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Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

A map f : X → Y of spaces is homotopic to g : X → Y if f can be continuously deformed into g , meaning that there
exists a map F : X × [0,1] → Y with F (x,0) = f (x) and F (x,1) = g (x). We write f � g .

a) Show that � is an equivalence relation on maps X → Y .

Two spaces X ,Y are homotopic equivalent, if there exist f : X → Y and g : Y → X such that g ◦ f � idX and
f ◦ g = idY .

b) Show that � is an equivalence relation on spaces.

c) Show that point �Rn .

d) Show that the solid torus � circle.

e) Let A ⊆ X be a subspace. We say that “A can be contracted down to a point in X ”, if there exists H : X ×[0,1] →
X with Ht (A) ⊆ A for all t ∈ [0,1], H0 = idX and H1(A) = some point in A, where Ht = H(·, t ) : X → X . Deduce
that X � X /A.

(Hint: Let f : X → X /A be the quotient map. Comstruct a map Qt : X /A → X /A such that f ◦ Ht = Qt ◦ f .
Build g : X /A → X with g ◦ f = H1.)

f) LetΣ2 be a genus 2 surface and A be a circle onΣ2. Show (by drawing convincing pictures) thatΣ2/A � T 2∨S1.

g) Prove (using pictures) that Sn \ point �Dn and Sn \ (k points) � Sn−1 ∨ · · ·∨Sn−1
� �� �

k−1 copies

, where k � 2.

Proof. This question is about standard material in B3.5 Topology and Groups.

a) • Reflectivity:

F : X × [0,1] → Y defined by F (x, t ) = F (x,0) = f (x) is a homotopy from f to f .

• Symmetry:

Suppose that F is a homotopy from f to g . Then G : X × [0,1] → Y defined by G(x, t ) = F (x,1− t ) is a
homotopy from g to f .

• Transitivity:

Suppose that F is a homotopy from f to g and G is from g to h. Then we define H : X × [0,1] → Y be

H(x, t ) =
�

F (x,2t ), 0 � t � 1/2

G(x,2t −1), 1/2 � t � 1

H is a homotopy from f to h.

Hence homotopy of continuous maps is an equivalence relation.

b) • Reflectivity:

F : X × [0,1] → Y with F (x, t ) = x is a homotopy from idX to idX . It is clear that idX ◦ idX = idX � idX .
Hence X � X .



2

• Symmetry:

It is trivial from definition that X � Y implies that Y � X .

• Transitivity:

Suppose that X � Y and Y � Z . There exist f : X → Y , g : Y → X , h ∈ Y → Z and i ∈ Z → Y such that
g ◦ f � idX , f ◦g � idY , i ◦h � idY , and h◦i � idZ . Then we have h◦ f : X → Z and g ◦i : Z → X satisfying

g ◦ i ◦h ◦ f � g ◦ idY ◦ f = g ◦ f � idX , h ◦ f ◦ g ◦ i � h ◦ idY ◦ i = h ◦ i � idZ

Hence X � Z .1

Hence homotopic equivalence of topological spaces is an equivalence relation.

c) Let f : {∗} → Rn with f (∗) = 0, and g : Rn → {∗}. (g is unique as singletons are final in Top.) Trivially g ◦ f =
id{∗}. Let F :Rn × I →Rn given by F (x , t ) = x t . Then F (x ,0) = x and F (x ,1) = 0 = f ◦ g (x). Hence f ◦ g � idRn .
we conclude that Rn � {∗}.

d) We parametrise the solid torus as S1 ×D2 = {z, w : |z| = 1, |w | � 1} ⊆ C2. Then S1 ×D2 retracts onto S1 via
r (z, w) = z. And S1 embeds intoD2 via ι(z) = (z,0). It is clear that r ◦ι= idS1 . Moreover, F : S1×D2×I → S1×D2

given by F (z, w, t ) = (z, t w) defines a homotopy from i ◦ r to idS1×D2 . Hence S1 ×D2 � S1.

e) Let f : X → X /A be the quotient map. Consider the composition f ◦ Ht : X → X /A. Since Ht (A) ⊆ A, then
f ◦Ht is constant on A. By the universal property of quotient, there exists a unique morphism Qt : X /A →
X /A such that the following diagram commutes:

X X /A

X X /A

f

Ht ∃!Qt

f

Suppose that H1(A) = a for some a ∈ A. We define g : X /A → X by g ([x]) = H1(x) for x ∈ X \ A and g (A) = a.
g is well defined, because [x] = {x} for x ∈ X \ A in X /A. We have g ◦ f = H1 by construction. Since H is a
homotopy, we have g ◦ f � H0 = idX .

More generally we have the commutative diagram:

X × I X /A× I

X × I X /A× I

( f , idI )

H ∃!Q
( f , idI )

which proves that Q is a homotopy and Qt =Q(−, t ).

Next we note that for x ∈ X \ A, f ◦ g ([x]) = f ◦H1(x) =Q1 ◦ f (x) =Q1([x]), and f ◦ g (A) = f (a) = A =Q1(A).
We deduce that f ◦ g =Q1. Hence f ◦ g �Q0 = idX /A . We conclude that X � X /A.

f ) (Please forgive my bad drawing...) Schematically we have:

1We used the following lemma: if f0 � f1, then j ◦ f0 � j ◦ f1 and f0 ◦k � f1 ◦k.
If F is a homotopy from f0 to f1, then j ◦F is a homotopy from j ◦ f0 to j ◦ f1, and F ◦ (k × id[0,1]) is a homotopy from f0 ◦k to f1 ◦k.
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g) We can embed Sn into Rn+1 and set the generalised spherical coordinate system (θ0, ...,θn) on Sn minus two
points:

x0 = cosθ1, x1 = sinθ1 cosθ2, ..., xn−1 = cosθn

n−1�
i=1

sinθi , xn = sinθn

n−1�
i=1

sinθi

Let x0 = (1,0, ...,0). The upper hemisphere without north pole is an atlas:

�
x ∈Rn+1 : θ1 ∈ (0,π/2]

�

It has a deformation retraction on to the equator θ1 =π/2 given by

F (θ1, ...,θn , t ) =
�
θ1 + t

�π
2
−θ1

�
,θ2, ...,θn

�

We keep the lower hemisphere fixed. The resulting space is

L = �
x ∈Rn+1 : θ1 ∈ [π/2,π)

�∪ {0}

It is homeomorphic toDn , which is the image of L under the projection in the 0-th coordinate. We conclude
that Sn \ {∗} �Dn .

Next we consider Sn \ A where |A| = k � 2. The exists an embedding of Sn into Rn+1 such that exactly one
point in A lies in the upper hemisphere. The same argument proves that Sn \ A �Dn \B , where |B | = k −1. It
remains to prove that Dn \ B is the wedge sum of k −1 copies of S1. It is hard to prove rigorously. But we can
draw the deformation retract in the diagram when k = 4 as an example:

We deduce that Sn \ (k points) � Sn−1 ∨ · · ·∨Sn−1
� �� �

k−1 copies

.

Question 2

Draw an example of a loop in Σ2 which is non-zero in π1(Σ2) but is zero in H1(Σ2). (Proof not required.)

Proof. From Part A Topology, Σ2 has the following fundamental polygon.

We give Σ2 a Δ-complex structure as shown in the diagram. The loop x = [a,b] ∈ H1(Σ2) in the diagram is clearly



4

zero. But x �= 0 ∈π1(Σ2), because

π1(Σ2) = 〈a,b,c,d | [a,b][c ,d ]〉 ∼=Z2 ∗ZZ2

Question 3

A retraction a space X onto a subspace A is a map r : X → X with r (X ) = A and r (a) = a for all a ∈ A.

a) Show that the Möbius band X retracts onto the equator A.

b) Assume that we have a functor F :Top→Grp such that F (S1) =Z,

F (S1 S1z2
) =Z Z

·2

and if ( f : A → X ) � (g : A → X ) then F ( f ) = F (g ). (For example F = H1 is the first homology group.)

By considering the maps A X Ai r , show that F (i ) is injective and F (r ) is surjective.

Deduce that the Möbius band X does not retract onto the boundary circle A2 = ∂X .

Having seen the funtorial proof, could you rephrase the proof into a topological argument for a Part A Topol-
ogy undergraduate?

Proof. a) The Möbius band is homeomorphic to

X = [0,1]2/
�

(0, y) ∼ (1,1− y)
�

With the equator A given by the image of {(x, y) : x = 1/2} under the quotient map. We see that the retraction
of X onto A is induced y the projection (x, y) �→ (1/2, y).

b) The functor F maps a commutative diagram in Top to Grp:

A

A Xi

r =⇒
F (A)

F (A) F (X )
F (i )

F (r )

That is, F (r )◦F (i ) = id. Hence F (i ) is injective and F (r ) is surjective.

Let i : S1 �→ X be the inclusion map. Note that im i = ∂X ∼= S1 and i is homotopic equivalent to z2 : S1 → S1.
Hence F (i ) :Z→Z is given by n �→ 2n.

Suppose that there exists a retraction r : X → A2. Then F (r ) :Z→Z is surjective. By first isomorphism theo-
rem, Z∼=Z/kerF (r ). But Z/kerF (r ) is a finite group unless kerF (r ) = 0. So we have F (r ) is an isomorphism.
As Aut(Z) = {id}, F (r ) = id. Then F (r ) ◦F (i ) = F (i ) �= id. Contradiction. We deduce that X does not retract
onto its boundary.

To translate this into a topological language, we can simply take F = π1, and operate on the fundamental
groups.

(My experience is that Part A students should learn category theory as early as possible.)
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Question 4

Given a functor F• :Top→GradedAb with

F•(point) =
�
Z • = 0

0 otherwise

Define �F•(X ) = ker f•, where f• : F•(X ) → F•(point) is induced by the constant map on X . Prove that F•(X ) ∼= �F•(X )
for • �= 0 and F0(X ) ∼= �F0(X )⊕Z.

Proof. For n > 0, we have Fn(pt) = 0. Hence ker fn = Fn(X ), and �Fn(X ) = Fn(X ) by definition.

For n = 0, let g : �F0(X ) = ker f0 �→ F0(X ) be the inclusion map. Note that g is surjective because the constant map
X → pt is. Then we have a short exact sequence

0 �F0(X ) F0(X ) Z 0
g f0

In addition, the inclusion pt → X give rise to a section s : F0(pt) → F0(X ). That is, f0◦ s = idpt. Hence the sequence
splits by short five lemma2:

0 �F0(X ) F0(X ) Z 0

0 �F0(X ) �F0(X )⊕Z Z 0

g f0

s

i π

(g + s)

Hence �F0(X )⊕Z∼= F0(X ).

Question 5

Draw a Δ-complex structure on S2, Σ2 = T2 # T2, and N3 =RP 2 #RP 2 #RP 2.

Proof. For S2 we have the following simple construction:

Σ2 has been given in Question 2. For N3:

2In Question 5 of Homological Algebra Sheet 1, we have proven that every exact sequence of the form 0 → A → B →Z→ 0 splits. This is due to
Z being a projective Z-module.
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Question 6

a) Compute the simplicial homology of S2, RP 2 and the Klein bottle K .

b) Compute their simplicial homology with Z/2Z coefficients.

Proof. The Δ-complex structure on these spaces are given respectively by3

• Homology of S2.

We list the generators for the chain groups:

– C0 : {u, v, w};
– C1 : {a,b,c};
– C2 : {U ,L}.
– C3 =C4 = ·· · = 0.

The boundary maps are given by

– ∂1 : a �→ w − v, b �→ u −w, c �→ u − v ;
– ∂2 : U �→ a +b −c, L �→ a +b −c.
– ∂3 = ∂4 = ·· · = 0.

For R =Z, the homology groups are given by

H0(S2) = 〈u, v, w〉
〈w − v,u −w,u − v〉

∼=Z, H1(S2) = 〈a +b −c〉
〈a +b −c〉

∼= 0, H2(S2) = 〈U −L〉
{0}

∼=Z, H3(S2) = ·· · = 0

For R =Z/2Z, the same expression holds as we replace Z by Z/2Z:

H0(S2;Z/2) =Z/2, H1(S2;Z/2) = 0, H2(S2;Z/2) =Z/2, H3(S2) = ·· · = 0

• Homology of RP 2:

We list the generators for the chain groups:

– C0 : {v, w};
– C1 : {a,b,c};
– C2 : {U ,L}.
– C3 =C4 = ·· · = 0.

The boundary maps are given by

– ∂1 : a �→ w − v, b �→ w − v, c �→ 0;
– ∂2 : U �→ a −b −c, L �→ a −b +c.
– ∂3 = ∂4 = ·· · = 0.

3Allen Hatcher, Algebraic Topology pp. 102.
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The zeroth homology group is given by H0(RP 2) = 〈v, w〉
〈w − v〉

∼=Z.

If R =Z, the first homology group

H1(RP 2) = 〈a −b,c〉
〈a −b −c, a −b + c〉

∼=
�
α,β

�
�

2α,α−β� ∼= 〈α〉
〈2α〉

∼=Z/2

If we use coefficients in Z/2, then

H1(RP 2;Z/2) ∼=
�
α,β

�
�

2α,2β,α−β� ∼=
�
α,β

�
�
α−β� ∼= 〈α〉 ∼=Z/2

Next, if R =Z, then a−b+c and a−b+c are linearly independent, and hence ker∂2 = 0. We have H2(RP 2) = 0.

For R =Z/2, ker∂2 =U −L. Hence H2(RP 2;Z/2) = 〈U −L〉
{0}

=Z/2.

• Homology of K :

We list the generators for the chain groups:

– C0 : {v};
– C1 : {a,b,c};
– C2 : {U ,L}.
– C3 =C4 = ·· · = 0.

The boundary maps are given by

– ∂1 : a,b,c �→ 0;
– ∂2 : U �→ a +b −c, L �→ a −b +c.
– ∂3 = ∂4 = ·· · = 0.

The zeroth homology group is given by H0(K ) = 〈v〉
{0}

∼=Z.

If R =Z, the first homology group

H1(K ) = 〈a,b,c〉
〈a +b −c, a −b + c〉

∼=
�

a,β,γ
�

�
a −β, a +β� ∼=Z⊕Z/2

If R =Z/2, then a +b − c = a −b +c, and hence

H1(K ;Z/2) ∼=
�

a,β,γ
�

�
a −β� ∼=Z/2⊕Z/2

For the second homology group, the calculation is identical to that ofRP 2. We have H2(K ) = 0 and H2(K ;Z/2) =
Z/2.

We can summarise the results in the following table:

Homology
S2 RP 2 K

Z Z/2 Z Z/2 Z Z/2

H0 Z Z/2 Z Z/2 Z Z/2

H1 0 Z/2 Z⊕Z/2 Z/2⊕Z/2

H2 Z Z/2 0 Z/2 0 Z/2

H3 0
... 0
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Question 7

Prove that Δn and Dn are homeomorphic.

Proof. The standard n-simplex is given by

Δn =
�

(x0, ..., xn) :
n�

i=0
xi = 1, x0, ..., xn � 0

�
⊆Rn+1

The projection π : (x0, ..., xn) �→ (0, x1, ..., xn) restricting on Δn is a bijection onto its image. It is clear that π is
conntinuous and the inverse is also continuous. Hence Δn ∼=π(Δn) ⊆Rn , where

π(Δn) =
�

(0, ..., xn) : 0 �
n�

i=1
xi � 1, x0, ..., xn � 0

�
⊆Rn

Let X =π(Δn)− 1

n +1
(1, ...,1), so that X ∼=π(Δn), 0 ∈ int(X ), and X ⊆Dn .

For p ∈ Sn−1, we define f (p) = t p, where t := sup
�

s � 0: sp ∈ X
�
. Then im f ⊆ ∂X . We claim that f is continuous.

Suppose that f is not continuous. There exists a sequence {pn} ⊆ Sn−1 such that pn → p and f (pn) �→ f (p). By
compactness of ∂X , after extracting a subsequence we may assume that f (pn) →α for someα ∈ ∂X . We have that
0, f (p), α, and p are colinear. Let α= up and f (p) = v p for some u, v ∈ (0,1], and v > u. Let S be the orthogonal
complement of p. Let K be a cone with vertex f (p) and base S ∩B(0,ε) for some sufficiently small ε > 0. Since
X is convex, K ⊆ X . But by the construction, α has a neighbourhood entirely contained in K , contradicting that
α ∈ ∂X . We deduce that f is continuous. In particular, we have also shown that the line segment joining 0 and p
intersect ∂X in a unique point f (p). So f is invertible. The same argument shows that f −1 is also continuous.

Finally, For p ∈ Sn−1 and t ∈ [0,1], we defineϕ :Dn → X byϕ(t p) = t f (p). Thenϕ is continuous with a continuous
inverse ψ : t q �→ t f −1(q) for q ∈ ∂X . Hence Dn ∼= X ∼=Δn .


