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Topics covered: integral bases, unique factorisation, Euclidean domains.

Question 1

Show that f(X) := X3 — X +2 is an irreducible integer polynomial. Let 6 be a root of f(X) = 0, and calculate the discriminant
A%(@) of ©:={1,0,6°} < K := Q(6). Using Stickelberger’s theorem (Sheet 1 Question 7), show that © is an integral basis for K.

Proof. Suppose that f has aroot p/q € Q with gcd(p, ) = 1. By the rational root test, we have p |2 and ¢q | 1. Hence p/q =1 or 2. But
f(@) =2and f(2) =8. This is impossible. f has no rational roots, and hence is irreducible over Q.

By Lemma 2.3, we have
Tr(1) Tr@ Tr6?)
A2(©) =det| Tr(@) Tr(6% Tr6%)
Tr(0%) Tr@% Tr(0h

Let 01,0,,05 be the roots of f. By Vieta’s theorem, we have 0; + 0, + 05 = 0 and 6,60, + 0,603 + 630, = —1. Next we compute the
traces:

A Tr(1) =3

Tr(@)=0,+6,+603=0
Tr(62) = (01 + 62 +63)> —2(0,02 + 0,05+ 036,) =2
(0% =Tr(0-2)=-6
Tr(6*) = Tr(6% - 20) =2

Therefore
3 0 2
A’@©)=det|0 2 -6|=-104
2 -6 2

Let L =(0)z. Then L is a Z-submodule of Ok. By Notes 3.13, we have
A%(©) = A*(L) = m*A*(Ox) = m*A*(K)

for some m € Z,. The factorisation of A2(@) = —104 is —104 = —23% x 13. Then either A2(K) = —104 or A%(K) = —26. By

Stickelberger’s Theorem, A%(K) = 0 or 1 mod 4. Hence A%(K) = —=104, m = 1, and O = L. we deduce that © is an integral
basis of K. O

Question 2

Let K be a number field and let L = K(v/5), where § € K and V6 ¢ K. Let a = B+7V € L, where B,y € K. Show that if & € G
then f—yV6 € 61 and % — y*6 € Ok.
Proof. By transitivity of integral closure, Oy, is the integral closure of Ok in L. In particular, Ox = KN Oy.

Since a € Oy, there exists a monic polynomial f € Ok[x] such that f(a) = 0. Consider the K-automorphism ¢ € Gal(L | K)
B given by ¢(v/8) = —V/8. Since ¢ fixes Ox < K, we have

FB=yVd) = flp@) =p(f@) =0

Hence 8 —yV/4 is integral over Og. B—yVd € 0.

Since Oy is a ring, we have

(B+7V3)(B-7Ve)=p -6 €0,

In addition, B2 —y25 € K as f3,7,0 € K. Hence 2 —y25 € Kn O = O. O
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Question 3

Let R be an integral domain. Show that every prime element in R is irreducible. Suppose now that factorisation into irreducible
elements in R is possible. Show that this factorisation is unique if and only if every irreducible element in R is prime.

Proof. Suppose that R is an integral domain. Let a € R be a prime element. For x, y € R such that a = xy, since a is prime, we have
a=xy=alxy=alx Vv aly Butalsoa=xy= x|a A y|a. Hence we have a ~ x or a ~ y. Since R is an integral
domain, we have x € R* or y € R*. Hence a is irreducible.

Now suppose that R is a factorisation domain.

n

= ": Suppose that R is a UFD. Suppose that a is an irreducible and a | bc. Since R is a UFD, the irreducible factor of a, which
is a itself, is the subset of the union of the irreducible factors of b and ¢ (counting multiplicities). Then we must have
al|boral|c.Hence ais aprime element.

«<=": Suppose that every irreducible element in R is prime. For r € R, suppose that it has two factorizations into irreducibles:

r=qi1-qn=pi1---Pm

We have p;---pym, € (q1). By hypothesis (q;) is prime. Then we must have p; € (q;) for some i € I. After possible

A permutations we may assume that p; € (g1). Since p; is irreducible, we must have (p1) = {q1) or p1 ~ q1. Then
g2+ qn~ P2 Pm- We can repeat this process. If n # m then after some steps we will have 1 ~ a where a is a product of
irreducibles, which is impossible. Hence n = m and g; ~ p; for all i € {1, ..., n} after possible permutations. We conclude
that R is a UFD.

Question 4

Let K be a number field. Prove that O is Euclidean with norm function |N0rm1</@| : Ok \ {0} — N u {0} if and only if for each
a € K there exists § € Ok such that |NormK/@(a—ﬁ)| < 1. Verify this condition for K = Q(v —d) where d = 1,2,3,7. [Hint:
Consider the nearest point on a lattice.

Proof. (In my own notation, the set of natural numbers N always contains zero.)

By Corollary 3.8, Normgg(a) € Z for all @ € Og. Then |N0rmK|@| : Ox \ {0} — N is well-defined. Note that |N0rmK\@ is
multiplicative and [Normg g(a)| = 0 if and only if a = 0.

"= " Suppose that (O, |Normgjg|) is an Euclidean domain. Let a € K.

n-1 .
Let m(x) :=x" + Z a;x' be the minimal polynomial of &, where a; = p;/q; € Q and p;, q; € Z. Let d := Ilcm(qy, ..., §n—1)-

i=0
Then

is a monic polynomial with a root da. We deduce that da € O.

flx):= d"m(%)

Since Ok is an ED, and d € Ok \ {0}, there exists 8, € Og such that da = df + r, with |NormK|@(r)| < |NormK\@(d)|. (In
fact [Normgg| is defined on the whole Ok.) Therefore

[Normgg(da—dp)|  [Normgq(r)]

N -Pl= -
[Normg g (a - B)| [Norm g (d)] |Normgg(d)|

n

< ": Suppose that for each a € K there exists f§ € O such that |Normg,g(a - )| < 1.

* For a € Ok and b € Ok \ {0}, by hypothesis there exists g € O such that
a
|Norm1q@ (E - q)‘ <1
If a = gb, then we are done. Now suppose that r := a— gb # 0. Then

|Normm@(r)| 3 \NormK|Q(a—qb)|

a
Normro(@)| ~ [NormugD)] = |NormK|Q (E - q)| <1 = |Normgg(r)| < |Normg g (b)|
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e Fora,be Ox\{0},
|[Normgg(ab)| = [Normgg(a)| |[Normgg(b)| > |Normg g (a)|

because |Normg g (b)| # 0.

We deduce that (@K, |Norm K0 |) is an Euclidean domain.

LetK=Q (\/—d). K has a Q-basis {1, \/Ei}. The Galois group Gal(K | Q) = {id, z— z}. Therefore, for a = a+ bvdi € K with
a,b € Q, the norm is
Normgg(a) = (a+ b\/zi) (a— b\/ﬁi) =d®+b%d

By Example 3.12, Ok has integral basis

{1,\/31}, ifd=1,2 mod 4;
1+ Vdi
{1, +2\/_1}, if d =3 mod 4.

e Ford=1or2,consider = a+bVdic K. Leta',b' € Z such that|a—a'| <1/2and |b—b'| < 1/2. We have B:= a’+b'Vdi€

Ok and

1+d
Normgg(a—f) = (a—a)?+b-b)ds< 0 <1

which gives the desired g for each a.
e Ford =3 or7, consider a = a+ bvdie K. We choose a', b’ € %Z as follows:

First choose @/, b’ € Z such that |a—a’'| <1/2 and |b-b'| < 1/2. If |b—b'| > 1/4, we can replace a/, b’ with a' + %,b’+ % or
a — %,b’— % such that |b—-b'| < 1/4.

Now we have f:= a’ + b'Vdi€ Ok, and
NormKlQ(a_ﬁ):(a_(l) +(b—b) d$1+1—6<1

which gives the desired f for each a.

We conclude that O is an ED for d = 1,2,3,7. O

Question 5
Prove that if p is a prime with p =1 or 3 mod 8, then p = X + 2Y? for some X, Y € Z unique up to sign.

Proof. First we claim that —2 is a quadratic residue of p. From Part A Number Theory we know that

-1 2
(7) =1lifand onlyif p =1 mod 4, (;) =lifandonlyif p=+1 mod8

(—2)_(—1)(2)_ -1-(-1)=1 p=1mod8
p) LpJip) |11=1 p=3mod8

which proves the claim. Hence there exists r € Z such that 2r2=-2 mod p. Thatis, p| (1 + 2r2).

Hence

Z[v—2] is the ring of integers in Q(v/—2). By Question 4, Z[v —2] is an Euclidean domain, and hence is a unique factorisation
domain, in which 1+ 2r2 = (1 + v2i)(1 — v/2i).

Suppose that p is irreducible in Z[v/=2]. Then p is prime in Z[v/=2]. We have either p | (1 + v/2i) or p | (1 — v/2i) in Z[v=2].
But this is impossible. as
z1V=2|={a+bv2i: a,bez}
Hence there exists non-units a + bv/2i, c + dv/2i € Z[v/=2] such that p = (a+ bv/2i)(c + dv/2i). Taking the norm:
p? = (a® +2b%)(c? +2d?)

Since neither a? + 2b? nor c? + 2d? is not 1, we deduce that p = a? + 2b? = c® + 2d? as required.
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Next we shall prove the uniqueness of X, Y in the expression.

FX+YV2i= afin Z[v-2], then taking the norm we have
p = X?+2Y? = Norm(a) Norm(B)

Then either a or § is a unit in Z[v/~2]. Hence X + Y v/2i is irreducible in Z[/~2]. Similarly X — Yv/2i is also irreducible in
Z[v-2].

Now suppose that p = X'? +2Y"? for some X', Y’ € Z. Then
p= (X+ Y\/Ei) (X— Y\/ii) = (X’+ Y’\/Ei) (X’ - Y’\/Ei)

Since Z[v—2] is a UFD, the two factorisation of p are equal up to permutation and associates. But we also know that the only
units in Z[v/—2] are +1. We conclude that X% = X’? and Y2 = Y’?, so that the expression for p is unique. O

Question 6
Show that Z[v/3] is Euclidean. Write down the factorisations into irreducibles of 2,3 and 11. Show using congruences modulo

3 and 4 that the elements 5 and 7 are irreducible in Z[v/3].

Proof. LetK = Q(v/3). Then Ok = Z[v/3]. The Galois group Gal(K | Q) ={id, a+ bV3— a— bv/3}. Hence for a = a+ bv/3,
Normg(o (@) = (a+ bv/3)(a—bV3) = a* - 3b

We can choose a’,b’ € Z such that |a—a’| <1/2 and |b— b'| < 1/2. Then := a' + b'v/3 € Ok, and
N2 AV 3
[Normgg(a - B)| = |(a-a")* -3(b-b)?| < n

By Question 4, we deduce that Z[v/3] is an Euclidean domain.

The factorisation of 2,3,11 in Z[V/3]:
A 2=(1+V3)(-1+v3), 3=v3-v3, 11=01+2V3)(-1+2V3)

The norms of the factors are —2, -3, —11 respectively. These are primes in Z. Hence the factors are irreducibles in Z[v/3].

Suppose that 5 is reducible in Z[v/3]. There exists non-units a+bv/3, c+d+/3 € Z[/3] such that 5 = (a+ bv/3)(c+d+/3). Taking
the norm:
25=|a* - 3b*||c* - 3d°|

By unique factorisation in Z, a®>~3b* = +5 and ¢?>-3d? = +5. Note that the only quadratic residue of 3 is 1. Using congruences
modulo 3,
a*-3b*=1-3-1=1mod 3

Hence a® —3b? = 5. Note that the quadratic residue of 4 are 0 and 1. Then using congruences modulo 4,
a®—3b* = a® + b* =3 mod 4

But this is impossible, as a?,b? =0 or 1 mod 4. We deduce that 5 is irreducible in Z[v/3].

Suppose that 7 is reducible in Z[v/3]. There exists non-units a+bv/3, c+d+/3 € Z[+/3] such that 7 = (a+bv/3)(c+d+/3). Taking
the norm:

49 = |a® - 3b*| |c* - 3d?|
By unique factorisation in Z, a® —3b? = +7 and ¢? — 3d? = +7. Using congruences modulo 3, we have a? —3b*> = 7. Using

congruences modulo 4,
a®-3b*=a’+b*=3mod 4

This is impossible. We deduce that 7 is irreducible in Z[v/3]. O
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Question 7

Show that X2 —10Y?2 = +2 is insoluble in integers. Deduce that if @ divides both 2 and V10 in Z[v/10], then « is a unit. Show
however that one cannot write a = 28+ /10y with 8,y € Z[/10].

Proof. Suppose that there exists X, Y € Z such that X?> —10Y? = +2. Using congruences modulo 5, we have
X?>=2,3mod5

But this is impossible, as the only quadratic residues of 5 are 1 and 4. We deduce that X>—10Y? = +2 is insolvable by integers.
Suppose that ¢, € Z[v/10] such that a¢ = 2 and ay = v/10. Taking the norm:

Norm(a) Norm(yp) =4, Norm(a) Norm(y) = —-10
A Therefore Norm(a) divides gcd(4,—10) = 2 in Z. Hence Norm(a) = +1 or +2. Write a = X + Y v/10. The previous part shows
that Norm(a) = X2 —10Y? # +2. Hence Norm(a) = +1 and « is a unit in Z[/10].
Suppose that @ =28+ \/ﬁy, where f=a+ b\/ﬁ,y =c+dv10€Z[V10] and a,b,c,d € Z. Then

a=2(a+bvV10) +v10(c+dv10) = 2a+10d) + 2b+ ¢)vV10 = Norm(a) = (2a+10d)> = 10(2b + ¢)> =0 mod 2

contradicting that Norm(a) = +1. Hence a # 24 + \/1_0}/ forall B,y e Z[v10]. O

Question 8

Let K be a number field and let A, B, C, I be ideals of Ok Recall that A, B are said to be coprime if A+ B = G. Show thatif A, B
are coprime and A | BC then A| C. Show that if A, B are coprime and A|I, B|I then AB | I.

Proof. Proposition 6.23 shows that, for any ideals a, b of Ok, a | b if and only if b < a.
Since A+ B = Ok, there existsa€ Aand be Bsuchthata+b=1.

Suppose that A| BCand A ¥ C. Then BC< Aand C ¢ A. Pick ce C\ A. Then bc € BC < A. Hence ¢ = ac+ bc € A, which is a
contradiction. Hence A | C.

Suppose that A| I, B| I and AB } I. Then I € AnB and I £ AB. This is impossible because An B < AB. (For r € An B,
r=ar+bre AB.) O
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