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Question 1
Let X be a Hilbert space and A € B(X).
(a) Prove that Ker A= (Im A*)L and (Ker A)1 =Tm A*.

(b) Assume that A is a projection, i.e. A% = A. Show that Im A is closed. Prove that
A=A* < (ImA)' =KerA < ||A| <1.

Deduce that either || A]l = 1 or A =0 provided that one of the above statements is true.

[Hint: To prove that | Al < 1 implies A = A*, show that, for every given point in Im(I — A), the origin is the point in
Im A which is closest to that given point, and then use Q3 of Sheet 1 to show that Im A and Im(I — A) are orthogonal
complementary spaces.]

Proof. (a) For x € ker A and y‘?ﬂl*, let z € X such that y = A*z. Then {x, y) = (x, A*z) = (Ax, z) = 0. Hence x € (im A*)*. Hence
ker Ac (im A*)*.

Let x € (im A*)*. For yeX, we haW*y) = (Ax,y) = 0. In particular, (Ax, Ax) = | Ax||> = 0. Hence Ax = 0 and
x € ker A. Hence (im A*)+ c ker A.

We deduce that ker A = (im A*)*. Now taking orthogonal complements Wth sides, we have (ker A)* = (im A*)*L. By
Proposition I.Z.Mve have (im A*)1+ = im A*. Hence (ker A)+ = im A*.

(b) Consider Y sequence {Ax,}° , in im A such that Ax;, — y € X as n — oo. By continuity of A,
n=0 y y ty

Not  ——— & |
Unigue Ay= lim A%, = lim Ax, =y alteachoely mle Hof-

A= ker(T-AY

\2\}

Hence y € im A. We deduce that im A is closed. /
* Suppose that A= A*. Then by (a), ker A = (im A*)* = (im A)*. /

* Suppose that ker A = (im A)1. By Projection Theorem, we have X = im A® (im A)* = im A & ker A.‘{or x € X, let
X =y+z,where y €im A and z € ker A. By Pythagoras’ Theorem, lxlI? = ||y||2 + || z||%. Then we have

IAxl = || Ay +2)| = [ Ay] = ||y = VIxI* = lIz1* < l1x]

where we used the fact that A% = A implies Al )‘/: id. We deduce that || Al < 1. /

* Suppose that | Al < 1. Let x € im A and u € im(I — A). Note that we have Au =0 and Ax = x, since A> = A. Then

lxlh =IA(uw - )|l < lu—x| \/

which holds for all x € im A and u € im(I — A). By Question 3 of Sheet 1, we have (x,u) < 0 for all x € im A and
ue€im(l — A). But u € im(I — A) impljes that —u € im(I — A). So we also have (x, u) = — (x,—u) = 0. Hence (x,u) =0
forall xeim Aand u €im(I — A).

Finally, for x, y € X,

(Ax,y) = (Ax,y = Ay) +(Ax, Ay) = (Ax, Ay) = (x = Ax, Ay) + (Ax, Ay) = (x, Ay) = (A" x, y)

Hence A= A*.
Now suppose that all of the above conditions holds of the projection A € 9% (X). Suppose that A #0. Let x € im A. Then
Ax=x.So
lAxIl
Al = =1
Il
But we also have || A|| < 1. Hence | Al = 1. / O
Question 2

Let X be a Hilbert space and U : X — X be a unitary operator.




























































































































































































































































(a) ShowthatKer(I-U)=Ker(I-U");
(b) Show that X =Im(I - U) @ Ker(I - U);
(c) Show thatlimy—co & X' U"x = x if x € Ker(I - U) and limpy—.qo 5 X N= U"x = 0if x e Im(I - U);
(d) Deduce that, for each x € X,
N-1

1
lim — Z U"x=Px
N—oco N -1

where P is the orthogonal projection onto Ker(I — U).

Proof. First we note that U € 93(X). This is not explicitly stated in the notes. The proof, however, is similar to the proof that self-
adjointness implies boundedness.

Suppose that {x,} is a sequence in X such that x, — x € X and Ux,, — z€ X as n — oo. For any y € X, since U is surjective,
there exists w € X such that y = Uw. Then

(z,y)= < lim an,y> = lim (Uxp,y) = lim (Ux,, Uw) = lim (x,, w) = (x,w) = (Ux%w) (Ux,y)
o e nmee e e :‘1\1.7" s an
Hence z = Ux. We deduce that the graph of U is closed. By closed graph theorem, U is bounde'éwe*l') """‘e"l‘“'ff'_j IWP’lCS Hf

s bouuded.
(a) Uisbijective and U* = U~!. We have ” Use |l = “,_“

x€ker(I—(7: Ux=x < U lx=x = U*x=x < xekerU-U") bjd”g"”'b“‘

/

(b) From Question 1.(a), we know that (ker(I — U*))* =im(I - U) (because (I - U*)* = - U** = I - U). Since ker(I - U) is
closed in X, by projection theorem and (a),

Hence ker(I —U) =ker(/ - U™).

X =ker(I-U*)® (ker(I- U*))* = ker(I - U) @ im(I - U) ‘/

n —
llm— E U'x= llm— E x—}\%lrn X=X

n

(c) For xeker(I—U), Ux = x. Hence

Let {x,}97, <im(I - U) such that x,, — x € im(I - U) as n — oo. Let x, = (I = U) y». Then

18- 1N 1 v
N ; = ; (I—U)yk—N(U—U )Yk
Note that . . ) /
”N(U—U’V)yk <N(||U||+||U||N)"}’kn:N”J’k”_’o
as N — oco. Hence
im L5 U= im Lw-vMpe=0
N N & T NN Ve=
Therefore
1 N-1 N-1 N-1
Aim Z U'x- lim — Z U"xi|l < lim — Z [U"(x=x0)| = dim. llx = xill = llx = xx |l = 0

as k — oo. We deduce that

hmiZU”x 0 /

N—oo N

















































































































































































































































































































































































(d) Letxeim(I—U)and ye€ker(I —U) =ker(I—U"). Let {z,} < X such that (I - U)z,, — x as n — co. Then
(x,y)= lim (I = U)zp,y) = lim (2,,(I-U")y)=0

Hence im(I — U) < (ker(I — U))*. By (b) we have in fact im(I — U) = (ker(I — U))*. Now the result of (c) shows that

1 N-1
lim — ) U"=P
N—oo N ;71

where P is the orthogonal projection onto ker(I — U). ‘/ O

Question 3
Let X be a Hilbert space and let T € % (X).
(a) Prove thatKerTT* =KerT* =(ImT)".
(b) Assume that T is normal,i.e. T*T = TT*. Prove thatIm T =Im T*.

(c) Prove that T is normal if and onlyif | Tx|| = | T* x| for all x € X.

/

Proof. (a) From Question 1.(a) we know that ker T* = (im T)* (since T** = T). Itis clear that ker T* S ker(T T*). For x € ker(T T*),
* _[12 * * *
/ | T*x||"=(T"x, T*x)=(TT"x,x)=0
Hence x € ker T*. Hence ker(T T*) c ker T*. We conclude that /
s ker(TT")=kerT" = (im )t

/

(b) Similar to (a) we can prove that ker(T* T) =ker T Since T is normal, we have ker T = ker T*. By Question 1.(a), we have
imT* = (kerT)* = (ker T*)* =im T S

(c) We have
ITxI? = (Tx, Tx) = (T* T, x) = (TT*x,x) = (T*x, T*x) = | T* x||”

Hence | Tx|| = | T* x| for all x € X. Ve Whet Ql:aw/ ) l_;" "= ”—r »}x" = _r-;t.-)— :——«)—-* ? 0

Question 4

Let M be a complete metric space and, for each n € N, let A,, be a nowhere dense subset of M and G, be a dense open subset
of M. Show that N, NGy, is not contained in Uj,enAj,.

Deduce that Q is not the intersection of a countable number of open subsets of R.

Proof. The statements are true only if M # .

First we claim that X € M is nowhere dense if and only if M \ X contains a dense open subset of M. Let int(X) denotes the
interior of X.

Dense Suppose that X is nowhere dense. Then int(X) = @. Hence M = M \int(X) = M \ X. We see that M\ X contains M \ X, which
is . Conversely, suppose that M\ X contains a dense open set U. Then U < int(M\ X) = M\ X, and hence

"\ — T = _—
O\x M=0=M\X=M\int(X). Hence X is nowhere dense.

' Since each Gy, is dense open, M\ G, is nowhere dense. In particular, M\ (] G, = | (M\Gp) is a countable union of nowhere
neN neN
dense sets. Suppose that [| G, < | An. Then

neN neN

/
M= AnU(M\ U An)z U AnU(M\ N Gn)z U AU JMm\Gp

neN neN neN neN neN neN

is a countable union of nowhere dense sets, contradicting Baire Category Theorem. Hence (| G, £ | An. ./
neN neN


























































































































































































































































































S

Suppose that Q is a G5 set. Then R\ Q is a F; set. But Q = U {g} is also a F; set. Therefore R = QU (R\ Q) is a countable union

qeQ
of closed sets, each of which is either contained in @ or in R\ Q7 By Baire Category Theorem, at least one of the closed sets
has non-empty intergy{ But both Q and R\ Q have empty interigy%ontradiction. Hence Q is not a Gy set. ./ O
Question 5

In this question, all sequence spaces are real.

(a) Consider a double sequence (ap, j) such that for every fixed n, the sequence (ay, j)(;il belongs to cy. Suppose that

SLrllpZan,jbj <ooforevery b= (b;) € ¢!
j

Show that sup,, ; |an,j| < oo.
(b) Suppose that (a;) is a scalar sequence such that ¥" ; a;b; converges for all b = (b;) € co. Prove that ¥ |a;| converges.

[Hint: Consider the sequences T,, with entries T, (j) = a;j if j < n and T,(j) = 0 if j > n. Use the principle of uniform
boundedness to show that (T},) is bounded in ¢1.)

(c) Let2 < p<ooand let [cm, n) be a double sequence such that, for every fixed m,

Z Cm,nanby, converges for every a = (ap), b = (by) € ¢°
n

and

Sup)_ cmnanby < ocoforevery a = (a),b=(b,) € (¥
m n

- _P

Prove that, for g P2’

sup§:|qmnr7<co
m n

Proof. (a) For each neN, we define T, : ! — R by

00 /
T (16j12) = Y anjb;
j=0
Since {bj}}?ozo el Zj |bj| < oo. Since {an'j}‘]?‘;o € ¢, it is bounded by some constant M, > 0. Hence
| Ta(ibjh] < 3 1an,jbjl < My ) |bjl <oo
j=0 j=0

Therefore T, is well-defined and bounded by M,,. In particular T, € % (¢ I R). /

By hypothesis, we know that
sup T ({b;}) =sup|T,({b;}| < 00
neN neN
for each {b;} € /', By the uniform boundedness principle, {T,, : n € N} is uniformly bounded in % (¢!,R) by some

constant M > 0. Hence for any {bk}fzo € ¢!, we have

o0
<MY |bgl
k=0

(o)
Y an bk
k=0

Take by = 6 j ;.. We deduce that
|amj|sﬂ4

which holds for all n, j € N. Therefore sup,, ; |a,,j| < M < oo.

(The result can also be directly deduced from the uniformly boundedness of {7} and the isometric isomorphism
(0h* =B, R) =™

































(b) Foreach neN, define T;,:co — R by /
n
Ty(ib}) = Z ajbj

Jj=0
Then for each {b;} € c,

IT,({bjh] = <(n+1) sup lajbjl<(n+1) sup la;l bl

0<js<n 0<js<n

n
2 ajb;
Jj=0

Hence each T}, is bounded. {T,,} S c;.

For each fixed {b;} € co, /
n
2 ajb

sup| T, ({b;})| = sup | <oo
neN neN

j=0
because }_; a;b; converges. Note that ¢, is a Banach space (being the closed subspace of £°°). By the uniform bound-
edness principle, {T;} is uniformly bounded in c; by some constant M > 0.

We know from Functional Analysis I that there exists an isometric isomorphism ¢! = ¢y » given by

{%Xn} — ({yn}H Y xnyn) /

n=0

If we identify the two spaces, we have T}, € ¢! such that T,,(j) = a i1{j<n. The uniform boundedness gives

n oo
sup[ T, =sup Y lajl= ) |ajl <oco
neN neNj:o j=0

Therefore {a,} € ¢!. ‘/

(c) This partis essentially (a) + (b) + Holder’s inequality.
For (d,) € £P'2, take (ay,), (b,) € f’;uch that

Vidal, dy=0
an =+ \dnl, by, =
" " " {—\/|dn|, dn <0

Then d,, = a,b,. Therefore, for every fixed m,

> Z cm,ndn converges for every d = (d,) € ¢r? /
n

and
sup Y. ¢y, ndy < oo for every d = (d,) € £P"* -/
m n
Let S, : €72 — R defined by /
k
Sk,m({dn}) = Z Cm,ndn
n=0

Note that for g = p/(p—2), (p/2)"' + g~' = 1. By Holder’s inequality, |

2
< P =
k k k k 9
|Sk,m({dn})| < Z [¢m,ndnl S(Z |Cm,n|q |dn|p/2 < ”d”p/Z Z |Cm,n|q
n=0 n=0 =0 n=0

Hence Sy, is bounded. {Sk,;;} (¢P'2)* = ¢4 1In addition, we also have
to

|
\ o —_
?Cug |Sk,m({dn})| } ||d"p/2(yz |Cm,n|q) i 'L[J w th) j ay

M Anaw 7%: Sweq

sp skl <K convenes 2

Hence by uniform boundedness principle,
















































































































































































































































for some K;,, > 0. Given the identification (¢7/2)* = ¢4, we have .

Z|Cmn|q:supz|Cmn|q—supHSkm”<Km /

n=0 keN n=
Hence {c/n,n}5, € ¢9 for each m e N.
Next, define T}, : £”/2 — R by

Tmdnt) = Z Cm,ndn
n=0

By Holder’s inequality again,

| T (dpD) < Z lem,ndnl < Z |Cm,n|q||{dn}”p/2 /

n=0 n=0

Hence Ty, is bounded. T, € (¢P'2)* = ¢9. Fix {d,,} € ¢P'2. By hypothesis we have

sup Z Crmyndn = sup Z |Cm,ndn| = supITm({dn})l <oo /

meN p=0 meN n=0

By the uniform boundedness principle,

sup | Tl < oo
meN

Hence

supZIcmnlq—supIITm||q<oo O

meN n=0 meN

Question 6

(a) Let X be areal Banach space, Y and Z be real normed vector spaces, and B: X x Y — Z be bilinear (i.e., linear in each
variable). Suppose that for each x € X and y € Y, the linear maps B*: Y — Z and By : X — Z defined

B*(y) = B(x,y) = By(x)

are continuous. Use the principle of uniform boundedness to prove that there exists a constant K such that || B(x, y)|| <
K|l x|yl forall x € X and y € Y. Deduce that B is continuous.

(b) Let X and Y both be the subspace of LY0,1) consisting of polynomials, Z = R and

1
B(f,g) = fo fgdt

Show that the bilinear form B is continuous in each variables but it is not continuous.

[To put things in perspective, please note that even on R?, for nonlinear functions, separate continuity does not imply
joint continuity. A standard example is the function f(x, y) = for (x,y) #0and f(0,0) =0.]

x2+ 2
Proof. (a) We know that a linear map between two normed vector spaces is continuous if and only if it is bounded.

First we fix x € X. Since B*: Y — Z is continuous, there exists K, > 0 such that for each y € Y,

B Wl < Kellylly

= 1} c % (X, 7). For each fixed x € X, we have

Consider the family of operators {B,

18,0, = 1B, <Kelyly =K ./ /

Since X is a Banach space, by the uniform boundedness principle, there exists K > 0 such that || By, H <K foreachyeY
with ||y|| =1.



























Now, forxe Xand yeY,

[BCe»ll, =yl

B(x, W)” = Wl | By, @ < Kietx I

Finally, we equip X x Y with the norm ||(x, )| y .y := llxllx + || ¥|| y- Fix (x, ) € X x Y. For £ > 0, for (x, ') € X x Y such
that ||(x,y) - (', )| <&,

|Bx,y») =B, y)| , =|Bx,y) - Bx',y) + B(x',y) - B(xX', Y|,
=|Bx-x,»)+B&,y-y|,
=|Bx-x,»)+Bx,y-y)+B -x,y-y)|,
<[Bax=x'\nz+[Bty=ylz+[B& - xy-,
<K[x-x x|yl +Kixlx [y ¥y + Kllx =2y [ly =¥y
<K(Ixlx+|y|y+¢)e

Hence B is continuous at (x, ). We deduce that B is continuous on X x Y.

(b) Fix g €Y. Since g is a polynomial on (0, 1), it is continuous on [0,1] and hence bounded on (0,1), Ahat s, || g| ., < oo.

For {f,} € X such that f;, — f € X in L! norm as n — oo, by Hélder’s inequality,

<lfn=1li gl =0 /

1 1
as n — oo. Hence f — f fgdtis continuous. Similarly, g — f fgdtis also continuous. \/
0 0

I fu-Pgd

Suppose that B is continuous. We claim that B is bounded in the sense of (a).

Since B is continuous at (0,0), there exists 6 > 0 such that for (x,y) e X x Y, “ (x,9) || < ¢ implies that |B(x, y)| < 1. Now
forallxe Xand yeY,

IB(x, y)| = === |B| —x, —y|| <6 lxll |y

Ixl lyll| (6 &
5% B(uxn '||y|;y)

which proves the claim. /
Suppose that f;, = (n+1)x" € X =Y. Then

1
fall =] [ 0| =1
But 1 2
- 2 2ny |_(m+ D7
|B(fnrfn)|—‘j; (n+1)°x“"dx _—2n+1

as n — oo. Therefore there is no constan‘% such that |B(fy, f)| < K | fn ”? for all n € N. This is a contradiction. we
conclude that B is not continuous. O



























