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Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

Amap f: X — Y of spaces is homotopic to g: X — Y if f can be continuously deformed into g, meaning that there
existsamap F: X x [0,1] — Y with F(x,0) = f(x) and F(x,1) = g(x). We write f = g.

a) Show that = is an equivalence relation on maps X — Y.

Two spaces X,Y are homotopic equivalent, if there exist f: X — Y and g: Y — X such that go f = idx and
f cg= idy.

b) Show that = is an equivalence relation on spaces.
¢) Show that point = R".

d) Show that the solid torus = circle.

e) Let A< X be asubspace. We say that “A can be contracted down to a point in X, if there exists H: X x [0,1] —
X with H;(A) < Aforall t € [0,1], Hy =idx and H;(A) = some point in A, where H; = H(-,t) : X — X. Deduce
that X = X/ A.

(Hint: Let f : X — X/ A be the quotient map. Comstruct a map Q;: X/A — X/A such that fo H; = Qo f.
Build g: X/A— X with go f = H;.)

f) Let X, be agenus 2 surface and A be a circle on X,. Show (by drawing convincing pictures) that /A =~ T?v S!.

e—cirde A
Zy_: < = genus 2 svrfao-

g) Prove (using pictures) that S \ point = D" and S" \ (k points) = §*lyv...vS§" ! where k=2.
[ ——

k-1 copies

Proof. This question is about standard material in B3.5 Topology and Groups.
a) ¢ Reflectivity:
F:Xx[0,1] = Y defined by F(x, t) = F(x,0) = f(x) is a homotopy from f to f. \/
¢ Symmetry:

Suppose that F is a homotopy from f to g. Then G: X x [0,1] — Y defined by G(x,t) = F(x,1—t) is a
homotopy from gto f.  /

* Transitivity:
Suppose that F is a homotopy from f to g and G is from g to h. Then we define H: X x [0,1] — Y be
{F(x,Zt), 0<t<1/2 CDM\V\OLA lﬁ’j

Hx 0= Gx,2t—1), 1/2<t<1 j\uet\mﬂ e s

H is a homotopy from f to h.
Hence homotopy of continuous maps is an equivalence relation. \/
b) e Reflectivity:

F: X x[0,1] — Y with F(x, t) = x is a homotopy from idx to idx. It is clear that idx cidx = idy = idx.
Hence X = X. V



¢ Symmetry:
It is trivial from definition that X = Y implies that Y = X. /

* Transitivity:
Supposethat X =Y and Y = Z. Thereexist f: X —-Y,g: Y —-X, heY — Zand i € Z — Y such that
gof =idy, fog=idy,ioh=idy,and hoi =idz. Thenwehave ho f: X — Z and goi: Z — X satisfying

goiohof:goidyof:gof:idx, hofogoi:hoidyoi:hoi:'idz \/
Hence X ~ Z.!
Hence homotopic equivalence of topological spaces is an equivalence relation.

Nne
c) Let f:{*} - R" with f(x) =0, and g:R" — {x}. (g is unique as singletons arﬁoﬁnaﬂn Top.) Trivially go f =
idgs. Let F:R" x I — R" given by F(x, t) = xt. Then F(x,0) = x and F(x,1) =0= fog(x). Hence fog =idgn.
we conclude that R? = {x}, ~/ \/

0
d) We parametrise the solid torus as S' x D? = {z, w: |z| = 1,|w| < 1} € C2. Then S' x D? retracts onto S' via
r(z,w) = z. And S' embedsinto D* via «(2) = (z,0). Itis clear that ro. = idg1. Moreover, F: ' xD*xI — S' xD?
given by F(z, w, t) = (2, tw) defines a homotopy from i o r to idg xp2. Hence S' x D* =~ S,/

e) Let f: X — X/A be the quotient map. Consider the composition fo H;: X — X/A. Since H;(A) € A, then
f o H; is constant on A. By the universal property of quotient, there exists a unique morphism Q,: X/A —
X/ A such that the following diagram commutes:

X —» X/A

\LHI EI'Qlf \/ H (AB
&S My

X H X/A ik fE,C\/M\‘V‘Q,:l = a\s

Suppose that H;(A) = a for some a € A. We define g: X/A— X by g([x]) = Hi(x)\forxe X\ Aand g(4) =a
g is well defined, because [x] = {x} for x € X\ Ain X/A. We have go f = H; \b} construction. Since H is a
homotopy, we have go f = Hy =idx.

More generally we have the commutative diagram:

X x I(f—»X/A 1

lH |3'Q
(f,idy) \/

Xx] ——% X/ A 1
which proves that Q is a homotopy and Q; = Q(—, t).

Next we note that for x € X\ A, fog([x]) = fo Hi(x) = Qyo f(x) = Q1([x]), and fo g(A) = f(a) = A= Q1(A).
We deduce that fog =Q;. Hence fog f/QO =1idx,a. We conclude that X = X/ A. \/ 3 2y

f) (Please forgive my bad drawing...) Schematically we have:

XD = (X9 —ED=Ep

IWe used the following lemma: if fy = fi, then jo fo = jo fi and fyok = fi o k.
If F is a homotopy from fp to fi, then jo F is a homotopy from jo fg to jo fi, and Fo (k x idg 1)) is a homotopy from fyok to fi o k.




g) We can embed S" into R™*1 and set the generalised spherical coordinate system (0, ...,0;) on S” minus two

points:
n—1 n—1
xo=cosb;, x;=sin0;cosby, .. xp_1=cosb,[]sinb;, x,=sind, []sinb;
i=1 i=1

Let xy = (1,0,...,0). The upper hemisphere without north pole is an atlas:
{xeR™': 0, €(0,7/21}
It has a deformation retraction on to the equator 0; = n/2 given by
F(O1,...,00, 0= (01 + t(g ~01),02,...0,)
We keep the lower hemisphere fixed. The resulting space is
L={xeR": 0 em/2muio; /

It is homeomorphic to D", which is the im%L under the projection in the 0-th coordinate. We conclude
that S"\ (s} =D". Dickiales Lo he Line

=

Next we consider S” \ A where |A| = k > 2. The exists an embedding of S” into R”*! such that exactly one
pointin Alies in the upper hemisphere. The same argument proves that S”\ A ~D"\ B, where |B| = k—1. It
remains to prove that D" \ B is the wedge sum of k — 1 copies of S!. It is hard to prove rigorously. But we can
draw the deformation retract in the diagram when k =4 as an example:

nice

We deduce that $”\ (k points) = §" 1 v...v §"1, O

N ——
k-1 copies (—/
oL

Question 2

Draw an example of a loop in X, which is non-zero in 71 (Z,) but is zero in H;(Z3). (Proof not required.)

Proof. From Part A Topology, 2, has the following fundamental polygon.

C
ol NP
v % b ¢
c A 7 a
o b
>
[2)

We give 2, a A-complex structure as shown in the diagram. The loop x = [a, b] € H;(Z,) in the diagram is clearly

v



zero. But x # 0 € 71 (Z,), because ;(
So| €A
m1(Z2) ={a,b,c,d|[a,bllc,d)=Z2*x77* | O

Question 3
A retraction a space X onto a subspace Aisamap r: X — X with r(X) = Aand r(a) = aforall a € A.
a) Show that the Mobius band X retracts onto the equator A.

b) Assume that we have a functor F: Top — Grp such that F(S!) =Z

1 22 -2
F§ —S)=2—"F""Z
andif (f: A— X)=(g: A— X) then F(f) = F(g). (For example F = H] is the first homology group.)
By considering the maps A —t s x I3 A show that F(i) is injective and F(r) is surjective.
Deduce that the Mébius band X does not retract onto the boundary circle Ay = 0X.

Having seen the funtorial proof, could you rephrase the proof into a topological argument for a Part A Topol-
ogy undergraduate?

Proof. a) The Mdbius band is homeomorphic to

=10,11%2/{(0,y) ~ (1,1-))

With the equator A given by the image of {(x, y): x = 1/2} under fhe quotient map. We see that the retraction
of X onto A is induced y the projection (x, y) — (1/2, y).

b) The functor F maps a commutative diagram in Top to Grp:

F(A)
Dl\D\ \n ==
nee%s o e MY / T (/) Tpm N
| ‘ ;
AANE PEAMSO - ffo" F(A) —— F(X)
tHhaese ave fr
e#u Thatis, F(r) o F(i] = id. Hence F(i) is injective and F(r) is surjective. \/ ,
oL ovend 1 ey _Ay~ql - . 2. ol”_al
< Leti:S" — X be the inclusion map. Note thatimi =0X = §" and i is homotopic equivalent to z°: S* — S".
_‘P > Hence F(i):Z — Zisgivenby n—2n. Yoa wed | belore  an (' —= A Vo S'5 A
L»SIL’—')X “\b\dc\/lfo =Y L"SIM .
| Suppose that there exists a retraction r : X — A. Then F(r) : Z — Z is surjective. By first isomorphism theo-
S=>5 rem, Z = Z/ ker F(r). But Z/ ker F(r) is a finite group unless ker F(r) = 0. So we have F(r) is an isomorphism.

As Aut(2Z) = {1él} F(r) =id. Then F(r)o F(i) = F(i) # id. Contradiction. We deduce that X does not retract

onto its boundary. f@cd @-—P—EOH W { G ot ,-t,qﬂul'“_/!fou

To translate this into a topological language, we can simply take F = 7;, and operate on the fundamental

v groups. 1, 0 WUt Proups  woere Pt RO
(My experience is that Part A students should learn category theory as early as possible.) O

_ : ol

he MAREy Huod ave o o ple oLe
~ ) A ] — >< ’ . /
5r/ See Bows Lor e &ltibu
N Ll tvcorpasty e eku}

5 ™~ A < D K |
J€ pu drowo sud Eigprawg
i+'¢dso engler to efply T



Question 4

Given a functor F. : Top — GradedAb with

Z =0

0 otherwise

F.(point) = {

Define F, (X) = ker f+, where f. : F.(X) — F.(point) is induced by the constant map on X. Prove that F, (X) = F.(X)
for e # 0 and Fy(X) = Fy(X) @ Z.

Proof. For n> 0, we have F,(pt) = 0. Hence ker f,, = F,,(X), and F(X) = Fp(X) by definition. \/

For n =0, let g : Fy(X) = ker fy — Fo(X) be the inclusion map. Note that g is surjective because the constant map
X — ptis. Then we have a short exact sequence

0 — 5 B —5— Ry —L2 s 7 s 0

In addition, the inclusion pt — X give rise to a section s : Fo(pt) — Fy(X). Thatis, fpos=idp.. Hence the sequence
splits by short five lemma?: -/

~ g fi

0 ——— Fo(X) —=— Fo(X) s" > Z 50
| w]

00— BpX) —- 3 BX)ez—"37 50

Hence ﬁO(X)eBZEFO(X) ‘a/\ &J‘e)_e \\’5 A E 3(}/\

done Wt ogais Hadk WRES > & SR R T
Question 5

&

Draw a A-complex structure on S?, £, = T» # T», and N3 = RP? #RP? #RP?.

~

Proof. For S, we have the following simple construction:

A b B
a N (& \ b V
.
C A
< Wwh ] (o (oy(
o)
2, has been given in Question 2. For N3: L 2 a‘f QL
not o o0
A * Néad
b, a, N a ol ﬁ(:{év%
B subdiy, Liog
RN RZ. > b az @5 Hout
e c 10 Cao v
bg a 3 +O 4"\,'&/\!—
b\ | 7. D Qe wu Sd o
‘HA RSN edsge
2In Question 5 of Homological Algebra Shee , we have proven that every exact sequence of the form 0 — — 0 splits. This 1§jiue t
Z being a projective Z-module. 3 e/‘_l;q_)\ tl&\z:p Ko LR g MW [‘JU‘& QAS( kbe

‘g Kl\lcmg et T B pokest

@;-k“



Question 6
a) Compute the simplicial homology of $?, RP? and the Klein bottle K.

b) Compute their simplicial homology with Z/2Z coefficients.

o

Proof. The A-complex structure on these spaces are given respectively by®

2 ;
S ! W ) 4 RpE W b v K: v 2 v
U U
a\u
¢ \l) a c a a c a
L : :
v = MW v 5 w v b v

« Homology of S2.

We list the generators for the chain groups:

Co: {u,v,w};

- Ci:{a,b,ct; y
- Cy: {U, L}. J
- CG3=Cy=---=0.

The boundary maps are given by N

v
-0ita—w-v, b»—»u—\Ju, c—u-—"v;
- 0:U~at+b-c, L—~a+b~c.
— 03=04=---=0. \7

For R = Z, the homology groups are given by

N4 J

H(Sz) {u, v, w) =7 s (a+b c) =0 H(Sz)—<U_L>:Z H(Sz)—
0 _(w—vu w,u— ) \% “la+b-¢) 2 T ’ -
For R = 7/2Z, the same expression holds as we replace Z by Z/27:
Ho(S%212)=27/2,  Hy(§%Z/2) = Hy(S%712)=7/2, H3(S¥)=---=0
N

» Homology of RP?:
We list the generators for the chain groups:

- Co: {v,w}
Ci:{a,b,c};
Co: {U,L}.

- C3=C4=---=0.

V4

The boundary maps are given by

-01:a—~w-v,b—w-v, c—0;
- 0:U~a-b-c,L—~a—-b+c.
- 03=04=---=0.

J

3 Allen Hatcher, Algebraic Topology pp. 102.

=0



The zeroth homology group is given by Hy(RP?) = <(v, w)> =7Z. Vg
w—v

If R = Z, the first homology group

(a-b,c) - (@h) @, Y

2 =~
H(RP7) = (a—b—c,a-b+c) (2a,a-B)  Qa)

If we use coefficients in Z/2, then

y @) _ap)
H(RP=;7Z/2) = <2a,2,6,a—/3> = (a—ﬁ} ={ay=7Z/2

Next, if R = Z, then a—b+c and a—b+c are linearly independent, and hence kerd, = 0. We have H, (RP?) =0. \]
U-L
For R=7Z/2,kerd, = U — L. Hence H,(RP?;Z/2) = ¢ ) =7/2. \/ QMP
[

{0}
* Homology of K:

We list the generators for the chain groups:

- Co: {vh
-Cyr:{a,b,c};
Cy: {U,L}.

- C3=Cy=---=0.

The boundary maps are given by

- 01:a,b,c—0;
- 0):U~a+b—-c, L—a—-b+c.
- 03=04=---=0.
The zeroth homolo roup is given by H; (K)—EZZ
gy groupis g y Ho oo N4
If R = Z, the first homology group
Hi(K) = (a.b.0) ~_(@by) =ZeZ/2

(a+b-c,a-b+c) {a-p,a+p)

IfR=27/2,thena+b—-c=a-b+c, and hence

H (K;Z/2) = @BY) 2 7120202 \-/

(a=p) Ve

For the second homology group, the calculation is identical to that of RP?. We have H,(K) =0and H»(K;Z/2) =
zr2. \J

We can summarise the results in the following table:

Homology s R K
z|z2|2]z2 Vi Z/2
H, z|zi2|z]|z2 Vi Z/2
H, 0 z12 | zezi2| zi2ezi2 \/
Hy z|zi2|o|zi2| o Z/2
H, 0
0




Question 7

Prove that A" and D" are homeomorphic.

Proof. The standard n-simplex is given by

n

A" = {(xg,...,xn): Y xi=1, Xg,.e0 X = 0} c R
i=0

The projection 7 : (xp,..., x5) — (0, Xy, ..., X,) restricting on A" is a bijection onto its image. It is clear that 7 is

conntinuous and the inverse is also continuous. Hence A" = 1(A") € R", where

n
(A )—{ Xp): 0< Z <1, xo,...,xnzo}gR"

1
Let X =w(A™) - ?(1,..., 1), so that X = n1(A™), 0 € int(X), and X c D". \_/
n

For p € "1, we define f(p) = tp, where r:=sup{s > 0: sp € X}. Then im f € 3X. We claim that f is continuous.

Suppose that f is not continuous. There exists a sequence {p,} € S" ! such that p,, — p and f(p,) #~ f(p). By
compactness of 0 X, after extracting a subsequence we may assume that f(p,) — « for some a € 4 X. We have that
0, f(p), a, and p are colintear. Let @ = up and f(p) = vp for some u, v € (0,1], and v > u. Let S be the orthogonal
complement of p. Let K be a cone with vertex f(p) and base Sn B(0, ¢) for some sufficiently small € > 0. Since
X is convex, K € X. But by the construction, a has a neighbourhood entirely contained in K, contradicting that
a € 0X. We deduce that f is continuous. In particular, we have also shown that the line segment joining 0 and p
intersect dX in a unique point f(p). So f is invertible. The same argument shows that f~! is also continuous.

Finally, For p € S"~! and ¢ € [0,1], we define ¢ : D" — X by ¢(tp) = t f(p). Then ¢ is continuous with a continuous
inverse y: tq— tf1(q) for g € X. Hence D" = X = A", O

\op |
v ey SRR -l



