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Question 1

Let X be a Hilbert space and A ∈ℬ(X ).

(a) Prove that Ker A = (Im A∗)⊥ and (Ker A)⊥ = Im A∗.

(b) Assume that A is a projection, i.e. A2 = A. Show that Im A is closed. Prove that

A = A∗ ⇐⇒ (Im A)⊥ = Ker A ⇐⇒‖A‖ É 1.

Deduce that either ‖A‖ = 1 or A = 0 provided that one of the above statements is true.

[Hint: To prove that ‖A‖ É 1 implies A = A∗, show that, for every given point in Im(I − A), the origin is the point in
Im A which is closest to that given point, and then use Q3 of Sheet 1 to show that Im A and Im(I − A) are orthogonal
complementary spaces.]

Proof. (a) For x ∈ ker A and y ∈ im A∗, let z ∈ X such that y = A∗z. Then
〈

x, y
〉= 〈x, A∗z〉 = 〈Ax, z〉 = 0. Hence x ∈ (im A∗)⊥. Hence

ker A ⊆ (im A∗)⊥.

Let x ∈ (im A∗)⊥. For y ∈ X , we have
〈

x, A∗y
〉 = 〈

Ax, y
〉 = 0. In particular, 〈Ax, Ax〉 = ‖Ax‖2 = 0. Hence Ax = 0 and

x ∈ ker A. Hence (im A∗)⊥ ⊆ ker A.

We deduce that ker A = (im A∗)⊥. Now taking orthogonal complements on both sides, we have (ker A)⊥ = (im A∗)⊥⊥. By
Proposition 1.2.8, we have (im A∗)⊥⊥ = im A∗. Hence (ker A)⊥ = im A∗.

(b) Consider the sequence {Axn}∞n=0 in im A such that Axn → y ∈ X as n →∞. By continuity of A,

Ay = lim
n→∞ A2xn = lim

n→∞ Axn = y

Hence y ∈ im A. We deduce that im A is closed.

• Suppose that A = A∗. Then by (a), ker A = (im A∗)⊥ = (im A)⊥.

• Suppose that ker A = (im A)⊥. By Projection Theorem, we have X = im A ⊕ (im A)⊥ = im A ⊕ ker A. For x ∈ X , let
x = y + z, where y ∈ im A and z ∈ ker A. By Pythagoras’ Theorem, ‖x‖2 = ∥∥y

∥∥2 +‖z‖2. Then we have

‖Ax‖ = ∥∥A(y + z)
∥∥= ∥∥Ay

∥∥= ∥∥y
∥∥=

√
‖x‖2 −‖z‖2 É ‖x‖

where we used the fact that A2 = A implies A|im A = id. We deduce that ‖A‖ É 1.

• Suppose that ‖A‖ É 1. Let x ∈ im A and u ∈ im(I − A). Note that we have Au = 0 and Ax = x, since A2 = A. Then

‖x‖ = ‖A(u −x)‖ É ‖u −x‖

which holds for all x ∈ im A and u ∈ im(I − A). By Question 3 of Sheet 1, we have 〈x,u〉 É 0 for all x ∈ im A and
u ∈ im(I − A). But u ∈ im(I − A) implies that −u ∈ im(I − A). So we also have 〈x,u〉 = −〈x,−u〉 Ê 0. Hence 〈x,u〉 = 0
for all x ∈ im A and u ∈ im(I − A).

Finally, for x, y ∈ X ,〈
Ax, y

〉= 〈
Ax, y − Ay

〉+〈
Ax, Ay

〉= 〈
Ax, Ay

〉= 〈
x − Ax, Ay

〉+〈
Ax, Ay

〉= 〈
x, Ay

〉= 〈
A∗x, y

〉
Hence A = A∗.

Now suppose that all of the above conditions holds of the projection A ∈ℬ(X ). Suppose that A 6= 0. Let x ∈ im A. Then
Ax = x. So

‖A‖ Ê ‖Ax‖
‖x‖ = 1

But we also have ‖A‖ É 1. Hence ‖A‖ = 1.

Question 2

Let X be a Hilbert space and U : X → X be a unitary operator.




























































































































































































































































2

(a) Show that Ker(I −U ) = Ker(I −U∗);

(b) Show that X = Im(I −U )⊕Ker(I −U );

(c) Show that limN→∞ 1
N

∑N−1
n=1 U n x = x if x ∈ Ker(I −U ) and limN→∞ 1

N

∑N−1
n=1 U n x = 0 if x ∈ Im(I −U );

(d) Deduce that, for each x ∈ X ,

lim
N→∞

1

N

N−1∑
n=1

U n x = P x

where P is the orthogonal projection onto Ker(I −U ).

Proof. First we note that U ∈ℬ(X ). This is not explicitly stated in the notes. The proof, however, is similar to the proof that self-
adjointness implies boundedness.

Suppose that {xn} is a sequence in X such that xn → x ∈ X and Uxn → z ∈ X as n →∞. For any y ∈ X , since U is surjective,
there exists w ∈ X such that y =U w . Then〈

z, y
〉= 〈

lim
n→∞Uxn , y

〉
= lim

n→∞
〈
Uxn , y

〉= lim
n→∞〈Uxn ,U w〉 = lim

n→∞〈xn , w〉 = 〈x, w〉 = 〈Ux,U w〉 = 〈
Ux, y

〉
Hence z =Ux. We deduce that the graph of U is closed. By closed graph theorem, U is bounded.

(a) U is bijective and U∗ =U−1. We have

x ∈ ker(I −U ) ⇐⇒ Ux = x ⇐⇒ U−1x = x ⇐⇒ U∗x = x ⇐⇒ x ∈ ker(I −U∗)

Hence ker(I −U ) = ker(I −U∗).

(b) From Question 1.(a), we know that (ker(I −U∗))⊥ = im(I −U ) (because (I −U∗)∗ = I −U∗∗ = I −U ). Since ker(I −U ) is
closed in X , by projection theorem and (a),

X = ker(I −U∗)⊕ (ker(I −U∗))⊥ = ker(I −U )⊕ im(I −U )

(c) For x ∈ ker(I −U ), Ux = x. Hence

lim
N→∞

1

N

N−1∑
n=1

U n x = lim
N→∞

1

N

N−1∑
n=1

x = lim
N→∞

N −1

N
x = x

Let {xn}∞n=0 ⊆ im(I −U ) such that xn → x ∈ im(I −U ) as n →∞. Let xn = (I −U )yn . Then

1

N

N−1∑
n=1

U n xk = 1

N

N−1∑
n=1

U n(I −U )yk = 1

N
(U −U N )yk

Note that ∥∥∥∥ 1

N
(U −U N )yk

∥∥∥∥É 1

N

(‖U‖+‖U‖N )∥∥yk
∥∥= 2

N

∥∥yk
∥∥→ 0

as N →∞. Hence

lim
N→∞

1

N

N−1∑
n=1

U n xk = lim
N→∞

1

N
(U −U N )yk = 0

Therefore∥∥∥∥∥ lim
N→∞

1

N

N−1∑
n=1

U n x − lim
N→∞

1

N

N−1∑
n=1

U n xk

∥∥∥∥∥É lim
N→∞

1

N

N−1∑
n=1

∥∥U n(x −xk )
∥∥= lim

N→∞
N −1

N
‖x −xk‖ = ‖x −xk‖→ 0

as k →∞. We deduce that

lim
N→∞

1

N

N−1∑
n=1

U n x = 0
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(d) Let x ∈ im(I −U ) and y ∈ ker(I −U ) = ker(I −U∗). Let {zn} ⊆ X such that (I −U )zn → x as n →∞. Then〈
x, y

〉= lim
n→∞

〈
(I −U )zn , y

〉= lim
n→∞

〈
zn , (I −U∗)y

〉= 0

Hence im(I −U ) ⊆ (ker(I −U ))⊥. By (b) we have in fact im(I −U ) = (ker(I −U ))⊥. Now the result of (c) shows that

lim
N→∞

1

N

N−1∑
n=1

U n = P

where P is the orthogonal projection onto ker(I −U ).

Question 3

Let X be a Hilbert space and let T ∈ℬ(X ).

(a) Prove that KerT T ∗ = KerT ∗ = (ImT )⊥.

(b) Assume that T is normal, i.e. T ∗T = T T ∗. Prove that ImT = ImT ∗.

(c) Prove that T is normal if and only if ‖T x‖ = ‖T ∗x‖ for all x ∈ X .

Proof. (a) From Question 1.(a) we know that kerT ∗ = (imT )⊥ (since T ∗∗ = T ). It is clear that kerT ∗ ⊆ ker(T T ∗). For x ∈ ker(T T ∗),∥∥T ∗x
∥∥2 = 〈

T ∗x,T ∗x
〉= 〈

T T ∗x, x
〉= 0

Hence x ∈ kerT ∗. Hence ker(T T ∗) ⊆ kerT ∗. We conclude that

ker(T T ∗) = kerT ∗ = (imT )⊥

(b) Similar to (a) we can prove that ker(T ∗T ) = kerT Since T is normal, we have kerT = kerT ∗. By Question 1.(a), we have

imT ∗ = (kerT )⊥ = (kerT ∗)⊥ = imT

(c) We have
‖T x‖2 = 〈T x,T x〉 = 〈

T ∗T x, x
〉= 〈

T T ∗x, x
〉= 〈

T ∗x,T ∗x
〉= ∥∥T ∗x

∥∥2

Hence ‖T x‖ = ‖T ∗x‖ for all x ∈ X .

Question 4

Let M be a complete metric space and, for each n ∈N, let An be a nowhere dense subset of M and Gn be a dense open subset
of M . Show that ∩n∈NGn is not contained in ∪n∈NAn .

Deduce thatQ is not the intersection of a countable number of open subsets of R.

Proof. The statements are true only if M 6=∅.

First we claim that X ⊆ M is nowhere dense if and only if M \ X contains a dense open subset of M . Let int(X ) denotes the
interior of X .

Suppose that X is nowhere dense. Then int(X ) =∅. Hence M = M \ int(X ) = M \ X . We see that M \ X contains M \ X , which
is a nowhere dense set. Conversely, suppose that M \ X contains a dense open set U . Then U ⊆ int(M \ X ) = M \ X , and hence

M =O = M \ X = M \ int(X ). Hence X is nowhere dense.

Since each Gn is dense open, M \Gn is nowhere dense. In particular, M \
⋂

n∈N
Gn = ⋃

n∈N
(M \Gn) is a countable union of nowhere

dense sets. Suppose that
⋂

n∈N
Gn ⊆ ⋃

n∈N
An . Then

M = ⋃
n∈N

An∪
(

M \
⋃

n∈N
An

)
= ⋃

n∈N
An∪

(
M \

⋂
n∈N

Gn

)
= ⋃

n∈N
An∪ ⋃

n∈N
(M \Gn)

is a countable union of nowhere dense sets, contradicting Baire Category Theorem. Hence
⋂

n∈N
Gn 6⊆ ⋃

n∈N
An .
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Suppose thatQ is a Gδ set. Then R\Q is a Fσ set. ButQ= ⋃
q∈Q

{q} is also a Fσ set. Therefore R=Q∪(R\Q) is a countable union

of closed sets, each of which is either contained in Q or in R \Q. By Baire Category Theorem, at least one of the closed sets
has non-empty interior. But bothQ and R\Q have empty interior. Contradiction. HenceQ is not a Gδ set.

Question 5

In this question, all sequence spaces are real.

(a) Consider a double sequence
(
an, j

)
such that for every fixed n, the sequence

(
an, j

)∞
j=1 belongs to c0. Suppose that

sup
n

∑
j

an, j b j <∞ for every b = (
b j

) ∈ `1

Show that supn, j

∣∣an, j
∣∣<∞.

(b) Suppose that
(
a j

)
is a scalar sequence such that

∑
j a j b j converges for all b = (

b j
) ∈ c0. Prove that

∑
j

∣∣a j
∣∣ converges.

[Hint: Consider the sequences Tn with entries Tn( j ) = a j if j É n and Tn( j ) = 0 if j > n. Use the principle of uniform
boundedness to show that (Tn) is bounded in `1.]

(c) Let 2 < p <∞ and let
(
cm,n

)
be a double sequence such that, for every fixed m,∑

n
cm,n anbn converges for every a = (an) ,b = (bn) ∈ `p

and

sup
m

∑
n

cm,n anbn <∞ for every a = (an) ,b = (bn) ∈ `p

Prove that, for q = p
p−2 ,

sup
m

∑
n

∣∣cm,n
∣∣q <∞

Proof. (a) For each n ∈N, we define Tn : `1 →R by

Tn

(
{b j }∞j=0

)
=

∞∑
j=0

an, j b j

Since {b j }∞j=0 ∈ `1,
∑

j |b j | <∞. Since {an, j }∞j=0 ∈ c0, it is bounded by some constant Mn > 0. Hence

∣∣Tn({b j })
∣∣É ∞∑

j=0
|an, j b j | É Mn

∞∑
j=0

|b j | <∞

Therefore Tn is well-defined and bounded by Mn . In particular Tn ∈ℬ(`1,R).

By hypothesis, we know that
sup
n∈N

Tn({b j }) = sup
n∈N

|Tn({b j })| <∞

for each {b j } ∈ `1. By the uniform boundedness principle, {Tn : n ∈ N} is uniformly bounded in ℬ(`1,R) by some
constant M > 0. Hence for any {bk }∞k=0 ∈ `1, we have∣∣∣∣∣ ∞∑

k=0
an,k bk

∣∣∣∣∣É M
∞∑

k=0
|bk |

Take bk = δ j ,k . We deduce that ∣∣an, j
∣∣É M

which holds for all n, j ∈N. Therefore supn, j |an, j | É M <∞.

(The result can also be directly deduced from the uniformly boundedness of {Tn} and the isometric isomorphism
(`1)∗ =ℬ(`1,R) ∼= `∞.)
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(b) For each n ∈N, define Tn : c0 →R by

Tn({b j }) =
n∑

j=0
a j b j

Then for each {b j } ∈ c0,

|Tn({b j })| =
∣∣∣∣∣ n∑

j=0
a j b j

∣∣∣∣∣É (n +1) sup
0É jÉn

|a j b j | É (n +1) sup
0É jÉn

|a j | · ‖b‖∞

Hence each Tn is bounded. {Tn} ⊆ c∗0 .

For each fixed {b j } ∈ c0,

sup
n∈N

|Tn({b j })| = sup
n∈N

∣∣∣∣∣ n∑
j=0

a j b j

∣∣∣∣∣<∞

because
∑

j a j b j converges. Note that c0 is a Banach space (being the closed subspace of `∞). By the uniform bound-
edness principle, {Tn} is uniformly bounded in c∗0 by some constant M > 0.

We know from Functional Analysis I that there exists an isometric isomorphism `1 ∼= c∗0 , given by

{xn} 7→
(
{yn} 7→

∞∑
n=0

xn yn

)
If we identify the two spaces, we have Tn ∈ `1 such that Tn( j ) = a j 1{ jÉn}. The uniform boundedness gives

sup
n∈N

‖Tn‖ = sup
n∈N

n∑
j=0

|a j | =
∞∑

j=0
|a j | <∞

Therefore {an} ∈ `1.

(c) This part is essentially (a) + (b) + Hölder’s inequality.

For (dn) ∈ `p/2, take (an), (bn) ∈ ` such that

an =
√

|dn |, bn =
{√

|dn |, dn Ê 0

−
√

|dn |, dn < 0

Then dn = anbn . Therefore, for every fixed m,∑
n

cm,ndn converges for every d = (dn) ∈ `p/2

and

sup
m

∑
n

cm,ndn <∞ for every d = (dn) ∈ `p/2

Let Sk,m : `p/2 →R defined by

Sk,m({dn}) :=
k∑

n=0
cm,ndn

Note that for q = p/(p −2), (p/2)−1 +q−1 = 1. By Hölder’s inequality,

∣∣Sk,m({dn})
∣∣É k∑

n=0
|cm,ndn | É

k∑
n=0

|cm,n |q
k∑

n=0
|dn |p/2 É ‖d‖p/2

k∑
n=0

|cm,n |q

Hence Sk,m is bounded. {Sk,m} ⊆ (`p/2)∗ ∼= `q . In addition, we also have

sup
k∈N

∣∣Sk,m({dn})
∣∣É ‖d‖p/2

k∑
n=0

|cm,n |q

Hence by uniform boundedness principle,
sup
k∈N

∥∥Sk,m
∥∥< Km
















































































































































































































































6

for some Km > 0. Given the identification (`p/2)∗ = `q , we have

∞∑
n=0

|cm,n |q = sup
k∈N

k∑
n=0

|cm,n |q = sup
k∈N

∥∥Sk,m
∥∥< Km

Hence {cm,n}∞n=0 ∈ `q for each m ∈N.

Next, define Tm : `p/2 →R by

Tm({dn}) :=
∞∑

n=0
cm,ndn

By Hölder’s inequality again,

|Tm({dn})| É
∞∑

n=0
|cm,ndn | É

∞∑
n=0

|cm,n |q ‖{dn}‖p/2

Hence Tm is bounded. Tm ∈ (`p/2)∗ = `q . Fix {dn} ∈ `p/2. By hypothesis we have

sup
m∈N

∞∑
n=0

cm,ndn = sup
m∈N

∞∑
n=0

|cm,ndn | = sup
m∈N

|Tm({dn})| <∞

By the uniform boundedness principle,
sup
m∈N

‖Tm‖ <∞

Hence

sup
m∈N

∞∑
n=0

|cm,n |q = sup
m∈N

‖Tm‖q <∞

Question 6

(a) Let X be a real Banach space, Y and Z be real normed vector spaces, and B : X ×Y → Z be bilinear (i.e., linear in each
variable). Suppose that for each x ∈ X and y ∈ Y , the linear maps B x : Y → Z and By : X → Z defined

B x (y) = B(x, y) = By (x)

are continuous. Use the principle of uniform boundedness to prove that there exists a constant K such that ‖B(x, y)‖ É
K ‖x‖‖y‖ for all x ∈ X and y ∈ Y . Deduce that B is continuous.

(b) Let X and Y both be the subspace of L1(0,1) consisting of polynomials, Z =R and

B( f , g ) =
∫ 1

0
f g dt

Show that the bilinear form B is continuous in each variables but it is not continuous.

[To put things in perspective, please note that even on R2, for nonlinear functions, separate continuity does not imply
joint continuity. A standard example is the function f (x, y) = x y

x2+y2 for (x, y) 6= 0 and f (0,0) = 0. ]

Proof. (a) We know that a linear map between two normed vector spaces is continuous if and only if it is bounded.

First we fix x ∈ X . Since B x : Y → Z is continuous, there exists Kx > 0 such that for each y ∈ Y ,∥∥B x (y)
∥∥

Z É Kx
∥∥y

∥∥
Y

Consider the family of operators
{
By : y ∈ Y ,

∥∥y
∥∥= 1

}⊆ℬ(X , Z ). For each fixed x ∈ X , we have∥∥By (x)
∥∥

Z = ∥∥B x (y)
∥∥

Z É Kx
∥∥y

∥∥
Y = Kx

Since X is a Banach space, by the uniform boundedness principle, there exists K > 0 such that
∥∥By

∥∥< K for each y ∈ Y
with

∥∥y
∥∥= 1.
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Now, for x ∈ X and y ∈ Y ,

∥∥B(x, y)
∥∥

Z = ∥∥y
∥∥

Y

∥∥∥∥∥B

(
x,

y∥∥y
∥∥

Y

)∥∥∥∥∥= ∥∥y
∥∥

Y

∥∥∥By/‖y‖Y
(x)

∥∥∥É K ‖x‖X
∥∥y

∥∥
Y

Finally, we equip X ×Y with the norm
∥∥(x, y)

∥∥
X×Y := ‖x‖X +∥∥y

∥∥
Y . Fix (x, y) ∈ X ×Y . For ε> 0, for (x ′, y ′) ∈ X ×Y such

that
∥∥(x, y)− (x ′, y ′)

∥∥< ε,∥∥B(x, y)−B(x ′, y ′)
∥∥

Z = ∥∥B(x, y)−B(x ′, y)+B(x ′, y)−B(x ′, y ′)
∥∥

Z

= ∥∥B(x −x ′, y)+B(x ′, y − y ′)
∥∥

Z

= ∥∥B(x −x ′, y)+B(x, y − y ′)+B(x ′−x, y − y ′)
∥∥

Z

É ∥∥B(x −x ′, y)
∥∥

Z +∥∥B(x, y − y ′)
∥∥

Z +∥∥B(x ′−x, y − y ′)
∥∥

Z

É K
∥∥x −x ′∥∥

X

∥∥y
∥∥

Y +K ‖x‖X
∥∥y − y ′∥∥

Y +K
∥∥x −x ′∥∥

X

∥∥y − y ′∥∥
Y

É K
(‖x‖X +∥∥y

∥∥
Y +ε)ε

Hence B is continuous at (x, y). We deduce that B is continuous on X ×Y .

(b) Fix g ∈ Y . Since g is a polynomial on (0,1), it is continuous on [0,1] and hence bounded on (0,1). That is,
∥∥g

∥∥∞ <∞.
For { fn} ⊆ X such that fn → f ∈ X in L1 norm as n →∞, by Hölder’s inequality,∥∥∥∥∫ 1

0
( fn − f )g dt

∥∥∥∥É ∥∥ fn − f
∥∥

1

∥∥g
∥∥∞ → 0

as n →∞. Hence f 7→
∫ 1

0
f g dt is continuous. Similarly, g 7→

∫ 1

0
f g dt is also continuous.

Suppose that B is continuous. We claim that B is bounded in the sense of (a).

Since B is continuous at (0,0), there exists δ> 0 such that for (x, y) ∈ X ×Y ,
∥∥(x, y)

∥∥ < δ implies that |B(x, y)| É 1. Now
for all x ∈ X and y ∈ Y ,

|B(x, y)| = ‖x‖
δ

∥∥y
∥∥
δ

∣∣∣∣B(
δ

‖x‖x,
δ∥∥y
∥∥ y

)∣∣∣∣É δ−2 ‖x‖∥∥y
∥∥

which proves the claim.

Suppose that fn = (n +1)xn ∈ X = Y . Then

∥∥ fn
∥∥

1 =
∣∣∣∣∫ 1

0
(n +1)xn dx

∣∣∣∣= 1

But

|B( fn , fn)| =
∣∣∣∣∫ 1

0
(n +1)2x2n dx

∣∣∣∣= (n +1)2

2n +1
→∞

as n →∞. Therefore there is no constant M > 0 such that |B( fn , fn)| É K
∥∥ fn

∥∥2
1 for all n ∈N. This is a contradiction. we

conclude that B is not continuous.


























