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Topics covered: integral bases, unique factorisation, Euclidean domains.

Question 1

Show that f (X ) := X 3 − X +2 is an irreducible integer polynomial. Let θ be a root of f (X ) = 0, and calculate the discriminant
∆2(Θ) ofΘ := {

1,θ,θ2
}⊆ K :=Q(θ). Using Stickelberger’s theorem (Sheet 1 Question 7), show thatΘ is an integral basis for K .

Proof. Suppose that f has a root p/q ∈Qwith gcd(p, q) = 1. By the rational root test, we have p | 2 and q | 1. Hence p/q = 1 or 2. But
f (1) = 2 and f (2) = 8. This is impossible. f has no rational roots, and hence is irreducible overQ.

By Lemma 2.3, we have

∆2(Θ) = det

 Tr(1) Tr(θ) Tr(θ2)
Tr(θ) Tr(θ2) Tr(θ3)

Tr(θ2) Tr(θ3) Tr(θ4)


Let θ1,θ2,θ3 be the roots of f . By Vieta’s theorem, we have θ1 +θ2 +θ3 = 0 and θ1θ2 +θ2θ3 +θ3θ1 =−1. Next we compute the
traces:

Tr(1) = 3

Tr(θ) = θ1 +θ2 +θ3 = 0

Tr(θ2) = (θ1 +θ2 +θ3)2 −2(θ1θ2 +θ2θ3 +θ3θ1) = 2

Tr(θ3) = Tr(θ−2) =−6

Tr(θ4) = Tr(θ2 −2θ) = 2

Therefore

∆2(Θ) = det

3 0 2
0 2 −6
2 −6 2

=−104

Let L = 〈Θ〉Z. Then L is a Z-submodule of OK . By Notes 3.13, we have

∆2(Θ) =∆2(L) = m2∆2(OK ) = m2∆2(K )

for some m ∈ Z+. The factorisation of ∆2(Θ) = −104 is −104 = −23 × 13. Then either ∆2(K ) = −104 or ∆2(K ) = −26. By
Stickelberger’s Theorem, ∆2(K ) ≡ 0 or 1 mod 4. Hence ∆2(K ) = −104, m = 1, and OK = L. we deduce that Θ is an integral
basis of K .

Question 2

Let K be a number field and let L = K (
p
δ), where δ ∈ K and

p
δ ∉ K . Let α= β+γpδ ∈ L, where β,γ ∈ K . Show that if α ∈ OL

then β−γpδ ∈OL and β2 −γ2δ ∈OK .

Proof. By transitivity of integral closure, OL is the integral closure of OK in L. In particular, OK = K ∩OL .

Since α ∈ OL , there exists a monic polynomial f ∈ OK [x] such that f (α) = 0. Consider the K -automorphism ϕ ∈ Gal(L | K )
given by ϕ(

p
δ) =−pδ. Since ϕ fixes OK ⊆ K , we have

f (β−γ
p
δ) = f (ϕ(α)) =ϕ( f (α)) = 0

Hence β−γpδ is integral over OK . β−γpδ ∈OL .

Since OL is a ring, we have (
β+γ

p
δ
)(
β−γ

p
δ
)
=β2 −γ2δ ∈OL

In addition, β2 −γ2δ ∈ K as β,γ,δ ∈ K . Hence β2 −γ2δ ∈ K ∩OL =OK .
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Question 3

Let R be an integral domain. Show that every prime element in R is irreducible. Suppose now that factorisation into irreducible
elements in R is possible. Show that this factorisation is unique if and only if every irreducible element in R is prime.

Proof. Suppose that R is an integral domain. Let a ∈ R be a prime element. For x, y ∈ R such that a = x y , since a is prime, we have
a = x y =⇒ a | x y =⇒ a | x ∨ a | y . But also a = x y =⇒ x | a ∧ y | a. Hence we have a ∼ x or a ∼ y . Since R is an integral
domain, we have x ∈ R× or y ∈ R×. Hence a is irreducible.

Now suppose that R is a factorisation domain.

" =⇒ ": Suppose that R is a UFD. Suppose that a is an irreducible and a | bc. Since R is a UFD, the irreducible factor of a, which
is a itself, is the subset of the union of the irreducible factors of b and c (counting multiplicities). Then we must have
a | b or a | c. Hence a is a prime element.

" ⇐= ": Suppose that every irreducible element in R is prime. For r ∈ R, suppose that it has two factorizations into irreducibles:

r = q1 · · ·qn = p1 · · ·pm

We have p1 · · ·pm ∈ 〈
q1

〉
. By hypothesis

〈
q1

〉
is prime. Then we must have pi ∈ 〈

q1
〉

for some i ∈ I . After possible
permutations we may assume that p1 ∈ 〈

q1
〉

. Since p1 is irreducible, we must have
〈

p1
〉 = 〈

q1
〉

or p1 ∼ q1. Then
q2 · · ·qn ∼ p2 · · ·pm . We can repeat this process. If n 6= m then after some steps we will have 1 ∼ a where a is a product of
irreducibles, which is impossible. Hence n = m and qi ∼ pi for all i ∈ {1, ...,n} after possible permutations. We conclude
that R is a UFD.

Question 4

Let K be a number field. Prove that OK is Euclidean with norm function
∣∣NormK /Q

∣∣ : OK \ {0} →N∪ {0} if and only if for each
α ∈ K there exists β ∈ OK such that

∣∣NormK /Q(α−β)
∣∣ < 1. Verify this condition for K = Q(

p−d) where d = 1,2,3,7. [Hint:
Consider the nearest point on a lattice.

Proof. (In my own notation, the set of natural numbersN always contains zero.)

By Corollary 3.8, NormK |Q(α) ∈ Z for all α ∈ OK . Then
∣∣NormK |Q

∣∣ : OK \ {0} → N is well-defined. Note that
∣∣NormK |Q

∣∣ is
multiplicative and

∣∣NormK |Q(α)
∣∣= 0 if and only if α= 0.

" =⇒ " Suppose that
(
OK ,

∣∣NormK |Q
∣∣) is an Euclidean domain. Let α ∈ K .

Let m(x) := xn +
n−1∑
i=0

ai xi be the minimal polynomial of α, where ai = pi /qi ∈Q and pi , qi ∈Z. Let d := lcm(q0, ..., qn−1).

Then
f (x) := d nm

( x

d

)
is a monic polynomial with a root dα. We deduce that dα ∈OK .

Since OK is an ED, and d ∈OK \ {0}, there exists β,r ∈OK such that dα= dβ+ r , with
∣∣NormK |Q(r )

∣∣< ∣∣NormK |Q(d)
∣∣. (In

fact
∣∣NormK |Q

∣∣ is defined on the whole OK .) Therefore

∣∣NormK |Q(α−β)
∣∣= ∣∣NormK |Q(dα−dβ)

∣∣∣∣NormK |Q(d)
∣∣ =

∣∣NormK |Q(r )
∣∣∣∣NormK |Q(d)
∣∣ < 1

" ⇐= ": Suppose that for each α ∈ K there exists β ∈OK such that
∣∣NormK /Q(α−β)

∣∣< 1.

• For a ∈OK and b ∈OK \ {0}, by hypothesis there exists q ∈OK such that∣∣∣NormK |Q
( a

b
−q

)∣∣∣< 1

If a = qb, then we are done. Now suppose that r := a −qb 6= 0. Then∣∣NormK |Q(r )
∣∣∣∣NormK |Q(b)
∣∣ =

∣∣NormK |Q(a −qb)
∣∣∣∣NormK |Q(b)

∣∣ =
∣∣∣NormK |Q

( a

b
−q

)∣∣∣< 1 =⇒ ∣∣NormK |Q(r )
∣∣< ∣∣NormK |Q(b)

∣∣
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• For a,b ∈OK \ {0}, ∣∣NormK |Q(ab)
∣∣= ∣∣NormK |Q(a)

∣∣ ∣∣NormK |Q(b)
∣∣> ∣∣NormK |Q(a)

∣∣
because

∣∣NormK |Q(b)
∣∣ 6= 0.

We deduce that
(
OK ,

∣∣NormK |Q
∣∣) is an Euclidean domain.

Let K =Q
(p−d

)
. K has a Q-basis

{
1,
p

d i
}

. The Galois group Gal(K |Q) = {
id, z 7→ z

}
. Therefore, for α= a +b

p
d i ∈ K with

a,b ∈Q, the norm is
NormK |Q(α) =

(
a +b

p
d i

)(
a −b

p
d i

)
= a2 +b2d

By Example 3.12, OK has integral basis 
{

1,
p

d i
}

, if d ≡ 1,2 mod 4;{
1,

1+p
d i

2

}
, if d ≡ 3 mod 4.

• For d = 1 or 2, considerα= a+b
p

d i ∈ K . Let a′,b′ ∈Z such that |a−a′| É 1/2 and |b−b′| É 1/2. We haveβ := a′+b′pd i ∈
OK and

NormK |Q(α−β) = (a −a′)2 + (b −b′)2d É 1+d

4
< 1

which gives the desired β for each α.

• For d = 3 or 7, consider α= a +b
p

d i ∈ K . We choose a′,b′ ∈ 1
2Z as follows:

First choose a′,b′ ∈Z such that |a−a′| É 1/2 and |b−b′| É 1/2. If |b−b′| > 1/4, we can replace a′,b′ with a′+ 1
2 ,b′+ 1

2 or
a′− 1

2 ,b′− 1
2 such that |b −b′| É 1/4.

Now we have β := a′+b′pd i ∈OK , and

NormK |Q(α−β) = (a −a′)2 + (b −b′)2d É 1

4
+ d

16
< 1

which gives the desired β for each α.

We conclude that OK is an ED for d = 1,2,3,7.

Question 5

Prove that if p is a prime with p ≡ 1 or 3 mod 8, then p = X 2 +2Y 2 for some X ,Y ∈Z unique up to sign.

Proof. First we claim that −2 is a quadratic residue of p. From Part A Number Theory we know that(−1

p

)
= 1 if and only if p ≡ 1 mod 4,

(
2

p

)
= 1 if and only if p ≡±1 mod 8

Hence (−2

p

)
=

(−1

p

)(
2

p

)
=

{
−1 · (−1) = 1 p ≡ 1 mod 8

1 ·1 = 1 p ≡ 3 mod 8

which proves the claim. Hence there exists r ∈Z such that 2r 2 ≡−2 mod p. That is, p | (1+2r 2).

Z[
p−2] is the ring of integers inQ(

p−2). By Question 4, Z[
p−2] is an Euclidean domain, and hence is a unique factorisation

domain, in which 1+2r 2 = (1+p
2i)(1−p

2i).

Suppose that p is irreducible in Z[
p−2]. Then p is prime in Z[

p−2]. We have either p | (1+p
2i) or p | (1−p

2i) in Z[
p−2].

But this is impossible. as
Z[

p−2] =
{

a +b
p

2i : a,b ∈Z
}

Hence there exists non-units a +b
p

2i,c +d
p

2i ∈Z[
p−2] such that p = (a +b

p
2i)(c +d

p
2i). Taking the norm:

p2 = (a2 +2b2)(c2 +2d 2)

Since neither a2 +2b2 nor c2 +2d 2 is not 1, we deduce that p = a2 +2b2 = c2 +2d 2 as required.
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Next we shall prove the uniqueness of X ,Y in the expression.

If X +Y
p

2i =αβ in Z[
p−2], then taking the norm we have

p = X 2 +2Y 2 = Norm(α)Norm(β)

Then either α or β is a unit in Z[
p−2]. Hence X +Y

p
2i is irreducible in Z[

p−2]. Similarly X −Y
p

2i is also irreducible in
Z[

p−2].

Now suppose that p = X ′2 +2Y ′2 for some X ′,Y ′ ∈Z. Then

p =
(

X +Y
p

2i
)(

X −Y
p

2i
)
=

(
X ′+Y ′p2i

)(
X ′−Y ′p2i

)
SinceZ[

p−2] is a UFD, the two factorisation of p are equal up to permutation and associates. But we also know that the only
units in Z[

p−2] are ±1. We conclude that X 2 = X ′2 and Y 2 = Y ′2, so that the expression for p is unique.

Question 6

Show that Z[
p

3] is Euclidean. Write down the factorisations into irreducibles of 2,3 and 11. Show using congruences modulo
3 and 4 that the elements 5 and 7 are irreducible in Z[

p
3].

Proof. Let K =Q(
p

3). Then OK =Z[
p

3]. The Galois group Gal(K |Q) = {id, a +b
p

3 7→ a −b
p

3}. Hence for α= a +b
p

3,

NormK |Q(α) = (a +b
p

3)(a −b
p

3) = a2 −3b2

We can choose a′,b′ ∈Z such that |a −a′| É 1/2 and |b −b′| É 1/2. Then β := a′+b′p3 ∈OK , and

∣∣NormK |Q(α−β)
∣∣= ∣∣(a −a′)2 −3(b −b′)2∣∣É 3

4

By Question 4, we deduce that Z[
p

3] is an Euclidean domain.

The factorisation of 2,3,11 in Z[
p

3]:

2 = (1+p
3)(−1+p

3), 3 =p
3 ·p3, 11 = (1+2

p
3)(−1+2

p
3)

The norms of the factors are −2,−3,−11 respectively. These are primes in Z. Hence the factors are irreducibles in Z[
p

3].

Suppose that 5 is reducible inZ[
p

3]. There exists non-units a+b
p

3,c+d
p

3 ∈Z[
p

3] such that 5 = (a+b
p

3)(c+d
p

3). Taking
the norm:

25 = ∣∣a2 −3b2∣∣ ∣∣c2 −3d 2∣∣
By unique factorisation inZ, a2−3b2 =±5 and c2−3d 2 =±5. Note that the only quadratic residue of 3 is 1. Using congruences
modulo 3,

a2 −3b2 ≡ 1−3 ·1 ≡ 1 mod 3

Hence a2 −3b2 =−5. Note that the quadratic residue of 4 are 0 and 1. Then using congruences modulo 4,

a2 −3b2 ≡ a2 +b2 ≡ 3 mod 4

But this is impossible, as a2,b2 ≡ 0 or 1 mod 4. We deduce that 5 is irreducible in Z[
p

3].

Suppose that 7 is reducible inZ[
p

3]. There exists non-units a+b
p

3,c+d
p

3 ∈Z[
p

3] such that 7 = (a+b
p

3)(c+d
p

3). Taking
the norm:

49 = ∣∣a2 −3b2∣∣ ∣∣c2 −3d 2∣∣
By unique factorisation in Z, a2 −3b2 = ±7 and c2 −3d 2 = ±7. Using congruences modulo 3, we have a2 −3b2 = 7. Using
congruences modulo 4,

a2 −3b2 ≡ a2 +b2 ≡ 3 mod 4

This is impossible. We deduce that 7 is irreducible in Z[
p

3].

 
A

 
A



5

Question 7

Show that X 2 −10Y 2 =±2 is insoluble in integers. Deduce that if α divides both 2 and
p

10 in Z[
p

10], then α is a unit. Show
however that one cannot write α= 2β+p

10γ with β,γ ∈Z[
p

10].

Proof. Suppose that there exists X ,Y ∈Z such that X 2 −10Y 2 =±2. Using congruences modulo 5, we have

X 2 ≡ 2,3 mod 5

But this is impossible, as the only quadratic residues of 5 are 1 and 4. We deduce that X 2−10Y 2 =±2 is insolvable by integers.

Suppose that ϕ,ψ ∈Z[
p

10] such that αϕ= 2 and αψ=p
10. Taking the norm:

Norm(α)Norm(ϕ) = 4, Norm(α)Norm(ψ) =−10

Therefore Norm(α) divides gcd(4,−10) = 2 in Z. Hence Norm(α) =±1 or ±2. Write α= X +Y
p

10. The previous part shows
that Norm(α) = X 2 −10Y 2 6= ±2. Hence Norm(α) =±1 and α is a unit in Z[

p
10].

Suppose that α= 2β+p
10γ, where β= a +b

p
10,γ= c +d

p
10 ∈Z[

p
10] and a,b,c,d ∈Z. Then

α= 2(a +b
p

10)+p
10(c +d

p
10) = (2a +10d)+ (2b + c)

p
10 =⇒ Norm(α) = (2a +10d)2 −10(2b + c)2 ≡ 0 mod 2

contradicting that Norm(α) =±1. Hence α 6= 2β+p
10γ for all β,γ ∈Z[

p
10].

Question 8

Let K be a number field and let A,B ,C , I be ideals of OK Recall that A,B are said to be coprime if A+B =OK . Show that if A,B
are coprime and A | BC then A |C . Show that if A,B are coprime and A|I ,B |I then AB | I .

Proof. Proposition 6.23 shows that, for any ideals a,b of OK , a | b if and only if b⊆ a.

Since A+B =OK , there exists a ∈ A and b ∈ B such that a +b = 1.

Suppose that A | BC and A 6 | C . Then BC ⊆ A and C 6⊆ A. Pick c ∈C \ A. Then bc ∈ BC ⊆ A. Hence c = ac +bc ∈ A, which is a
contradiction. Hence A |C .

Suppose that A | I , B | I and AB 6 | I . Then I ⊆ A ∩B and I 6⊆ AB . This is impossible because A ∩B ⊆ AB . (For r ∈ A ∩B ,
r = ar +br ∈ AB .)
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