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Throughout this sheet, k denotes a field and G denotes a finite group.

Question 1

Let g ∈ GL(V ) be an element of finite order and suppose that k is algebraically closed. Prove that g is diagonalisable whenever
char(k) = 0. Does this result also hold for fields of positive characteristic?

Proof. There exists a minimal integer n ∈N such that g n = id. Then p(x) = xn −1 ∈ k[x] annihilates g . The formal derivative of p is
p ′(x) = nxn ∈ k[x]. Since chark = 0, p ′(x) = 0 if and only if x = 0. But x = 0 is not a root of p. It follows that p has simple roots
only. Since k is algebraically closed, p splits into distinct linear factors in k[x]. Let m be the minimal polynomial of g . Then
m divided p and hence also splits into distinct factors. We deduce that g is diagonalizable.

The statement is not true for algebraically closed fields of positive characteristic. Let kp be an algebraically closed fields with
charkp = p. Consider A ∈ GL2(kp ):

A =
(
1 1
0 1

)
Then we have

Ap =
(
1 p
0 1

)
= I

Hence A has finite order. The characteristic polynomial of A is χA(x) = (x − 1)2. So 1 is the only eigenvalue of A. If A is
diagonalizable, then we must have A = I , which is impossible. Hence A is not diagonalizable.

Question 2

The symmetric group Sn acts on X := {x1, · · · , xn} by permuting indices: σ · xi = xσ(i ) for all σ ∈ Sn and all i . Find all Sn-stable
subspaces of the permutation representation ρ : Sn → GL(k X ).

Proof. First we consider the case where chark 6 | n.

• Following Example 1.20, we observe that k X =U ⊕V , where

U :=
{

n∑
i=1

axi ∈ k X : a ∈ k

}
=

〈
n∑

i=1
xi

〉
V :=

{
n∑

i=1
ai xi ∈ k X :

n∑
i=1

ai = 0

}

because every element in k X can be expressed as

n∑
i=1

ai xi = a
n∑

i=1
xi +

n∑
i=1

(ai −a)xi , a := 1

n

n∑
i=1

ai

and U ∩V = {∑
i axi ∈ k X : na = 0

}= {0}.

• Next we shall show that U and V are Sn-stable:

The permutation representation ρ : Sn → GL(k X ) is given by:

ρ(σ)

(
n∑

i=1
ai xi

)
:=

n∑
i=1

aiσ · xi =
n∑

i=1
ai xσ(i )

For
∑

i axi ∈U and σ ∈ Sn , ρ(σ)(
∑

i axi ) =∑
i axσ(i ) =∑

i axi ∈U . Hence U is Sn-stable.

For
∑

i ai xi ∈ V and σ ∈ Sn , ρ(σ)(
∑

i ai xi ) = ∑
i ai xσ(i ) = ∑

i aσ−1(i )xi .
∑

i ai = 0 implies that
∑

i aσ−1(i ) = 0. Hence
ρ(σ)(

∑
i ai xi ) ∈V . Hence V is Sn-stable.

• We show that there are no other non-trivial Sn-stable subspaces. We claim that the sub-representation ρV is irreducible.

Note that {x1−x2, x2−x3, ..., xn−1−xn} is a set of linearly independent vectors in V , because the i -th vector is not in the
span of the first i −1 vectors for 1 É i É n. Since dimU = 1, dimV = n −1. So the set is in fact a basis of V .

Let W ÉV be a Sn-stable subspace and W 6= {0}. Consider v =∑
i ai xi ∈W . Since U ∩W = {0}, there exists i , j ∈ {1, ...,n}
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such that ai 6= a j . Since W is Sn-stable,

v −ρV (i j )(v) = (a j −ai )(xi −x j ) ∈W

Hence xi −x j ∈W . Finally,
ρV ((i k)( j k +1))(xi −x j ) = xk −xk+1 ∈W

for all 1 É k É n −1. Hence W =V . We deduce that ρV is irreducible.

Since dimU = 1, the sub-representation ρU is also irreducible.

• We deduce that the Sn-stable subspaces of k X are {0},U ,V ,k X .

Now we consider the case chark | n.

• We observe that U ⊆V , because
n∑

i=1
1 = n = 0 =⇒

n∑
i=1

xi ∈V =⇒ U ⊆V

• By the same argument U and V are still Sn-stable, although ρ is no longer completely reducible.

• Let W É V be a Sn-stable subspace and W 6= {0}. If xi − x j ∈ W for some i 6= j , then by the reasoning above V ⊆ W . So
either W =V or W = k X since dimV = dimk X −1.

• Now assume that W is not V or k X . Then xi −x j ∉W for all i 6= j . If v =∑
i ai xi ∈W , then the same reasoning as before

leads to ai = a j for all indices. Hence W ⊆U . Since dimU = 1, we deduce that W =U .

• In conclusion, the Sn-stable subspaces of k X are still {0},U ,V ,k X .

Question 3

Show that in Example 1.17, the G-stable subspace 〈v1〉 has no G-stable complement in V = 〈v1, v2〉.

Proof. Suppose that it has a G-stable complement 〈w〉 for some w = (a,b)T ∈V \〈v1〉. Then

ρ(g i )(w) =
(
1 i
0 1

)(
a
b

)
=

(
a +bi

b

)
=λw =⇒ a +bi =λa ∧ b =λb

for some λ ∈ Fp . Since w ∉ 〈v1〉, b 6= 0. Hence λ = 1 and bi = 0. This is impossible. Hence no such G-stable subspace
exists.

Question 4

Let X be a G-set and suppose that the permutation representation ρ : G → GL(k X ) is irreducible. Prove that the G-action on
X must be transitive. Is the converse true?

Proof. For x ∈ X , we observe that V =
{ ∑

y∈Orb(x)
ay y : ay ∈ k

}
is a G-stable subspace. This is because

∀g ∈G ρ(g )

( ∑
y∈Orb(x)

ay y

)
= ∑

y∈Orb(x)
ay (g · y) ∈V as g · y ∈ Orb(x)

If G is not transitive, then Orb(x) 6= X . Then V is a non-trivial G-stable subspace, contradicting that ρ is irreducible.

The converse is not true. Let ρ : Sn → GL(k X ) be a permutation representation and chark = 0. Then by Question 2 ρ is
completely reducible. But Sn acting on X = {x1, ..., xn} is transitive.

Question 5

For each conjugacy class C in G , define its conjugacy class sum to be Ĉ := ∑
x∈C x ∈ kG . Prove that the conjugacy class sums

form a basis for Z (kG).

James Taylor
good


James Taylor
good


James Taylor
This deduction is wrong sadly. For example, if we consder the trivial group (so representations are the same as vector spaces), with representaion $k^2$, this can be written as the direct sum $<(1,0)> + <(0,1)>$ - with both of the compnents irreducible. However, another stable subspace is < (1,1) >.

James Taylor
but you assume W< V?

James Taylor
again this requires more justification


James Taylor

James Taylor
Perfect solution.

James Taylor
CAUTION:

Completely reducible is not the negation of irreducible.

The negation of irrdecuible is reducible.

For example, any irreducible representation is completetly reducible - it is written as a direct sum of irreducibles already!

What you should say here is “reducible” indtead of “completetly reducilble”.

James Taylor
Very good


James
Sticky Note
A

James
Sticky Note
A


James
Sticky Note
A, very good



3

Proof. First we show that Ĉ ∈ Z(kG). For g ∈G , we know that ρg : C →C , ρg (x) = g−1xg is a bijection. For
∑

g∈G
ag g ,

Ĉ

( ∑
g∈G

ag g

)
= ∑

x∈C

∑
g∈G

ag xg = ∑
x∈C

∑
g∈G

ag gρg (x) = ∑
ρg (x)∈C

∑
g∈G

ag gρg (x) = ∑
x∈C

∑
g∈G

ag g x =
( ∑

g∈G
ag g

)
Ĉ

Let G =C1 ∪·· ·Ck be a partition of G into conjugacy classes.

Since different conjugacy classes are disjoint in G , {Ĉ1, ...,Ĉk } are linearly independent. So it remains to show that the conju-
gacy class sums span Z(kG).

For
∑

g∈G
ag g ∈ Z(kG):

∀h ∈G :
∑

g∈G
ag g = h−1

( ∑
g∈G

ag g

)
h = ∑

g∈G
ag (h−1g h) = ∑

g∈G
agρh(g ) = ∑

g∈G
aρ−1

h (g )g

Hence ag = aρ−1
h (g ) for all g ,h ∈G . As a group action, the orbits of ρ are exactly the conjugacy classes of G . Hence we deduce

that ag = ah if g and h are in the same conjugacy class. Then

∑
g∈G

ag g =
k∑

i=1

∑
g∈Ci

ai g =
k∑

i=1
ai Ĉi

Hence {Ĉ1, ...,Ĉk } spans Z(kG).

Question 6

Suppose that A = Mn(k) be the ring of n ×n matrices with entries in k and let V := kn be the natural left A-module of n ×1
column vectors.

(a) Prove that V is a simple A-module.

(b) Prove that A has no nonzero proper two-sided ideals.

(c) Exhibit explicit simple left ideals L1, · · · ,Ln of A such that A = L1 ⊕·· ·⊕Ln .

(d) Is the decomposition you found in (iii) unique? Justify your answer.

Proof. (a) Suppose that W is a non-zero sub A-module of V . Suppose that v ∈W \{0}. Then for any u ∈V , u ∈W because

u = T v where T = 1

‖v‖uvT ∈ Mn(k)

Hence W =V . We deduce that V is a simple A-module.

(b) Suppose that J is a non-zero two sided ideal of A. Let B ∈ A such that the (m, p)-th entry of B is bm,p 6= 0. Let Ei , j ∈ Mn(k)
be such that the (i , j )-th entry of Ei , j is 1 ∈ k and all other entries are 0. Then

Em,p = 1

bm,p
Em,mBEp,p ∈ J

Let Fi , j ∈ Mn(k) be the elementary matrix that exchanges the i -th and j -th rows. Then we have E1,1 = F1,mEm,p Fp,1 ∈ J .
Then

I =
n∑

i=1
Ei ,i =

n∑
i=1

F1,i E1,1F1,i ∈ J

We deduce that J = A. Hence A has no non-trivial two-sided ideals.

(c) Let Li =
〈

Ei ,i
〉

left for each i . For B ∈ Mn(k), B = B I =
n∑

i=1
BEi ,i ∈

n∑
i=1

Li . Hence A =
n∑

i=1
Li . On the other hand, suppose that

M ∈ Li ∩L j where i 6= j . Then there exists B ,C ∈ Mn(k) such that M = BEi ,i = C E j , j . But the entries of BEi ,i are zero
except at the i -th column, whereae the entries of C E j , j are zero except at the j q4-th column. Hence M = 0. Li ∩L j = {0}.

we deduce that A =
n⊕

i=1
Li .
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(d) The decomposition in (iii) is not unique. Consider a general invertible matrix P 6= I . Let Ki =
〈

P−1Ei ,i P
〉

left. P can be

chosen such that Ki 6= L j for any j . We still have B = BP−1I P =
n∑

i=1
BP−1Ei ,i P ∈

n∑
i=1

Ki for B ∈ Mn(k). Hence A =
n∑

i=1
Ki .

And

M ∈ Ki ∩K j =⇒ ∃B ,C ∈ Mn(k) : M = BP−1Ei ,i P =C P−1E j , j P =⇒ BP−1Ei ,i =C P−1E j , j =⇒ M = 0 =⇒ Ki ∩K j = {0}

Hence A =
n⊕

i=1
Ki .

Question 7

Let A be k-algebra for some field k and let M be a finite dimensional A-module. A composition series for M is a finite ascending
chain

{0} = M0 < M1 < M2 < ·· · < Mn = M

such that each subquotient Mk /Mk−1 is a simple A-module for each k = 1, · · · ,n. These subquotients are called composition
factors. Prove the Jordan-Hölder Theorem, which states that if

{0} = N0 < N1 < N2 < ·· · < Nm = M

is another composition series for M , then necessarily m = n and there exists a permutation σ ∈ Sn together with A-module
isomorphisms

Mk /Mk−1
∼=−→ Nσ(k)/Nσ(k)−1 for all k = 1, · · · ,n

Deduce that G has only finitely many irreducible representations, up to isomorphism.

Proof. We use induction on the length of the shortest composition series of M . Base case: Suppose that M has composition series
{0} < M . That is, M is simple. If M has another composition series

{0} = M0 < M1 < ·· · < Mn = M

such that n Ê 2, then M is not simple. Contradiction.

Induction case: Suppose that M two composition series:

{0} = M0 < M1 < M2 < ·· · < Mn = M (1)

{0} = N0 < N1 < N2 < ·· · < Nm = M (2)

where n is the shortest length of composition series of M . So m Ê n. If Mn−1 = Nm−1, then M ′ = Mn−1 = Nm−1 is a module
with shortest length n−1. By induction hypothesis n−1 = m−1, and the two composition series for M ′ is equivalent. Hence
n = m and the composition series for M is equivalent.

Now suppose that Mn−1 6= Nm−1. If Mn−1 ( Nm−1, then by third isomorphism theorem

M/Mn−1

Nm−1/Mn−1

∼= M

Nm−1

contradicting that M/Mn−1 is simple. Similarly we cannot have Nm−1 ( Mn−1. Hence Nm−1 ( Nm−1 +Mn−1. Since M/Nm−1

is simple, we must have M = Nm−1 +Mn−1.

Let P = Mn−1 ∩Nm−1 < M . By second isomorphism theorem, M/Mn−1
∼= Nm−1/P and M/Nm−1

∼= Mn−1/P . Hence Nm−1/P
and Mn−1/P are simple. P has a composition series:

{0} = P0 < P1 < ·· · < Pp−1 < Pp = P (3)
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Then

{0} = P0 < P1 < ·· · < Pp−1 < Pp < Mn−1 (4)

{0} = M0 < M1 < M2 < ·· · < Mn−1 (5)

are two composition series of Mn−1 of length p +1 and n−1 respectively. By induction hypothesis, p = n−2 and the compo-
sition series (4) and (5) are equivalent. Similarly, the composition series of Nm−1

{0} = P0 < P1 < ·· · < Pp−1 < Pp < Nm−1 (6)

{0} = N0 < M1 < N2 < ·· · < Nm−1 (7)

are equivalent, and p = m −2. We deduce that m = n. Finally, the composition series of M

{0} = P0 < P1 < ·· · < Pp−1 < Pp < Mn−1 < M (8)

{0} = P0 < P1 < ·· · < Pp−1 < Pp < Nm−1 < M (9)

are equivalent, because M/Mn−1
∼= Nm−1/P and M/Nm−1

∼= Mn−1/P . Since (4) is equivalent to (5), then (8) is equivalent
to (1). SInce (6) is equivalent to (7), then (9) is equivalent to (2). We conclude that the composition series (1) and (2) are
equivalent.

Let M be a simple kG-module. Fix m ∈ M\{0}. Let fm : kG → M given by fm(a) = a ·m. It is clear that fm is a kG-module
homomorphism. By first isomorphism theorem, kG/ker fm

∼= im fm = M because M is simple. Then ker fm is a sub kG-
module of kG , and hence is a left ideal of kG . Hence kG has a composition series of the form

{0} < M1, · · · < Mn = ker fm < A

We deduce that M is a composition factor of kG . Since kG has finite length, it has finitely many simple kG-modules up to
isomorphism.

Note that there is a bijective correspondence between the ireducible representations of G and simple kG-modules (up to
isomorphism). We conclude that G has finitely many irreducible representations.
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