Peize Liu St. Peter's College University of Oxford

Problem Sheet 2

B4.2: Functional Analysis II

Question 1

Let X be a Hilbert space and $A \in \mathcal{B}(X)$.

- (a) Prove that $\operatorname{Ker} A = (\operatorname{Im} A^*)^{\perp}$ and $(\operatorname{Ker} A)^{\perp} = \overline{\operatorname{Im} A^*}$.
- (b) Assume that A is a projection, i.e. $A^2 = A$. Show that Im A is closed. Prove that

$$A = A^* \iff (\operatorname{Im} A)^{\perp} = \operatorname{Ker} A \iff ||A|| \le 1.$$

Deduce that either ||A|| = 1 or A = 0 provided that one of the above statements is true.

[Hint: To prove that $||A|| \le 1$ implies $A = A^*$, show that, for every given point in Im(I - A), the origin is the point in $\operatorname{Im} A$ which is closest to that given point, and then use Q3 of Sheet 1 to show that $\operatorname{Im} A$ and $\operatorname{Im}(I-A)$ are orthogonal complementary spaces.]

(a) For $x \in \ker A$ and $y \in \operatorname{ipp} A^*$, let $z \in X$ such that $y = A^*z$. Then $\langle x, y \rangle = \langle x, A^*z \rangle = \langle Ax, z \rangle = 0$. Hence $x \in (\operatorname{im} A^*)^{\perp}$. Hence Proof. $\ker A \subseteq (\operatorname{im} A^*)^{\perp}$.

Let $x \in (\operatorname{im} A^*)^{\perp}$. For $y \in X$, we have $\langle x, A^*y \rangle = \langle Ax, y \rangle = 0$. In particular, $\langle Ax, Ax \rangle = \|Ax\|^2 = 0$. Hence Ax = 0 and $x \in \ker A$. Hence $(\operatorname{im} A^*)^{\perp} \subseteq \ker A$.

We deduce that $\ker A = (\operatorname{im} A^*)^{\perp}$. Now taking orthogonal complements on both sides, we have $(\ker A)^{\perp} = (\operatorname{im} A^*)^{\perp \perp}$. By Proposition 1.2.8 we have $(\operatorname{im} A^*)^{\perp \perp} = \overline{\operatorname{im} A^*}$. Hence $(\ker A)^{\perp} = \overline{\operatorname{im} A^*}$.

(b) Consider $\bigoplus_{n=0}^{\infty}$ sequence $\{Ax_n\}_{n=0}^{\infty}$ in im A such that $Ax_n \to y \in X$ as $n \to \infty$. By continuity of A,

$$Ay = \lim_{n \to \infty} A^2 x_n = \lim_{n \to \infty} Ax_n = y$$

 $Ay = \lim_{n \to \infty} A^2 x_n = \lim_{n \to \infty} Ax_n = y$ alternatively note that In A = ker(I-A).

Hence $y \in \text{im } A$. We deduce that im A is closed. \checkmark

- Suppose that $A = A^*$. Then by (a), $\ker A = (\operatorname{im} A^*)^{\perp} = (\operatorname{im} A)^{\perp}$.
- Suppose that $\ker A = (\operatorname{im} A)^{\perp}$. By Projection Theorem, we have $X = \operatorname{im} A \oplus (\operatorname{im} A)^{\perp} = \operatorname{im} A \oplus \ker A$. For $x \in X$, let x = y + z, where $y \in \text{im } A$ and $z \in \text{ker } A$. By Pythagoras' Theorem, $||x||^2 = ||y||^2 + ||z||^2$. Then we have

$$||Ax|| = ||A(y+z)|| = ||Ay|| = ||y|| = \sqrt{||x||^2 - ||z||^2} \le ||x||$$

where we used the fact that $A^2 = A$ implies $A|_{\lim A} = \text{id}$. We deduce that $||A|| \le 1$.

• Suppose that $||A|| \le 1$. Let $x \in \text{im } A$ and $u \in \text{im}(I - A)$. Note that we have Au = 0 and Ax = x, since $A^2 = A$. Then

$$||x|| = ||A(u-x)|| \le ||u-x||$$

which holds for all $x \in \operatorname{im} A$ and $u \in \operatorname{im} (I - A)$. By Question 3 of Sheet 1, we have $\langle x, u \rangle \leq 0$ for all $x \in \operatorname{im} A$ and $u \in \operatorname{im}(I - A)$. But $u \in \operatorname{im}(I - A)$ implies that $-u \in \operatorname{im}(I - A)$. So we also have $\langle x, u \rangle = -\langle x, -u \rangle \geqslant 0$. Hence $\langle x, u \rangle = 0$ for all $x \in \text{im } A$ and $u \in \text{im}(I - A)$.

Finally, for $x, y \in X$,

$$\langle Ax, y \rangle \equiv \langle Ax, y - Ay \rangle + \langle Ax, Ay \rangle = \langle Ax, Ay \rangle = \langle x - Ax, Ay \rangle + \langle Ax, Ay \rangle = \langle x, Ay \rangle = \langle x$$

Now suppose that all of the above conditions holds of the projection $A \in \mathcal{B}(X)$. Suppose that $A \neq 0$. Let $x \in \text{im } A$. Then Ax = x. So

$$||A|| \ge \frac{||Ax||}{||x||} = 1$$

But we also have $||A|| \le 1$. Hence ||A|| = 1.

Question 2

Let *X* be a Hilbert space and $U: X \to X$ be a unitary operator.

- (a) Show that $Ker(I U) = Ker(I U^*)$;
- (b) Show that $X = \overline{\text{Im}(I U)} \oplus \text{Ker}(I U)$;
- (c) Show that $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N-1}U^nx=x$ if $x\in \mathrm{Ker}(I-U)$ and $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N-1}U^nx=0$ if $x\in \overline{\mathrm{Im}(I-U)}$;
- (d) Deduce that, for each $x \in X$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x = Px$$

where *P* is the orthogonal projection onto Ker(I - U).

Proof. First we note that $U \in \mathcal{B}(X)$. This is not explicitly stated in the notes. The proof, however, is similar to the proof that self-adjointness implies boundedness.

Suppose that $\{x_n\}$ is a sequence in X such that $x_n \to x \in X$ and $Ux_n \to z \in X$ as $n \to \infty$. For any $y \in X$, since U is surjective, there exists $w \in X$ such that y = Uw. Then

$$\langle z, y \rangle = \left\langle \lim_{n \to \infty} Ux_n, y \right\rangle = \lim_{n \to \infty} \left\langle Ux_n, y \right\rangle = \lim_{n \to \infty} \left\langle Ux_n, Uw \right\rangle = \lim_{n \to \infty} \left\langle x_n, w \right\rangle = \left\langle x, w \right\rangle = \left\langle Ux, Uw \right\rangle = \left\langle Ux, Uw \right\rangle = \left\langle x_n, w \right$$

Hence z = Ux. We deduce that the graph of U is closed. By closed graph theorem, U is bounded.

(a) U is bijective and $U^* = U^{-1}$. We have

$$x \in \ker(I - U) \iff Ux = x \iff U^{-1}x = x \iff U^*x = x \iff x \in \ker(I - U^*)$$

Hence $ker(I - U) = ker(I - U^*)$.

(b) From Question 1.(a), we know that $(\ker(I-U^*))^{\perp} = \overline{\operatorname{im}(I-U)}$ (because $(I-U^*)^* = I-U^{**} = I-U$). Since $\ker(I-U)$ is closed in X, by projection theorem and (a),

$$X = \ker(I - U^*) \oplus (\ker(I - U^*))^{\perp} = \ker(I - U) \oplus \overline{\operatorname{im}(I - U)}$$

(c) For $x \in \ker(I - U)$, Ux = x. Hence

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} x = \lim_{N \to \infty} \frac{N-1}{N} x = x$$

Let $\{x_n\}_{n=0}^{\infty}\subseteq \operatorname{im}(I-U)$ such that $x_n\to x\in \overline{\operatorname{im}(I-U)}$ as $n\to\infty$. Let $x_n=(I-U)y_n$. Then

$$\frac{1}{N} \sum_{n=1}^{N-1} U^n x_k = \frac{1}{N} \sum_{n=1}^{N-1} U^n (I - U) y_k = \frac{1}{N} (U - U^N) y_k$$

Note that

$$\left\| \frac{1}{N} (U - U^N) y_k \right\| \le \frac{1}{N} (\|U\| + \|U\|^N) \|y_k\| = \frac{2}{N} \|y_k\| \to 0$$

as $N \to \infty$. Hence

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x_k = \lim_{N \to \infty} \frac{1}{N} (U - U^N) y_k = 0$$

Therefore

$$\left\| \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x - \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x_k \right\| \le \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} \left\| U^n (x - x_k) \right\| = \lim_{N \to \infty} \frac{N-1}{N} \left\| x - x_k \right\| = \left\| x - x_k \right\| \to 0$$

as $k \to \infty$. We deduce that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x = 0$$

(d) Let $x \in \overline{\operatorname{im}(I-U)}$ and $y \in \ker(I-U) = \ker(I-U^*)$. Let $\{z_n\} \subseteq X$ such that $(I-U)z_n \to x$ as $n \to \infty$. Then

$$\langle x, y \rangle = \lim_{n \to \infty} \langle (I - U)z_n, y \rangle = \lim_{n \to \infty} \langle z_n, (I - U^*)y \rangle = 0$$

Hence $\overline{\operatorname{im}(I-U)} \subseteq (\ker(I-U))^{\perp}$. By (b) we have in fact $\overline{\operatorname{im}(I-U)} = (\ker(I-U))^{\perp}$. Now the result of (c) shows that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n = P$$

where P is the orthogonal projection onto ker(I - U)

Question 3

Let X be a Hilbert space and let $T \in \mathcal{B}(X)$.

- (a) Prove that $\operatorname{Ker} T T^* = \operatorname{Ker} T^* = (\operatorname{Im} T)^{\perp}$.
- (b) Assume that *T* is normal, i.e. $T^*T = TT^*$. Prove that $\overline{\text{Im } T} = \overline{\text{Im } T^*}$.
- (c) Prove that *T* is normal if and only if $||Tx|| = ||T^*x||$ for all $x \in X$.

(a) From Question 1.(a) we know that $\ker T^* = (\operatorname{im} T)^{\perp}$ (since $T^{**} = T$). It is clear that $\ker T^* \subseteq \ker(TT^*)$. For $x \in \ker(TT^*)$, Proof.

$$||T^*x||^2 = \langle T^*x, T^*x \rangle = \langle TT^*x, x \rangle = 0$$

Hence $x \in \ker T^*$. Hence $\ker(TT^*) \subseteq \ker T^*$. We conclude that

*. We conclude that
$$\ker(TT^*) = \ker T^* = (\operatorname{im} T)^{\perp}$$

(b) Similar to (a) we can prove that $\ker(T^*T) = \ker T$ Since T is normal, we have $\ker T = \ker T^*$. By Question 1.(a), we have

$$\overline{\operatorname{im} T^*} = (\ker T)^{\perp} = (\ker T^*)^{\perp} = \overline{\operatorname{im} T}$$

(c) We have

$$\left\|Tx\right\|^{2} = \left\langle Tx, Tx \right\rangle = \left\langle T^{*}Tx, x \right\rangle = \left\langle TT^{*}x, x \right\rangle = \left\langle T^{*}x, T^{*}x \right\rangle = \left\|T^{*}x\right\|^{2}$$

Hence
$$||Tx|| = ||T^*x||$$
 for all $x \in X$. What about $||Tx|| = ||T^*x|| \Rightarrow |T^*T| = |T^*Z|$?

Question 4

Let M be a complete metric space and, for each $n \in \mathbb{N}$, let A_n be a nowhere dense subset of M and G_n be a dense open subset of M. Show that $\cap_{n\in\mathbb{N}}G_n$ is not contained in $\cup_{n\in\mathbb{N}}A_n$.

Deduce that \mathbb{Q} is not the intersection of a countable number of open subsets of \mathbb{R} .

Proof. The statements are true only if $M \neq \emptyset$.

First we claim that $X \subseteq M$ is nowhere dense if and only if $M \setminus X$ contains a dense open subset of M. Let int(X) denotes the interior of *X*.

Suppose that *X* is nowhere dense. Then $\operatorname{int}(\overline{X}) = \emptyset$. Hence $M = M \setminus \operatorname{int}(\overline{X}) = \overline{M \setminus \overline{X}}$. We see that $M \setminus X$ contains $M \setminus \overline{X}$, which is a nowhere dense set. Conversely, suppose that $M \setminus X$ contains a dense open set U. Then $U \subseteq \text{int}(M \setminus X) = M \setminus \overline{X}$, and hence $M = \overline{O} = M \setminus \overline{X} = M \setminus \operatorname{int}(\overline{X})$. Hence X is nowhere dense.

Since each G_n is dense open, $M \setminus G_n$ is nowhere dense. In particular, $M \setminus \bigcap_{n \in \mathbb{N}} G_n = \bigcup_{n \in \mathbb{N}} (M \setminus G_n)$ is a countable union of nowhere dense sets. Suppose that $\bigcap_{n\in\mathbb{N}}G_n\subseteq\bigcup_{n\in\mathbb{N}}A_n$. Then

$$M = \bigcup_{n \in \mathbb{N}} A_n \cup \left(M \setminus \bigcup_{n \in \mathbb{N}} A_n \right) = \bigcup_{n \in \mathbb{N}} A_n \cup \left(M \setminus \bigcap_{n \in \mathbb{N}} G_n \right) = \bigcup_{n \in \mathbb{N}} A_n \cup \bigcup_{n \in \mathbb{N}} (M \setminus G_n)$$

is a countable union of nowhere dense sets, contradicting Baire Category Theorem. Hence $\bigcap_{n\in\mathbb{N}} G_n \not\subseteq \bigcup_{n\in\mathbb{N}} A_n$.

Suppose that \mathbb{Q} is a G_{δ} set. Then $\mathbb{R}\setminus\mathbb{Q}$ is a F_{σ} set. But $\mathbb{Q}=\bigcup_{q\in\mathbb{Q}}\{q\}$ is also a F_{σ} set. Therefore $\mathbb{R}=\mathbb{Q}\cup(\mathbb{R}\setminus\mathbb{Q})$ is a countable union of closed sets, each of which is either contained in \mathbb{Q} or in $\mathbb{R}\setminus\mathbb{Q}$. By Baire Category Theorem, at least one of the closed sets has non-empty interior. But both \mathbb{Q} and $\mathbb{R}\setminus\mathbb{Q}$ have empty interior. Contradiction. Hence \mathbb{Q} is not a G_{δ} set.

Question 5

In this question, all sequence spaces are real.

(a) Consider a double sequence $(a_{n,j})$ such that for every fixed n, the sequence $(a_{n,j})_{j=1}^{\infty}$ belongs to c_0 . Suppose that

$$\sup_{n} \sum_{j} a_{n,j} b_{j} < \infty \text{ for every } b = (b_{j}) \in \ell^{1}$$

Show that $\sup_{n,j} |a_{n,j}| < \infty$.

- (b) Suppose that (a_j) is a scalar sequence such that $\sum_j a_j b_j$ converges for all $b = (b_j) \in c_0$. Prove that $\sum_j |a_j|$ converges. [Hint: Consider the sequences T_n with entries $T_n(j) = a_j$ if $j \le n$ and $T_n(j) = 0$ if j > n. Use the principle of uniform boundedness to show that (T_n) is bounded in ℓ^1 .]
- (c) Let $2 and let <math>(c_{m,n})$ be a double sequence such that, for every fixed m,

$$\sum_{n} c_{m,n} a_n b_n \text{ converges for every } a = (a_n), b = (b_n) \in \ell^p$$

and

$$\sup_{m} \sum_{n} c_{m,n} a_{n} b_{n} < \infty \text{ for every } a = (a_{n}), b = (b_{n}) \in \ell^{p}$$

Prove that, for $q = \frac{p}{p-2}$,

$$\sup_{m} \sum_{n} \left| c_{m,n} \right|^{q} < \infty$$

Proof. (a) For each $n \in \mathbb{N}$, we define $T_n : \ell^1 \to \mathbb{R}$ by

$$T_n\Big(\{b_j\}_{j=0}^\infty\Big) = \sum_{j=0}^\infty a_{n,j} b_j$$

Since $\{b_j\}_{j=0}^{\infty} \in \ell^1$, $\sum_j |b_j| < \infty$. Since $\{a_{n,j}\}_{j=0}^{\infty} \in c_0$, it is bounded by some constant $M_n > 0$. Hence

$$\left|T_n(\{b_j\})\right| \leq \sum_{j=0}^{\infty} |a_{n,j}b_j| \leq M_n \sum_{j=0}^{\infty} |b_j| < \infty$$

Therefore T_n is well-defined and bounded by M_n . In particular $T_n \in \mathcal{B}(\ell^1, \mathbb{R})$.

By hypothesis, we know that

$$\sup_{n\in\mathbb{N}} T_n(\{b_j\}) = \sup_{n\in\mathbb{N}} |T_n(\{b_j\})| < \infty$$

for each $\{b_j\} \in \ell^1$. By the uniform boundedness principle, $\{T_n : n \in \mathbb{N}\}$ is uniformly bounded in $\mathscr{B}(\ell^1, \mathbb{R})$ by some constant M > 0. Hence for any $\{b_k\}_{k=0}^{\infty} \in \ell^1$, we have

$$\left| \sum_{k=0}^{\infty} a_{n,k} b_k \right| \le M \sum_{k=0}^{\infty} |b_k|$$

Take $b_k = \delta_{i,k}$. We deduce that

$$|a_{n,j}| \leq M$$

which holds for all $n, j \in \mathbb{N}$. Therefore $\sup_{n,j} |a_{n,j}| \le M < \infty$.

(The result can also be directly deduced from the uniformly boundedness of $\{T_n\}$ and the isometric isomorphism $(\ell^1)^* = \mathcal{B}(\ell_1, \mathbb{R}) \cong \ell^{\infty}$.)

(b) For each $n \in \mathbb{N}$, define $T_n : c_0 \to \mathbb{R}$ by

$$T_n(\{b_j\}) = \sum_{j=0}^n a_j b_j$$

Then for each $\{b_i\} \in c_0$,

$$|T_n(\{b_j\})| = \left|\sum_{j=0}^n a_j b_j\right| \le (n+1) \sup_{0 \le j \le n} |a_j b_j| \le (n+1) \sup_{0 \le j \le n} |a_j| \cdot ||b||_{\infty}$$

Hence each T_n is bounded. $\{T_n\} \subseteq c_0^*$.

For each fixed $\{b_j\} \in c_0$,

$$\sup_{n\in\mathbb{N}}|T_n(\{b_j\})| = \sup_{n\in\mathbb{N}}\left|\sum_{j=0}^n a_j b_j\right| < \infty$$

because $\sum_i a_i b_i$ converges. Note that c_0 is a Banach space (being the closed subspace of ℓ^{∞}). By the uniform boundedness principle, $\{T_n\}$ is uniformly bounded in c_0^* by some constant M > 0.

We know from Functional Analysis I that there exists an isometric isomorphism $\ell^1 \cong c_0^*$, given by

$$\{x_n\} \mapsto \left(\{y_n\} \mapsto \sum_{n=0}^{\infty} x_n y_n\right)$$

If we identify the two spaces, we have $T_n \in \ell^1$ such that $T_n(j) = a_j \mathbf{1}_{\{j \le n\}}$. The uniform boundedness gives

$$\sup_{n\in\mathbb{N}}||T_n||=\sup_{n\in\mathbb{N}}\sum_{j=0}^n|a_j|=\sum_{j=0}^\infty|a_j|<\infty$$

Therefore $\{a_n\} \in \ell^1$.

(c) This part is essentially (a) + (b) + Hölder's inequality.

For $(d_n) \in \ell^{p/2}$, take $(a_n), (b_n) \in \ell$ such that

$$a_n = \sqrt{|d_n|}, \qquad b_n = \begin{cases} \sqrt{|d_n|}, & d_n \ge 0 \\ -\sqrt{|d_n|}, & d_n < 0 \end{cases}$$

Then $d_n = a_n b_n$. Therefore, for every fixed m,

 $\sum c_{m,n} d_n \text{ converges for every } d = (d_n) \in \ell^{p/2}$

and

$$\sup_{m} \sum_{n} c_{m,n} d_n < \infty \text{ for every } d = (d_n) \in \ell^{p/2}$$

Let $S_{k,m}: \ell^{p/2} \to \mathbb{R}$ defined by

$$S_{k,m}(\{d_n\}) := \sum_{n=0}^{k} c_{m,n} d_n$$

Note that for q = p/(p-2), $(p/2)^{-1} + q^{-1} = 1$. By Hölder's inequality,

$$\left| |S_{k,m}(\{d_n\})| \le \sum_{n=0}^{k} |c_{m,n}d_n| \le \sum_{n=0}^{k} |c_{m,n}|^q \sum_{n=0}^{k} |d_n|^{p/2} \le ||d||_{p/2} \sum_{n=0}^{k} |c_{m,n}|^q \sqrt{\frac{1}{2}}$$

Hence $S_{k,m}$ is bounded. $\{S_{k,m}\}\subseteq (\ell^{p/2})^*\cong \ell^q$. In addition, we also have

$$\frac{\sup_{k\in\mathbb{N}}|S_{k,m}(\{d_n\})|}{\sup_{k\in\mathbb{N}}|S_{k,m}(\{d_n\})|}\leqslant \|d\|_{p/2}\left(\sum_{n=0}^{\infty}|c_{m,n}|^q\right)^{\frac{1}{2}}$$
How do you know the swert

Hence by uniform boundedness principle,

$$\sup_{k \in \mathbb{N}} \|S_{k,m}\| < K_m$$

for some $K_m > 0$. Given the identification $(\ell^{p/2})^* = \ell^q$, we have

$$\sum_{n=0}^{\infty} |c_{m,n}|^q = \sup_{k \in \mathbb{N}} \sum_{n=0}^k |c_{m,n}|^q = \sup_{k \in \mathbb{N}} ||S_{k,m}|| < K_m$$

Hence $\{c_{m,n}\}_{n=0}^{\infty} \in \ell^q$ for each $m \in \mathbb{N}$.

Next, define $T_m: \ell^{p/2} \to \mathbb{R}$ by

$$T_m(\lbrace d_n\rbrace) := \sum_{n=0}^{\infty} c_{m,n} d_n$$

By Hölder's inequality again,

$$|T_m(\{d_n\})| \le \sum_{n=0}^{\infty} |c_{m,n}d_n| \le \sum_{n=0}^{\infty} |c_{m,n}|^q \|\{d_n\}\|_{p/2}$$

Hence T_m is bounded. $T_m \in (\ell^{p/2})^* = \ell^q$. Fix $\{d_n\} \in \ell^{p/2}$. By hypothesis we have

$$\sup_{m\in\mathbb{N}}\sum_{n=0}^{\infty}c_{m,n}d_n=\sup_{m\in\mathbb{N}}\sum_{n=0}^{\infty}|c_{m,n}d_n|=\sup_{m\in\mathbb{N}}|T_m(\{d_n\})|<\infty$$

By the uniform boundedness principle,

$$\sup_{m\in\mathbb{N}}\|T_m\|<\infty$$

Hence

$$\sup_{m\in\mathbb{N}}\sum_{n=0}^{\infty}|c_{m,n}|^{q}=\sup_{m\in\mathbb{N}}\|T_{m}\|^{q}<\infty$$

Ouestion 6

(a) Let X be a real Banach space, Y and Z be real normed vector spaces, and $B: X \times Y \to Z$ be bilinear (i.e., linear in each variable). Suppose that for each $x \in X$ and $y \in Y$, the linear maps $B^x: Y \to Z$ and $B_y: X \to Z$ defined

$$B^{x}(y) = B(x, y) = B_{y}(x)$$

are continuous. Use the principle of uniform boundedness to prove that there exists a constant K such that $||B(x,y)|| \le K||x|||y||$ for all $x \in X$ and $y \in Y$. Deduce that B is continuous.

(b) Let *X* and *Y* both be the subspace of $L^1(0,1)$ consisting of polynomials, $Z = \mathbb{R}$ and

$$B(f,g) = \int_0^1 f g \, \mathrm{d}t$$

Show that the bilinear form *B* is continuous in each variables but it is not continuous.

[To put things in perspective, please note that even on \mathbb{R}^2 , for nonlinear functions, separate continuity does not imply joint continuity. A standard example is the function $f(x,y) = \frac{xy}{x^2+y^2}$ for $(x,y) \neq 0$ and f(0,0) = 0.]

Proof. (a) We know that a linear map between two normed vector spaces is continuous if and only if it is bounded.

First we fix $x \in X$. Since $B^x : Y \to Z$ is continuous, there exists $K_x > 0$ such that for each $y \in Y$,

$$\left\|B^{x}(y)\right\|_{Z} \leqslant K_{x} \left\|y\right\|_{Y}$$

Consider the family of operators $\{B_y : y \in Y, \|y\| = 1\} \subseteq \mathcal{B}(X, Z)$. For each fixed $x \in X$, we have

$$||B_{V}(x)||_{Z} = ||B^{X}(y)||_{Z} \le K_{X} ||y||_{Y} = K_{X}$$

Since *X* is a Banach space, by the uniform boundedness principle, there exists K > 0 such that $||B_y|| < K$ for each $y \in Y$ with ||y|| = 1.

Now, for $x \in X$ and $y \in Y$,

$$\|B(x,y)\|_{Z} = \|y\|_{Y} \|B\left(x, \frac{y}{\|y\|_{Y}}\right)\| = \|y\|_{Y} \|B_{y/\|y\|_{Y}}(x)\| \le K \|x\|_{X} \|y\|_{Y}$$

Finally, we equip $X \times Y$ with the norm $\|(x,y)\|_{X \times Y} := \|x\|_X + \|y\|_Y$. Fix $(x,y) \in X \times Y$. For $\varepsilon > 0$, for $(x',y') \in X \times Y$ such that $\|(x,y) - (x',y')\| < \varepsilon$,

$$\begin{split} \left\| B(x,y) - B(x',y') \right\|_{Z} &= \left\| B(x,y) - B(x',y) + B(x',y) - B(x',y') \right\|_{Z} \\ &= \left\| B(x-x',y) + B(x',y-y') \right\|_{Z} \\ &= \left\| B(x-x',y) + B(x,y-y') + B(x'-x,y-y') \right\|_{Z} \\ &\leq \left\| B(x-x',y) \right\|_{Z} + \left\| B(x,y-y') \right\|_{Z} + \left\| B(x'-x,y-y') \right\|_{Z} \\ &\leq K \left\| x - x' \right\|_{X} \left\| y \right\|_{Y} + K \left\| x \right\|_{X} \left\| y - y' \right\|_{Y} + K \left\| x - x' \right\|_{X} \left\| y - y' \right\|_{Y} \\ &\leq K \left(\left\| x \right\|_{X} + \left\| y \right\|_{Y} + \varepsilon \right) \varepsilon \end{split}$$

Hence *B* is continuous at (x, y). We deduce that *B* is continuous on $X \times Y$.

(b) Fix $g \in Y$. Since g is a polynomial on (0,1), it is continuous on [0,1] and hence bounded on (0,1). That is, $\|g\|_{\infty} < \infty$. For $\{f_n\} \subseteq X$ such that $f_n \to f \in X$ in L^1 norm as $n \to \infty$, by Hölder's inequality,

$$\left\| \int_{0}^{1} (f_{n} - f) g \, \mathrm{d}t \right\| \le \|f_{n} - f\|_{1} \|g\|_{\infty} \to 0$$

as $n \to \infty$. Hence $f \mapsto \int_0^1 f g \, dt$ is continuous. Similarly, $g \mapsto \int_0^1 f g \, dt$ is also continuous.

Suppose that *B* is continuous. We claim that *B* is bounded in the sense of (a).

Since *B* is continuous at (0,0), there exists $\delta > 0$ such that for $(x,y) \in X \times Y$, $\|(x,y)\| < \delta$ implies that $|B(x,y)| \le 1$. Now for all $x \in X$ and $y \in Y$,

$$|B(x,y)| = \frac{\|x\|}{\delta} \frac{\|y\|}{\delta} \left| B\left(\frac{\delta}{\|x\|} x, \frac{\delta}{\|y\|} y\right) \right| \le \delta^{-2} \|x\| \|y\|$$

which proves the claim.

Suppose that $f_n = (n+1)x^n \in X = Y$. Then

$$||f_n||_1 = \left| \int_0^1 (n+1)x^n \, \mathrm{d}x \right| = 1$$

But

$$|B(f_n, f_n)| = \left| \int_0^1 (n+1)^2 x^{2n} \, \mathrm{d}x \right| = \frac{(n+1)^2}{2n+1} \to \infty$$

as $n \to \infty$. Therefore there is no constant $M \to 0$ such that $|B(f_n, f_n)| \le K \|f_n\|_1^2$ for all $n \in \mathbb{N}$. This is a contradiction. we conclude that B is not continuous.