bva = γ̂ab + (2ω +∇cvc)γ̂ab + (Pv)ab,

where

(Pv)ab := ∇̂avb + ∇̂bva −∇cvcγ̂ab.

So P is a operator mapping covector fields to symmetric traceless type-(0,2) tensor fields.

Here we need the assumption that the gauge group G acts on the space of worldsheet

metric faithfully, in other words, γ̂ = ζ(γ̂) if and only if ζ = id. As pointed out in

Polchinski [3], this is always true locally but not globally if the worldsheet has non-trivial

topology. Under this assumption, we evaluate (1.2) near the identity, where we can replace

the integral over the gauge group G by an integral over the Lie algebra g:

∆FP(γ̂)−1 =

∫
g
D [ω]D [v] δ((2ω +∇cvc)γ̂ab + (Pv)ab).

We can express the delta functional in the integrand as a path integral:

δ((2ω+∇cvc)γ̂ab+(Pv)ab) =

∫
D [β] exp

(
2πi

∫
Σ

dσ dτ
√
−det γ̂ βab ((2ω +∇cvc)γ̂ab + (Pv)ab)

)
,

where β is a symmetric type-(2, 0) tensor field. Combining the above two equations and

perform the integral over the conformal factor D [ω], we assume that the dependence will

drop out. Formally we have ∫
D [ω] = 1{βabγ̂ab=0},

which is equivalent to imposing the constraint βabγ̂ab = 0, or, β is symmetric and traceless.

We have

∆FP(γ̂)−1 =

∫
{trβ=0}

D [v]D [β] exp

(
2πi

∫
Σ

dσ dτ
√
−det γ̂ βab(Pv)ab

)
. (1.9)

The equation expresses ∆FP(γ̂)−1 as the functional determinant detP . Now by the al-

gebraic properties of Grassmann numbers and Berezin integrals (see Appendix A.2 of

Polchinski [3] or §9.5 of Peskin & Schroeder [13]), we can invert (1.9) by replacing βab and
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va by the Grassmann-valued fields bab and ca. We have

∆FP(γ̂) =

∫
D [b]D [c] exp

(
1

2π

∫
Σ

dσ dτ
√
−det γ̂ bij∇̂icj

)
.

In light of Proposition 1.3, the Polyakov path integral is given by

Z[γ̂] =

∫
D [X]D [b]D [c] exp(i(SP[γ̂, X] + Sgh[γ̂, b, c])). (1.10)

The Faddeev–Popov procedure fix the gauge symmetries of the worldsheet at the expense of

introducing the unphysical ghost fields b and c.

Before quantising the ghost fields, we note the following problems in the Faddeev–Popov proce-

dure:

• We assumed that the topology of the worldsheet has the topology such that the gauge group

acts on it faithfully.

• We neglected possible Weyl anomaly and drop the integral over the conformal factor. We

will discuss this in §2.4.

• We neglected the possible terms in the path integral arising from the global topology (the

Euler characteristic χ(Σ), see §3.2 of Polchinski [3]) and boundary conditions.

2 Quantisation of Ghost Fields

2.1 Covariant Quantisation

Now we take a closer look at the ghost action (1.8). We fix the fiducial worldsheet metric to

the conformal gauge γ̂ab = e2ω ηab and use the complex coordinates (2.9) and the conventions in

§2.2:

γ̂ = e2ω dz ⊗ dz.

Since b is symmetric and traceless, the only nonzero components are bzz and bzz. Note that the

only nonvanishing Christoffel symbols are Γzzz and Γzzz. Hence ∇zcz = ∂zc
z and ∇zcz = ∂zc

z. We

have

γ̂ijbjk∇ick = e−2ω(bzz∂zc
z + bzz∂zc

z).

The ghost action (1.8) becomes

Sgh[e2ω η, b, c] =
1

2π

∫
Σ

d2z (bzz∂zc
z + bzz∂zc

z). (2.1)

We see that the ghost action decouples into the sum of two free fields, and is independent of the

conformal factor ω. This verifies the classical Weyl invariance of Sgh. The non-zero stress-energy

tensor components are given by

Tzz = 2(∂zc
z)bzz + cz∂zbzz; Tzz = 2(∂zc

z)bzz + cz∂zbzz. (2.2)

The classical equations of motions are given by

∂zbzz = ∂zbzz = 0, ∂zc
z = ∂zc

z = 0,
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which are supplemented by some boundary conditions. The canoncial quantisation of the ghost

fields is done by imposing the anti-commutation relations:{
bzz(σ, τ), cz(σ′, τ)

}
= 2πδ(σ − σ′);

{
bzz(σ, τ), cz(σ′, τ)

}
= 2πδ(σ − σ′).

Then we can follow the standard procedure by imposing constraints, considering the mode ex-

pansions of the ghosts, and extracting the Virasoro generators Lgh
m from the mode expansions of

the stress-energy tensor. For example, for closed strings the periodic boundary conditions imply

the mode expansion:

bzz(σ, τ) =
∑
n∈Z

bn e−in(τ+σ), bzz(σ, τ) =
∑
n∈Z

bn e−in(τ−σ), (2.3)

cz(σ, τ) =
∑
n∈Z

cn e−in(τ+σ), cz(σ, τ) =
∑
n∈Z

cn e−in(τ−σ), (2.4)

where cn = c†−n and bn = b†−n by the self-adjointness of b and c. The Fourier coefficients satisfy

the anti-commutation relations:

{bm, cn} = δm,−n; {bm, bn} = {cm, cn} = 0.

The ghost Virasoro generators are given by

Lgh
m =

1

π

∫ 2π

0
dσ eimσ Tzz

∣∣∣∣
τ=0

=
∑
n∈Z

(m− n) :bm+nc−n:

where the normal ordering moves the modes cn, bn with n > 0 to the right, taking care of the

sign change from anticommutivity. We obtain the ghost Virasoro algebra

[Lgh
m , L

gh
n ] = (m− n)Lgh

m+n +
1

12
(−26m3 + 2m)δm,−n, (2.5)

which hints that the ghost system has central charge cgh = −26. We refer to §3.5 of Blumenhagen,

Lüst & Theisen [12] for the proof.

Recall that the free scalar fields have the Virasoro algebra

[LXm, L
X
n ] = (m− n)LXm+n +

D

12

(
m3 −m

)
δm,−n. (2.6)

The total Virasoro algebra of the system with ghosts is given by

[Lm, Ln] = (m− n)Lm+n +
1

12

(
(D − 26)m3 − (D − 2− 24a)m

)
δm,−n. (2.7)

where the total Virasoro generator Lm is given by

Lm = LXm + Lgh
m − aδm,0. (2.8)

where a is a normal ordering costant. The Virasoro algebra (2.7) reduces to the Witt algebra

[Lm, Ln] = (m− n)Lm+n if and only if a = 1 and D = 26.

In the next section we present another equivalent definition of the central charge through operator

product expansion, and prove this result in Proposition 2.4 by analysing the ghost conformal field

theory.
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2.2 Some Conformal Field Theory

A conformal field theory (CFT) is a quantum field theory invariant under the conformal

transformation of the metric. The study of 2-dimensional CFT is summarised in the paper [4].

We collect some technical results which will be useful for our analysis of the Weyl anomaly.

It is known that every two-dimensional Lorentzian manifold is conformally flat. In this part we

fix the worldsheet metric to the conformal gauge and apply a Weyl transformation to make it flat.

By a Wick rotation τ 7→ τ ′ := iτ , we change from the (1 + 1) Minkowski metric to the Euclidean

metric. We use the complex coordinates on the worldsheet:

z := σ + iτ ′; z := σ − iτ ′. (2.9)

This is equivalent the lightcone coordinates, but we are complexifying the worldsheet so that z, z

are treated as independent variables. The convention of the δ-function is δ2(z, z) =
1

2
δ(σ)δ(τ).

The Wirtinger derivatives are defined by

∂ = ∂z :=
1

2

(
∂

∂σ
− i

∂

∂τ

)
; ∂ = ∂z :=

1

2

(
∂

∂σ
+ i

∂

∂τ

)

The tracelessness of the classical stress-energy tensor implies that Tzz = 0 in the complex co-

ordinates. For flat worldsheet metric, the conservation ∂aT
ab = 0 implies that ∂Tzz = 0 and

∂Tzz = 0. Hence Tzz is holomorphic and Tzz is anti-holomorphic.

Let {Oi}i∈I be a family of local operators of the conformal field theory. An operator product

expansion (OPE) is an operator identity:

Oi(z, z)Oj(w,w) =
∑
k∈I

Ckij(z − w, z − w)Ok(w,w),

which hold as operator equations on a Hilbert space. We are primarily interested in the TT OPE.

Lemma 2.1

The operator product expansion of the stress-energy tensor component Tzz takes the form

Tzz(z)Tww(w) =
c/2

(z − w)4
+

2Tww(w)

(z − w)2
+
∂Tww(w)

z − w
+ holomorphic part, (2.10)

where the constant c is called the central charge of the conformal field theory.

Proof. The general proof of this fact is given in §4.4 of Tong [5]. However, we will only need to

compute the OPE in the special cases of Proposition 2.3 and 2.4, which do not rely on the

proof of this lemma.

Remark. The central charge c defined above is the same central charge c in the corresponding

Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n.

For the proof see §4.5 of Tong [5] or §2.6 of Polchinski [3].
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Lemma 2.2

The operator product expansion of Tzz is given by

Tzz(z, z)Tww(w,w) =
cπ

6
∂z∂wδ

2(z − w, z − w). (2.11)

Proof. First we note the following identity (which can be proven by integrating both sides):

∂z∂z ln |z − w|2 = ∂z

(
1

z − w

)
= 2πδ2(z − w, z − w), (2.12)

which implies that

∂z∂w

(
1

(z − w)4

)
=

1

6
∂z∂w∂

2
z∂w

(
1

z − w

)
=
π

3
∂2
z∂w∂wδ

2(z − w, z − w). (2.13)

We consider the OPE ∂zTzz∂wTww. By conservation we have ∂Tzz = −∂Tzz. Therefore

by (2.10) and (2.13) we have

∂zTzz(z, z)∂wTww = ∂zTzz(z, z)∂wTww(w,w) = ∂z∂w

(
c/2

(z − w)4
+ · · ·

)
=
cπ

6
∂2
z∂w∂wδ

2(z − w, z − w).

The result follows from cancelling the derivatives ∂z∂w from both sides.

We compute the central charge of free scalar fields using operator product expansion.

Proposition 2.3. Free Scalar Fields CFT

The system with D free scalar fields (Xµ) has central charge cX = D.

Proof. The Polyakov action in the flat Euclidean metric is given by

S =
1

2πα′

∫
Σ

d2z ∂Xµ∂Xµ.

We know that the path integral of a total derivative vanishes. Consider the equation:

0 =

∫
D [X]

δ

δXµ(z, z)

(
e−S Xν(w,w)

)
=

∫
D [X] e−S

(
1

πα′
∂∂Xµ(z, z)Xν(w,w) + ηµνδ2(z − w, z − w)

)
.

which, together with (2.12), implies that:

〈
∂∂Xµ(z, z)Xν(w,w)

〉
= πα′ηµνδ2(z − w, z − w) =

α′

2
ηµν∂∂ ln |z − w|2.

Integrating the above equation, we obtain the expectation

〈Xµ(z, z)Xν(w,w)〉 =
α′

2
ηµν ln |z − w|2. (2.14)
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The classical stress-energy tensor is given by

Tzz = − 1

α′
∂Xµ∂Xµ, Tzz = − 1

α′
∂Xµ∂Xµ, Tzz = 0.

When quantised, we need to put a normal ordering on the fields in the expression of

Tzz:

Tzz = − 1

α′
:∂Xµ∂Xµ: ,

where, consistent with the convention in Polchinski [3], the normal ordering is given by

:Xµ(z, z)Xν(w,w): := Xµ(z, z)Xν(w,w)− 〈Xµ(z, z)Xν(w,w)〉

= Xµ(z, z)Xν(w,w) +
α′

2
ηµν ln |z − w|2. (2.15)

The computation of the TT OPE is an application of the Wick’s Theorem (as in the QFT,

see §4.3 of Peskin & Schroeder [13]). We suppress the dependence on z.

α′2Tzz(z)Tzz(w) = :∂zX
µ(z)∂zXµ(z): :∂wX

µ(w)∂wXµ(w):

= :∂zX
µ(z)∂zXµ(z)∂wX

µ(w)∂wXµ(w):

− 4 · α
′

2
∂z∂w ln |z − w|2 :∂zX

µ(z)∂wXµ(w): +2ηµµ

(
−α
′

2
∂z∂w ln |z − w|2

)2

= α′2
(

D/2

(z − w)4
+

2T (w)

(z − w)2
+O((z − w)−1)

)
.

(2.16)

By comparing (2.16) with (2.10), we find that the free scalar fields have central charge

cX = D.

2.3 Central Charge of Ghost Fields

In this part we compute the central charge of the ghost conformal field theory in a similar manner

as above.

Proposition 2.4. Ghost Fields CFT

The bc ghost system described by the ghost action (2.1) has central charge cgh = −26.

Proof. For simplicity, we write b(z) := bzz, b(z) := bzz, c(z) := cz, c(z) := cz. The ghost action

(2.1) is given by

Sgh =
1

2π

∫
Σ

d2z
(
b∂c+ b∂c

)
.

Consider the path integral of the total derivative

0 =

∫
D [b]D [c]

δ

δb(z)

(
e−Sgh b(w)

)
=

∫
D [b]D [c] e−Sgh

(
− 1

2π
∂c(z)b(w) + δ2(z − w, z − w)

)
,

which, together with (2.12), implies that:〈
∂c(z)b(w)

〉
= 2πδ2(z − w, z − w) = ∂

(
1

z − w

)
.

By integration we obtain the operator product expansion of the ghosts are given by

c(z)b(w) = b(z)c(w) =
1

z − w
+ · · · ,
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in which an extra minus sign is picked up when exchanging the b and c, since these are

Grassmann-valued fields. The quantum stress-energy tensor Tzz is obtained by the normal

ordering of (2.2):

Tzz = 2 :∂c(z)b(z): + :c(z)∂b(z): ,

where

:b(z)c(w): = b(z)c(w)− 1

z − w
.

Next we can compute the TT OPE:

Tzz(z)Tww(w) = 4 :∂c(z)b(z): :∂c(w)b(w): +2 :∂c(z)b(z): :c(w)∂b(w):

+ 2 :c(z)∂b(z): :∂c(w)b(w): + :c(z)∂b(z): :c(w)∂b(w): .

The computation again follows from Wick’s Theorem. Since we need the central charge,

we only need to compute the (z − w)−4 terms, which come from the total contractions:

Tzz(z)Tww(w) = −4 〈b(z)∂c(w)〉 〈∂c(z)b(w)〉 − 2 〈∂c(z)∂b(w)〉 〈b(z)c(w)〉
− 2 〈∂b(z)∂c(w)〉 〈c(z)b(w)〉 − 〈c(z)∂b(w)〉 〈∂b(z)c(w)〉+O

(
(z − w)−2

)
=
−4 · 1

(z − w)4
+
−2 · 2

(z − w)4
+
−2 · 2

(z − w)4
+

−1

(z − w)4
+O

(
(z − w)−2

)
=

−13

(z − w)4
+O

(
(z − w)−2

)
.

Comparing the equation with (2.10), we deduce that the ghost fields have central charge

cgh = −26.

2.4 Weyl Anomaly

We have seen that the classical stress-energy tensor is traceless for a Weyl invariant theory. This

property does not survive in the quantum theory in general, which is a phenomenon known as the

Weyl anomaly. From another perspective, from (1.10) we note that the Polyakov path integral

Z[γ̂] a priori depends on the choice of the fiducial metric γ̂. It can be shown that the variation of

Z[γ̂] in the fiducial metric is proportional to the expectation 〈T aa〉. For a well-defined quantuam

theory, 〈T aa〉 must vanish.

Proposition 2.5. Weyl Anomaly

The vaccum expectation of the trace of the stress-energy tensor T satisfies

〈T aa〉 = − c

12
R (2.17)

where c is the central charge of the conformal field theory, and R is the scalar curvature of

the string worldsheet.

Proof. We adapt the proof from §4.4.2 of Tong [5].

〈T aa〉 is invariant under diffeomorphisms and Poincaré transformations, so it depends

on the geometry of the worldsheet metric. It should also vanish in the flat metric. By

dimensional reason, it should be a linear combination of the contractions of some curvature

tensors on the worldsheet. But we know that the 2-dimensional Riemann curvature Rabcd
has exactly one independent component, related to the scalar curvature R:

Rabcd =
1

2
R(γacγbd − γadγbc).
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Therefore 〈T aa〉 = a1R for some constant a1. Now we fix the worldsheet to the conformal

gauge γab = e2ω ηab. The Christoffel symbols and the scalar curvature are given by

Γcab = δca∂bω + δcb∂aω − ηabηcd∂dω; R = −2 e−2ω ηab∂a∂bω.

Let S = S[φ] be the action for some field φ (the specfic form is unimportant). Consider

the variation of the flat metric by an infinitesimal Weyl transformation: δγab = 2ωηab.

The variation of 〈T aa〉 is given by

δ 〈T aa(ξ)〉 = δ

∫
D [φ] eiS T aa(ξ)

=

∫
D [φ] eiS T aa(ξ)

∫
Σ

d2ξ′
√
−det γ

∂S

∂γbc
δγbc

= − 1

2π

∫
D [φ] eiS T aa(ξ)

∫
Σ

d2ξ′ ω(ξ′)T bb(ξ
′).

In complex coordinates, we have T aa(ξ)T
b
b(ξ
′) = 16Tzz(z, z)Tww(w,w). By Lemma 2.2,

we have

T aa(ξ)T
b
b(ξ
′) =

16cπ

6
∂z∂wδ

2(z − w, z − w) = −cπ
3
∂a∂

aδ2(ξ − ξ′).

Therefore

δ 〈T aa(ξ)〉 =
c

6

∫
D [φ] eiS d2ξ′ ω(ξ′)∂a∂

aδ2(ξ − ξ′)

=
c

6

∫
D [φ] eiS ∂a∂

aω(ξ)

= − c

12
e2ω(ξ) δR(ξ) ∼ − c

12
δR,

where in the second line, we used Green’s second identity and neglected any possible

boundary term. Hence we have a1 = − c

12
and 〈T aa〉 = − c

12
R.

By Proposition 2.5 we require that the conformal field theory of the worldsheet must have the

central charge c = cX + cgh = 0, where cX is the central charge contributed from the free scalar

fields Xµ, and cgh is the central charge contributed from the ghost fields. Combining Proposition

2.3 and 2.4, we deduce that the spacetime dimension is given by D = 26. This result agrees with

the critical spacetime dimension obtained by the old covariant quantisation and the lightcone

quantisation.

3 BRST Quantisation

So far we have quantised the Polyakov path integral with the physical fields X and ghost fields

b and c. We need to identify the physical states from the spectrum, which will be done by the

BRST quantisation. We introduce the BRST charge QB as a nilpotent Hermitian operator, where

the physical states are identified as the equivalence classes in the BRST cohomology HB.

3.1 Lie Algebra and BRST Cohomology

In this part we outline the homological algebra behind the BRST construction, following the notes

[14] by Figueroa-O’Farrill. This is also an expansion on the mathematical background mentioned

in §3.2.1 of Green, Schwarz & Witten [10].
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Let g be a finite-dimensional Lie algebra and let M be a g-module. Let Cp(g;M) :=
∧p g∨⊗M be

the space of p-forms on g with values in M . We define a differential δ : Cp(g;M)→ Cp+1(g;M)

by

• δm(x) = x(m) for x ∈ g and m ∈M ;

• (δα)(x, y) = −α([x, y]) for mx, y ∈ g and α ∈ g∨;

• extend it to
∧• g∨ by δ(α ∧ β) = δα ∧ β + (−1)|α|α ∧ δβ;

• extend it to
∧• g∨ ⊗M by δ(ω ⊗m) = δω ⊗m+ (−1)|ω|ω ∧ δm.

It follows from the Jacobi identity that δ2 = 0. Therefore (C•(g;M), δ) is a complex, called the

Chevalley–Eilenburg complex. The corresponding cohomology H•(g;M) is called the Lie

algebra cohomology of g with value in M .

We define two graded maps on
∧• g∨. For α ∈ g∨, we define ε(α) :

∧p g∨ →
∧p+1 g∨ by ε(α)ω :=

α ∧ ω. For x ∈ g, we define ι(x) :
∧p g∨ →

∧p−1 g∨ by ι(x)α := α(x) for α ∈ g∨ and extend it to∧• g∨ by ι(x)(α ∧ β) = ι(x)α ∧ β + (−1)|α|α ∧ ι(x)β. Then

ε(α) ◦ ι(x) + ι(x) ◦ ε(α) = α(x) id . (3.1)

Let (Ki) be a basis of g and (αi) be the corresponding dual basis of g∨. The Chevalley–Eilenburg

differential is given explicitly by

δ = ε(αi) ◦Ki −
1

2
ε(αi) ◦ ε(αj) ◦ ι([Ki,Kj ]) = ci

(
Ki −

1

2
fij

kcjbk

)
. (3.2)

where we have introduced the ghosts ci := ε(αi), the anti-ghosts bi := ι(Ki), and the structure

constants fij
k such that [Ki,Kj ] = fij

kKk. The identity (3.1) implies that the ghosts satisfy the

anti-commutation relation: {
ci, bj

}
= δij .

Now we consider g as the gauge algebra of a physical system M . The grading on the Chevalley–

Eilenburg complex is called the ghost number. We focus on the ghost number zero states. The

zeroth Lie algebra cohomology H0(g;M) = Mg, the g-invariant submodule of M . We can identify

this with the gauge invariant states without ghosts, which are the physical states of the system.

In the physics terminology, QB := δ is called the BRST operator, and HB := H0(g;M) is called

the BRST cohomology. After quantisation, HB will be the physical Hilbert space.

3.2 BRST Quantisation of Bosonic Strings

For bosonic strings, the gauge algebra g is realised as the infinite-dimensional Virasoro algebra

(2.6). We attempt to carry out the BRST quantisation scheme in the previous section. The

ghosts and anti-ghosts are the Fourier coefficients cn and bn in (2.3). The BRST operator (3.2)

with normal ordering is given by

QB =
∑
m∈Z

(
c−mL

X
m −

1

2

∞∑
n=−∞

(m− n) :c−mc−nbm+n:

)
− ac0

=
∑
m∈Z

:

(
LXm +

1

2
Lgh
m − aδm,0

)
cm: . (3.3)
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where we used the expression (2.5) for the ghost Virasoro generators. We quote the full BRST

symmetry of the system without proof:

[QB, X
µ] = (cz∂z + cz∂z)X

µ, {QB, bzz} = T tot
zz , {QB, bzz} = T tot

zz ;

{QB, c
z} = cz∂zc

z,
{
QB, c

z
}

= cz∂zc
z.

where T tot = TX + T gh. In terms of the Fourier modes we have

{QB, cm} = −
∑
n∈Z

(2m+ n)c−ncm+n, {QB, bm} = Lm = LXm + Lgh
m − aδm,0. (3.4)

In the infinite-dimensional case, the condition that Q2
B = 0 maybe anomalous. In fact we have

the following result.

Proposition 3.1. BRST Anomaly

The BRST operator satisfies Q2
B = 0 if and only if the Virasoro algebra (2.7) reduces to the

Witt algebra [Lm, Ln] = (m−n)Lm+n, which means that a = 1 and the spacetime dimension

D = 26.

Proof. We adapt the proof from §3.2.1 of Green, Schwarz & Witten [10].

A direct computation from (3.3) shows that

Q2
B =

1

2
{QB, QB} =

1

2

∑
m,n∈Z

([Lm, Ln]− (m− n)Lm+n) c−mc−n.

Therefore [Lm, Ln] = (m− n)Lm+n implies that Q2
B = 0. Conversely, if Q2

B = 0, then by

(3.4) we have

[Lm, QB] = [{QB, bm} , QB] = 0.

By the Jacobi identity we have

[Lm, Ln] = [Lm, {QB, bn}] = {QB, [Lm, bn]} = (m− n) {Q, bm+n} = (m− n)Lm+n.

For finite-dimensional g, we can define a ghost number operator N =
∑dim g

i=1 cibi whose eigenvalues

are the ghost numbers of the corresponding eigenstates. For the infinite-dimensional case, we need

to put a normal ordering. Our choice is

N :=
1

2
(c0b0 + b0c0) +

∞∑
m=1

(c−mbm + b−mcm) (3.5)

and define the ghost number of an eigenstate of N to be the associated eigenvalue (so is not

necessarily an integer).

3.3 Physical Hilbert Space

Now we address the problem of identifying the physical states. First we consider the ghost ground

states. For m = 0, the Hamiltonian H = L0 commutes with b0 and c0, which satisfies b20 = c2
0 = 0

and {c0, b0} = 1. Therefore we can introduce the degenerate states |↑〉 and |↓〉 such that:

c0 |↑〉 = 0, b0 |↓〉 = 0; b0 |↑〉 = |↓〉 , c0 |↓〉 = |↑〉 .
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With the ordering convention in (3.5), we note that |↑〉 and |↓〉 have ghost numbers +1/2 and

−1/2 respectively. We define the BRST physical states to be the states with ghost number

−1/2 which are annihilated by cn and bn for n > 0. The reason for choosing |↓〉 but not |↑〉 will

be clear after proving Proposition 3.2.

Before preceding, we recall the construction of the physical Hilbert space HOCQ in the old co-

variant quantisation. A state |χ〉 is said to be

• OCQ-physical, if (LXm − aδm,0) |χ〉 = 0 for all m > 0;

• spurious, if |χ〉 =
∑∞

m=1 L
X
−m |χm〉 for some |χm〉;

• null, if |χ〉 is both OCQ-physical and spurious.

We define the OCQ Hilbert space HOCQ to be the set of OCQ physical states quotient by the set

of null states. We have the following important result:

Proposition 3.2. BRST–OCQ Equivalence

The BRST cohomologyHB is equivalent to the physical Hilbert spaceHCQ from old covariant

quantisation.

Proof. We adapt the proof from §4.4 of Polchinski [3].

The proof has two parts. First, we need to prove that a state is OCQ-physical if and only

if it is a QB-cocycle with ghost number −1/2, i.e. QB |χ〉 = 0. Second, we need to prove

that a state is null if and only if it is a QB-coboundary, i.e. |χ〉 = QB |λ〉 for some state λ.

Step 1. Consider the state |χ〉 = |ψ〉X ⊗ |↓〉. We have

QB |χ〉 =

(
c0(LX0 − 1) +

∞∑
m=1

c−mL
X
m

)
|χ〉 . (3.6)

By separating the different ghost numbers, QB |χ〉 = 0 holds if and only if

(LX0 − 1) |ψ〉X = 0, LXn |ψ〉X = 0 for n > 0, (3.7)

which means that |χ〉 is a OCQ physical state with a = 1.

Step 2. Suppose that |χ〉 is a OCQ null state. Then it is a QB-cocycle and 〈χ|χ〉 = 0. By

the no ghost theorem 3.3, |χ〉 is a QB-coboundary.

Conversely, suppose that |χ〉 = QB |λ〉. Then |λ〉 has ghost number −3/2. We can expand

it as

|λ〉 =
∞∑
n=1

b−n ( |λn〉X ⊗ |↓〉) + (more ghost excitations).

Therefore we have

|χ〉 =

(
c0(LX0 − 1) +

∑
m∈Z

c−mL
X
m

)
|λ〉

=
∞∑
n=1

∑
m∈Z

cmL
X
−mb−n ( |λn〉X ⊗ |↓〉) =

∞∑
m=1

LX−m |λm〉X ⊗ |↓〉 .

Hence |χ〉 is a OCQ null state.
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Remark. For Step 1 of the proof, we also find that physics states cannot be built on |↑〉, since

the condition (LX0 − 1) |φ〉X = 0 would be missing.

We conclude this part by a famous result, the no ghost theorem for BRST quantisation.

Theorem 3.3. BRST No Ghost Theorem

The inner product 〈−|−〉 induced from the string spectrum is positive definite on the BRST

cohomology HB. More explicitly, for states with ghost number −1/2, the QB-cocyles have

positive norms and the QB-coboundaries have zero norms.

Proof. We omit the proof due to length limit of the report. This is a major theorem proven in

Kato & Ogawa [9]. Also see §4.4 of Polchinski [3]. A more homological approach to the

theorem is presented in Chapter 5 of Figueroa-O’Farrill [11].

Conclusion

In this report we have discussed the Faddeev–Popov procedure of the path integral quantisation

and the BRST quantisation of the bosonic strings. The central idea is to represent the worldsheet

gauge symmetries by the ghost fields b and c. In the Faddeev–Popov procedure, the ghosts are the

result of inverting the Faddeev–Popov determinant, which arises from fixing the gauge to some

fiducial metric. In the BRST quantisation, the ghosts are encoded in the Chevalley–Eilenburg

complex of the gauge Lie algebra.

In §2, we analysed the mode expansion, the Virasoro algebra, and conformal field theory of the

ghost fields. In this process we have shown that the Weyl anomaly and the Virasoro anomaly are

cancelled for the spacetime dimension D = 26, which agrees with the old covariant quantisation

and the lightcone quantisation.

In §3, we identified the physical Hilbert space as the BRST cohomology with ghost number −1/2

and proved that it is equivalent to the physical Hilbert space in the old covariant quantisation.

The no ghost theorem for BRST quantisation is quoted without proof. However, we note that the

proof of the theorem is homological algebra in nature, which reflects the vanishing of the BRST

cohomology in all higher ghost numbers (see Figueroa-O’Farrill [11]).

The use of conformal field theory is inevitable in this formalism, whence we include a subsection

to build up the necessary background. Due to length limit the discussion is kept at the minimum.

For example, the equivalence between two definitions of the central charge is not proven. This

can be found in §4.5 of Tong [5]. Also there are different notions of normal ordering appeared in

§2.1, §2.2, and §2.3 which have subtleties we did not discuss.

There are certain aspects of the path integral quantisation scheme that we did not elaborate on.

For example, the worldsheet topology may obstruct us from globally fixing the gauge to arbitrary

fiducial metric. This leads to the study of the moduli spaces of Riemann surfaces, which is

discussed in Chapter 5 of Polchinski [3] and §3.3 of Green, Schwarz & Witten [10].
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