

Peize Liu St. Peter's College University of Oxford

Problem Sheet 2

B3.3: Algebraic Number Theory

Topics covered: integral bases, unique factorisation, Euclidean domains.

Question 1

Show that $f(X) := X^3 - X + 2$ is an irreducible integer polynomial. Let θ be a root of f(X) = 0, and calculate the discriminant $\Delta^2(\Theta)$ of $\Theta := \{1, \theta, \theta^2\} \subseteq K := \mathbb{Q}(\theta)$. Using Stickelberger's theorem (Sheet 1 Question 7), show that Θ is an integral basis for K.

Proof. Suppose that f has a root $p/q \in \mathbb{Q}$ with gcd(p,q) = 1. By the rational root test, we have $p \mid 2$ and $q \mid 1$. Hence p/q = 1 or 2. But f(1) = 2 and f(2) = 8. This is impossible. f has no rational roots, and hence is irreducible over \mathbb{Q} .

By Lemma 2.3, we have

$$\Delta^2(\Theta) = \det \begin{pmatrix} \operatorname{Tr}(1) & \operatorname{Tr}(\theta) & \operatorname{Tr}(\theta^2) \\ \operatorname{Tr}(\theta) & \operatorname{Tr}(\theta^2) & \operatorname{Tr}(\theta^3) \\ \operatorname{Tr}(\theta^2) & \operatorname{Tr}(\theta^3) & \operatorname{Tr}(\theta^4) \end{pmatrix}$$

Let $\theta_1, \theta_2, \theta_3$ be the roots of f. By Vieta's theorem, we have $\theta_1 + \theta_2 + \theta_3 = 0$ and $\theta_1\theta_2 + \theta_2\theta_3 + \theta_3\theta_1 = -1$. Next we compute the traces:

$$\begin{aligned} & \text{Tr}(1) = 3 \\ & \text{Tr}(\theta) = \theta_1 + \theta_2 + \theta_3 = 0 \\ & \text{Tr}(\theta^2) = (\theta_1 + \theta_2 + \theta_3)^2 - 2(\theta_1\theta_2 + \theta_2\theta_3 + \theta_3\theta_1) = 2 \\ & \text{Tr}(\theta^3) = \text{Tr}(\theta - 2) = -6 \\ & \text{Tr}(\theta^4) = \text{Tr}(\theta^2 - 2\theta) = 2 \end{aligned}$$

Therefore

$$\Delta^{2}(\Theta) = \det \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & -6 \\ 2 & -6 & 2 \end{pmatrix} = -104$$

Let $L = \langle \Theta \rangle_{\mathbb{Z}}$. Then L is a \mathbb{Z} -submodule of \mathcal{O}_K . By Notes 3.13, we have

$$\Delta^{2}(\Theta) = \Delta^{2}(L) = m^{2}\Delta^{2}(\mathcal{O}_{K}) = m^{2}\Delta^{2}(K)$$

for some $m \in \mathbb{Z}_+$. The factorisation of $\Delta^2(\Theta) = -104$ is $-104 = -2^3 \times 13$. Then either $\Delta^2(K) = -104$ or $\Delta^2(K) = -26$. By Stickelberger's Theorem, $\Delta^2(K) \equiv 0$ or 1 mod 4. Hence $\Delta^2(K) = -104$, m = 1, and $\mathcal{O}_K = L$. we deduce that Θ is an integral basis of K.

Question 2

Let *K* be a number field and let $L = K(\sqrt{\delta})$, where $\delta \in K$ and $\sqrt{\delta} \notin K$. Let $\alpha = \beta + \gamma \sqrt{\delta} \in L$, where $\beta, \gamma \in K$. Show that if $\alpha \in \mathcal{O}_L$ then $\beta - \gamma \sqrt{\delta} \in \mathcal{O}_L$ and $\beta^2 - \gamma^2 \delta \in \mathcal{O}_K$.

Proof. By transitivity of integral closure, \mathcal{O}_L is the integral closure of \mathcal{O}_K in L. In particular, $\mathcal{O}_K = K \cap \mathcal{O}_L$.

Since $\alpha \in \mathcal{O}_L$, there exists a monic polynomial $f \in \mathcal{O}_K[x]$ such that $f(\alpha) = 0$. Consider the K-automorphism $\varphi \in \operatorname{Gal}(L \mid K)$ given by $\varphi(\sqrt{\delta}) = -\sqrt{\delta}$. Since φ fixes $\mathcal{O}_K \subseteq K$, we have

$$f(\beta - \gamma \sqrt{\delta}) = f(\varphi(\alpha)) = \varphi(f(\alpha)) = 0$$

Hence $\beta - \gamma \sqrt{\delta}$ is integral over \mathcal{O}_K . $\beta - \gamma \sqrt{\delta} \in \mathcal{O}_L$.

Since \mathcal{O}_L is a ring, we have

$$(\beta + \gamma \sqrt{\delta})(\beta - \gamma \sqrt{\delta}) = \beta^2 - \gamma^2 \delta \in \mathcal{O}_L$$

In addition, $\beta^2 - \gamma^2 \delta \in K$ as $\beta, \gamma, \delta \in K$. Hence $\beta^2 - \gamma^2 \delta \in K \cap \mathcal{O}_L = \mathcal{O}_K$.

Question 3

Let *R* be an integral domain. Show that every prime element in *R* is irreducible. Suppose now that factorisation into irreducible elements in *R* is possible. Show that this factorisation is unique if and only if every irreducible element in *R* is prime.

Proof. Suppose that R is an integral domain. Let $a \in R$ be a prime element. For $x, y \in R$ such that a = xy, since a is prime, we have $a = xy \Longrightarrow a \mid xy \Longrightarrow a \mid x \lor a \mid y$. But also $a = xy \Longrightarrow x \mid a \land y \mid a$. Hence we have $a \sim x$ or $a \sim y$. Since R is an integral domain, we have $x \in R^{\times}$ or $y \in R^{\times}$. Hence a is irreducible.

Now suppose that R is a factorisation domain.

- " \Longrightarrow ": Suppose that R is a UFD. Suppose that a is an irreducible and $a \mid bc$. Since R is a UFD, the irreducible factor of a, which is a itself, is the subset of the union of the irreducible factors of b and c (counting multiplicities). Then we must have $a \mid b$ or $a \mid c$. Hence a is a prime element.
- " \leftarrow ": Suppose that every irreducible element in *R* is prime. For $r \in R$, suppose that it has two factorizations into irreducibles:

$$r = q_1 \cdots q_n = p_1 \cdots p_m$$

A

We have $p_1 \cdots p_m \in \langle q_1 \rangle$. By hypothesis $\langle q_1 \rangle$ is prime. Then we must have $p_i \in \langle q_1 \rangle$ for some $i \in I$. After possible permutations we may assume that $p_1 \in \langle q_1 \rangle$. Since p_1 is irreducible, we must have $\langle p_1 \rangle = \langle q_1 \rangle$ or $p_1 \sim q_1$. Then $q_2 \cdots q_n \sim p_2 \cdots p_m$. We can repeat this process. If $n \neq m$ then after some steps we will have $1 \sim a$ where a is a product of irreducibles, which is impossible. Hence n = m and $q_i \sim p_i$ for all $i \in \{1, ..., n\}$ after possible permutations. We conclude that R is a UFD.

Question 4

Let K be a number field. Prove that \mathcal{O}_K is Euclidean with norm function $|\operatorname{Norm}_{K/\mathbb{Q}}|:\mathcal{O}_K\setminus\{0\}\to\mathbb{N}\cup\{0\}$ if and only if for each $\alpha\in K$ there exists $\beta\in\mathcal{O}_K$ such that $|\operatorname{Norm}_{K/\mathbb{Q}}(\alpha-\beta)|<1$. Verify this condition for $K=\mathbb{Q}(\sqrt{-d})$ where d=1,2,3,7. [Hint: Consider the nearest point on a lattice.

Proof. (*In my own notation, the set of natural numbers* \mathbb{N} *always contains zero.*)

By Corollary 3.8, $\operatorname{Norm}_{K|\mathbb{Q}}(\alpha) \in \mathbb{Z}$ for all $\alpha \in \mathcal{O}_K$. Then $\left|\operatorname{Norm}_{K|\mathbb{Q}}\right| : \mathcal{O}_K \setminus \{0\} \to \mathbb{N}$ is well-defined. Note that $\left|\operatorname{Norm}_{K|\mathbb{Q}}\right|$ is multiplicative and $\left|\operatorname{Norm}_{K|\mathbb{Q}}(\alpha)\right| = 0$ if and only if $\alpha = 0$.

" \Longrightarrow " Suppose that $(\mathcal{O}_K, |\text{Norm}_{K|\mathbb{Q}}|)$ is an Euclidean domain. Let $\alpha \in K$.

Let $m(x) := x^n + \sum_{i=0}^{n-1} a_i x^i$ be the minimal polynomial of α , where $a_i = p_i / q_i \in \mathbb{Q}$ and $p_i, q_i \in \mathbb{Z}$. Let $d := \text{lcm}(q_0, ..., q_{n-1})$. Then

$$f(x) := d^n m\left(\frac{x}{d}\right)$$

is a monic polynomial with a root $d\alpha$. We deduce that $d\alpha \in \mathcal{O}_K$.

Since \mathcal{O}_K is an ED, and $d \in \mathcal{O}_K \setminus \{0\}$, there exists $\beta, r \in \mathcal{O}_K$ such that $d\alpha = d\beta + r$, with $\left| \operatorname{Norm}_{K|\mathbb{Q}}(r) \right| < \left| \operatorname{Norm}_{K|\mathbb{Q}}(d) \right|$. (In fact $\left| \operatorname{Norm}_{K|\mathbb{Q}} \right|$ is defined on the whole \mathcal{O}_K .) Therefore

$$\left|\operatorname{Norm}_{K|\mathbb{Q}}(\alpha-\beta)\right| = \frac{\left|\operatorname{Norm}_{K|\mathbb{Q}}(d\alpha-d\beta)\right|}{\left|\operatorname{Norm}_{K|\mathbb{Q}}(d)\right|} = \frac{\left|\operatorname{Norm}_{K|\mathbb{Q}}(r)\right|}{\left|\operatorname{Norm}_{K|\mathbb{Q}}(d)\right|} < 1$$

- " \Leftarrow ": Suppose that for each $\alpha \in K$ there exists $\beta \in \mathcal{O}_K$ such that $|\operatorname{Norm}_{K/\mathbb{Q}}(\alpha \beta)| < 1$.
 - For $a \in \mathcal{O}_K$ and $b \in \mathcal{O}_K \setminus \{0\}$, by hypothesis there exists $q \in \mathcal{O}_K$ such that

$$\left| \operatorname{Norm}_{K|\mathbb{Q}} \left(\frac{a}{h} - q \right) \right| < 1$$

If a = qb, then we are done. Now suppose that $r := a - qb \neq 0$. Then

$$\frac{\left|\operatorname{Norm}_{K|\mathbb{Q}}(r)\right|}{\left|\operatorname{Norm}_{K|\mathbb{Q}}(b)\right|} = \frac{\left|\operatorname{Norm}_{K|\mathbb{Q}}(a-qb)\right|}{\left|\operatorname{Norm}_{K|\mathbb{Q}}(b)\right|} = \left|\operatorname{Norm}_{K|\mathbb{Q}}\left(\frac{a}{b}-q\right)\right| < 1 \implies \left|\operatorname{Norm}_{K|\mathbb{Q}}(r)\right| < \left|\operatorname{Norm}_{K|\mathbb{Q}}(b)\right|$$

П

• For $a, b \in \mathcal{O}_K \setminus \{0\}$,

$$|\operatorname{Norm}_{K|\mathbb{Q}}(ab)| = |\operatorname{Norm}_{K|\mathbb{Q}}(a)| |\operatorname{Norm}_{K|\mathbb{Q}}(b)| > |\operatorname{Norm}_{K|\mathbb{Q}}(a)|$$

because $|\operatorname{Norm}_{K|\mathbb{O}}(b)| \neq 0$.

We deduce that $(\mathcal{O}_K, |\text{Norm}_{K|\mathbb{Q}}|)$ is an Euclidean domain.

Let $K = \mathbb{Q}\left(\sqrt{-d}\right)$. K has a \mathbb{Q} -basis $\left\{1, \sqrt{d}\mathbf{i}\right\}$. The Galois group $\operatorname{Gal}(K \mid \mathbb{Q}) = \left\{\mathrm{id}, \ z \mapsto \overline{z}\right\}$. Therefore, for $\alpha = a + b\sqrt{d}\mathbf{i} \in K$ with $a, b \in \mathbb{Q}$, the norm is

$$\operatorname{Norm}_{K|\mathbb{Q}}(\alpha) = (a + b\sqrt{d}i)(a - b\sqrt{d}i) = a^2 + b^2d$$

By Example 3.12, \mathcal{O}_K has integral basis

$$\begin{cases} \left\{1, \sqrt{d}\mathbf{i}\right\}, & \text{if } d \equiv 1, 2 \bmod 4; \\ \left\{1, \frac{1+\sqrt{d}\mathbf{i}}{2}\right\}, & \text{if } d \equiv 3 \bmod 4. \end{cases}$$

• For d=1 or 2, consider $\alpha=a+b\sqrt{d}\mathbf{i}\in K$. Let $a',b'\in\mathbb{Z}$ such that $|a-a'|\leq 1/2$ and $|b-b'|\leq 1/2$. We have $\beta:=a'+b'\sqrt{d}\mathbf{i}\in\mathcal{O}_K$ and

$$Norm_{K|\mathbb{Q}}(\alpha - \beta) = (a - a')^2 + (b - b')^2 d \le \frac{1 + d}{4} < 1$$

which gives the desired β for each α .

• For d = 3 or 7, consider $\alpha = a + b\sqrt{d}i \in K$. We choose $a', b' \in \frac{1}{2}\mathbb{Z}$ as follows:

First choose $a', b' \in \mathbb{Z}$ such that $|a - a'| \le 1/2$ and $|b - b'| \le 1/2$. If |b - b'| > 1/4, we can replace a', b' with $a' + \frac{1}{2}, b' + \frac{1}{2}$ or $a' - \frac{1}{2}, b' - \frac{1}{2}$ such that $|b - b'| \le 1/4$.

Now we have $\beta := a' + b' \sqrt{d} i \in \mathcal{O}_K$, and

$$Norm_{K|\mathbb{Q}}(\alpha - \beta) = (a - a')^2 + (b - b')^2 d \le \frac{1}{4} + \frac{d}{16} < 1$$

which gives the desired β for each α .

We conclude that \mathcal{O}_K is an ED for d = 1, 2, 3, 7.

Question 5

Prove that if p is a prime with $p \equiv 1$ or 3 mod 8, then $p = X^2 + 2Y^2$ for some $X, Y \in \mathbb{Z}$ unique up to sign.

Proof. First we claim that -2 is a quadratic residue of p. From Part A Number Theory we know that

$$\left(\frac{-1}{p}\right) = 1$$
 if and only if $p \equiv 1 \mod 4$, $\left(\frac{2}{p}\right) = 1$ if and only if $p \equiv \pm 1 \mod 8$

Hence

$$\left(\frac{-2}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{2}{p}\right) = \begin{cases} -1 \cdot (-1) = 1 & p \equiv 1 \mod 8\\ 1 \cdot 1 = 1 & p \equiv 3 \mod 8 \end{cases}$$

which proves the claim. Hence there exists $r \in \mathbb{Z}$ such that $2r^2 \equiv -2 \mod p$. That is, $p \mid (1+2r^2)$.

 $\mathbb{Z}[\sqrt{-2}]$ is the ring of integers in $\mathbb{Q}(\sqrt{-2})$. By Question 4, $\mathbb{Z}[\sqrt{-2}]$ is an Euclidean domain, and hence is a unique factorisation domain, in which $1+2r^2=(1+\sqrt{2}\mathrm{i})(1-\sqrt{2}\mathrm{i})$.

Suppose that p is irreducible in $\mathbb{Z}[\sqrt{-2}]$. Then p is prime in $\mathbb{Z}[\sqrt{-2}]$. We have either $p \mid (1 + \sqrt{2}i)$ or $p \mid (1 - \sqrt{2}i)$ in $\mathbb{Z}[\sqrt{-2}]$. But this is impossible. as

$$\mathbb{Z}[\sqrt{-2}] = \left\{ a + b\sqrt{2}i : a, b \in \mathbb{Z} \right\}$$

Hence there exists non-units $a + b\sqrt{2}i$, $c + d\sqrt{2}i \in \mathbb{Z}[\sqrt{-2}]$ such that $p = (a + b\sqrt{2}i)(c + d\sqrt{2}i)$. Taking the norm:

$$p^2 = (a^2 + 2b^2)(c^2 + 2d^2)$$

Since neither $a^2 + 2b^2$ nor $c^2 + 2d^2$ is not 1, we deduce that $p = a^2 + 2b^2 = c^2 + 2d^2$ as required.

A

Next we shall prove the uniqueness of *X*, *Y* in the expression.

If $X + Y\sqrt{2}i = \alpha\beta$ in $\mathbb{Z}[\sqrt{-2}]$, then taking the norm we have

$$p = X^2 + 2Y^2 = \text{Norm}(\alpha) \text{Norm}(\beta)$$

Then either α or β is a unit in $\mathbb{Z}[\sqrt{-2}]$. Hence $X + Y\sqrt{2}i$ is irreducible in $\mathbb{Z}[\sqrt{-2}]$. Similarly $X - Y\sqrt{2}i$ is also irreducible in $\mathbb{Z}[\sqrt{-2}]$.

Now suppose that $p = X'^2 + 2Y'^2$ for some $X', Y' \in \mathbb{Z}$. Then

$$p = \left(X + Y\sqrt{2}\mathbf{i}\right)\left(X - Y\sqrt{2}\mathbf{i}\right) = \left(X' + Y'\sqrt{2}\mathbf{i}\right)\left(X' - Y'\sqrt{2}\mathbf{i}\right)$$

Since $\mathbb{Z}[\sqrt{-2}]$ is a UFD, the two factorisation of p are equal up to permutation and associates. But we also know that the only units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1 . We conclude that $X^2 = X'^2$ and $Y^2 = Y'^2$, so that the expression for p is unique.

Question 6

Show that $\mathbb{Z}[\sqrt{3}]$ is Euclidean. Write down the factorisations into irreducibles of 2,3 and 11. Show using congruences modulo 3 and 4 that the elements 5 and 7 are irreducible in $\mathbb{Z}[\sqrt{3}]$.

Proof. Let $K = \mathbb{Q}(\sqrt{3})$. Then $\mathcal{O}_K = \mathbb{Z}[\sqrt{3}]$. The Galois group $Gal(K \mid \mathbb{Q}) = \{id, a + b\sqrt{3} \mapsto a - b\sqrt{3}\}$. Hence for $\alpha = a + b\sqrt{3}$,

$$Norm_{K|\mathbb{Q}}(\alpha) = (a + b\sqrt{3})(a - b\sqrt{3}) = a^2 - 3b^2$$

We can choose $a', b' \in \mathbb{Z}$ such that $|a - a'| \le 1/2$ and $|b - b'| \le 1/2$. Then $\beta := a' + b'\sqrt{3} \in \mathcal{O}_K$, and

$$|\text{Norm}_{K|\mathbb{Q}}(\alpha - \beta)| = |(a - a')^2 - 3(b - b')^2| \le \frac{3}{4}$$

By Question 4, we deduce that $\mathbb{Z}[\sqrt{3}]$ is an Euclidean domain.

The factorisation of 2, 3, 11 in $\mathbb{Z}[\sqrt{3}]$:

$$2 = (1 + \sqrt{3})(-1 + \sqrt{3}),$$
 $3 = \sqrt{3} \cdot \sqrt{3},$ $11 = (1 + 2\sqrt{3})(-1 + 2\sqrt{3})$

The norms of the factors are -2, -3, -11 respectively. These are primes in \mathbb{Z} . Hence the factors are irreducibles in $\mathbb{Z}[\sqrt{3}]$.

Suppose that 5 is reducible in $\mathbb{Z}[\sqrt{3}]$. There exists non-units $a+b\sqrt{3}$, $c+d\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ such that $5=(a+b\sqrt{3})(c+d\sqrt{3})$. Taking the norm:

$$25 = |a^2 - 3b^2| |c^2 - 3d^2|$$

By unique factorisation in \mathbb{Z} , $a^2 - 3b^2 = \pm 5$ and $c^2 - 3d^2 = \pm 5$. Note that the only quadratic residue of 3 is 1. Using congruences modulo 3,

$$a^2 - 3b^2 \equiv 1 - 3 \cdot 1 \equiv 1 \mod 3$$

Hence $a^2 - 3b^2 = -5$. Note that the quadratic residue of 4 are 0 and 1. Then using congruences modulo 4,

$$a^2 - 3h^2 \equiv a^2 + h^2 \equiv 3 \mod 4$$

But this is impossible, as $a^2, b^2 \equiv 0$ or 1 mod 4. We deduce that 5 is irreducible in $\mathbb{Z}[\sqrt{3}]$.

Suppose that 7 is reducible in $\mathbb{Z}[\sqrt{3}]$. There exists non-units $a+b\sqrt{3}$, $c+d\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ such that $7=(a+b\sqrt{3})(c+d\sqrt{3})$. Taking the norm:

$$49 = |a^2 - 3b^2| |c^2 - 3d^2|$$

By unique factorisation in \mathbb{Z} , $a^2 - 3b^2 = \pm 7$ and $c^2 - 3d^2 = \pm 7$. Using congruences modulo 3, we have $a^2 - 3b^2 = 7$. Using congruences modulo 4,

$$a^2 - 3h^2 \equiv a^2 + h^2 \equiv 3 \mod 4$$

This is impossible. We deduce that 7 is irreducible in $\mathbb{Z}[\sqrt{3}]$.

Question 7

Show that $X^2 - 10Y^2 = \pm 2$ is insoluble in integers. Deduce that if α divides both 2 and $\sqrt{10}$ in $\mathbb{Z}[\sqrt{10}]$, then α is a unit. Show however that one cannot write $\alpha = 2\beta + \sqrt{10}\gamma$ with $\beta, \gamma \in \mathbb{Z}[\sqrt{10}]$.

Proof. Suppose that there exists $X, Y \in \mathbb{Z}$ such that $X^2 - 10Y^2 = \pm 2$. Using congruences modulo 5, we have

$$X^2 \equiv 2.3 \mod 5$$

But this is impossible, as the only quadratic residues of 5 are 1 and 4. We deduce that $X^2 - 10Y^2 = \pm 2$ is insolvable by integers. Suppose that $\varphi, \psi \in \mathbb{Z}[\sqrt{10}]$ such that $\alpha \varphi = 2$ and $\alpha \psi = \sqrt{10}$. Taking the norm:

$$Norm(\alpha) Norm(\phi) = 4$$
, $Norm(\alpha) Norm(\psi) = -10$

Therefore Norm(α) divides gcd(4, -10) = 2 in \mathbb{Z} . Hence Norm(α) = ± 1 or ± 2 . Write $\alpha = X + Y\sqrt{10}$. The previous part shows that Norm(α) = $X^2 - 10Y^2 \neq \pm 2$. Hence Norm(α) = ± 1 and α is a unit in $\mathbb{Z}[\sqrt{10}]$.

Suppose that $\alpha = 2\beta + \sqrt{10}\gamma$, where $\beta = a + b\sqrt{10}$, $\gamma = c + d\sqrt{10} \in \mathbb{Z}[\sqrt{10}]$ and $a, b, c, d \in \mathbb{Z}$. Then

$$\alpha = 2(a + b\sqrt{10}) + \sqrt{10}(c + d\sqrt{10}) = (2a + 10d) + (2b + c)\sqrt{10} \implies \text{Norm}(\alpha) = (2a + 10d)^2 - 10(2b + c)^2 \equiv 0 \mod 2$$

contradicting that Norm(α) = ± 1 . Hence $\alpha \neq 2\beta + \sqrt{10}\gamma$ for all $\beta, \gamma \in \mathbb{Z}[\sqrt{10}]$.

Question 8

Let *K* be a number field and let *A*, *B*, *C*, *I* be ideals of \mathcal{O}_K Recall that *A*, *B* are said to be coprime if $A + B = \mathcal{O}_K$. Show that if *A*, *B* are coprime and $A \mid BC$ then $A \mid C$. Show that if *A*, *B* are coprime and $A \mid I$.

Proof. Proposition 6.23 shows that, for any ideals \mathfrak{a} , \mathfrak{b} of \mathcal{O}_K , $\mathfrak{a} \mid \mathfrak{b}$ if and only if $\mathfrak{b} \subseteq \mathfrak{a}$.

Since $A + B = \mathcal{O}_K$, there exists $a \in A$ and $b \in B$ such that a + b = 1.

Suppose that $A \mid BC$ and $A \not\mid C$. Then $BC \subseteq A$ and $C \not\subseteq A$. Pick $c \in C \setminus A$. Then $bc \in BC \subseteq A$. Hence $c = ac + bc \in A$, which is a contradiction. Hence $A \mid C$.

Suppose that $A \mid I$, $B \mid I$ and $AB \not\mid I$. Then $I \subseteq A \cap B$ and $I \not\subseteq AB$. This is impossible because $A \cap B \subseteq AB$. (For $r \in A \cap B$, $r = ar + br \in AB$.)

