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Question 1

In their 1909 paper (Roy. Soc. Proc. A, vol. 82, p. 495,1909) Geiger & Marsden reported on their studies of backscattering of
a-particles from the decay of *'* Bi from thin metal foils and noted "...that of the incident a-particles about 1 in 8000 was
reflected...” from a thin platinum foil. The number of reflected a-particles was estimated from the count rate on a screen cov-
ering only a small part of the backward solid angle but "...it was assumed that they [the scattered a-particles| were distributed
uniformly round a half sphere with the middle of the reflector [the metal foil] as centre.” The observation of a large fraction
of backscattered a-particles from a thin foil led Rutherford to suggest his scattering formula and his model for the atom two

years later.

(a) Integrate the differential cross-section in the Rutherford scattering formula over the backward hemisphere to find the
cross-section for backscattering with # > 90° and hence predict the ratio of of Ny, /Ni, where Nj, is the number of
incoming and N, is the number of backscattered a-particles. Compare your result with Geiger & Marsden's observations
assuming the foil was 1um thick.

(b

Estimate the number of atoms which the a-particle has to pass when it penetrates the foil.

(c) The paper is unclear about the rate of @ particles hitting the foil, but you can estimate it using the assumption that one
scattered a-particle per second was detected on a screen with an area of Imm? at a distance of 1cm from the foil at a

scattering angle of 1207,

(d

Later measurements of the differential cross-section with much improved angular resolution showed no deviation from
the Rutherford scattering formula up to a scattering angle of 140°. From this observation estimate an upper limit for the
radius of the platinum nucleus.

[ppe=21.5 g.fcms. atomic mass 195.1 u, E,; = 5.6 MeV and you might find useful that e/ (4meg) = 1.44 MeV fm]

Solution. (a) Integrating the differential cross-section to get the cross-section is a circular argument. The relation we obtain by
conservation of angular momentum and conservation of energy is

Zze? [ Zze? 7]

b= ——cot-= = ¢o =
dmwegm vy 2 3HE|]ba 2

where b is the impact parameter, E, is the kinetic energy of the a-particle, and 6 is the scattering angle. Then

Zze? 78.2

— = ——— . 1.44 MeV fm = 20.1 fm
8megEy 2-5.6 MeV

b =mi2)=
The cross-section J
a(f>n/2) =nb*(0 = 7/2) = 1264 fm?

Next we estimate the radius of platinum atom. We have

%
V=py——r
(40 Iz VoNa

where g =195.1 g/mol is the molar mass, Vp; is the volume of a platinum atom, and N4 is the Avogadro number. The
radius of the platinum atom is estimated by
4 .
74%: Voo = o i
(74% comes from the atomic packing factor of the face-centered cubic.)
Plugging in the numbers we obtain

3# ]In’i! -
rpr~ | ——— =1.38-10" fm
m [43TPPINA

Then the ratio of scattered particles of a single platinum atom is given by

b0 =mi2)

]_=2_m-10‘8
Pt

We also have to estimate the number of atoms which the a-particle has to pass when it penetrates the foil. This is given
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Then the ratio of scattered particles of the foil is given by

N bt =mi2)\* 5 1 J
ﬂme\,’d(g] —09.68-107° =
Nin 10302

pe
This prediction is very closed to the experimental result.

(b) See part (a).

(c) The differential cross-section is given by

2

do Zze? 1 do 2
do _ _ = 2 =178.7 fim
dQ  \dmegEy ) 16sin*(0/2) dQg_oqs3
The solid angle density rate at @ =2n/3:
o 4m-lem?®
n@2nl3) =1 ————=1257
1 mm
Hence the rate of a-particle is
do ™!
jin=n|-—| =7.0fm™
jn=n{32) m
(d) We take X J
V4
b6 = 140°) = —==5__ cot(70°) = 7.3 fm

g /a 8megEe

as the estiamte of an upper bound of the nucleus radius.

Question 2
Electron scattering on hydrogen atoms:

(a) Calculate the Coulomb potential of a hydrogen atom (a bound system of one proton and one shell electron). Through-
out the problem you can assume that the proton has infinite mass and is at the origin. The hydrogen atom is in the
ground state (the wavefunction of the hydrogen atom is given by Wigg (r) = (ma})” 12 g=refan | with the Bohr radius
ap = 4megh® | (me?)). The potential energy due to the shell electron can then be found from

2
[100 (Tl

o d*r,
dmey |re —r|

Vihell () =

. / . . . . .
[Hint: Use|re—r|= \ 24 r§ —2rrecosfl and evaluate the integral in spherical polar coordinates.)

Sketch the potential. What is the behaviour of the potential for the hydrogen atom for r — oo ? Why is this relevant?
[Solution: Vi(r) = —e*/ (4meg) e 2710 (agt +r71) )

(b) Use the equation for the differential cross-section from [irst order perturbation theory (lirst order Born approximation)
which we derived in the lectures to find the differential cross-section as a function of the scattering angle 6. Plot your

results for different values of kay where k is the wavenumber of the incoming electron. How would the differential
cross-section for scattering on anti-hydrogen differ in first order Born approximation?

(c) What will be the -dependence for low energy scattering (kap << 1)7 Which value does the cross-section tend to for
kap =< 17 Is this the value you would expect?

d

What is the lowest value for the energy of the incoming electron for which you expect the first order approximation we
are using here to be valid?

Solution. (a) The potential energy due to shell electron

[¥ 100 (re)® 5 & 1 e el
V,,-}“-_u[rj = m ﬁ e = m — s lIIl,: d‘i"e
0 ¢ 07y B\ J¥2 412 - 2rrecost
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TEo ay J0 O \/r2+ri-2rr.cosd

where
1 1
f =g f —ds= —\/r2+r2—2rrocosf
\/r2+r¢,—2rrecos(9 rre Jo=o V5 Tle
i (\/r2+r(,+2rre—\/r2+n —2rrg)
1 2/Tes r<re
=—(r+rel=lr=reh=4""¢ ¢
rre 2lr, rere
Then

Vshen (r) =

e " st 2
o f Le e “dr.,+f Tee <% gr,
ﬂanb r

2
e 2 2
f 2ie 2'dl+f asre™ dt
negay \Jo r

2 03 ( Py riag 1
= —2 (o +2r+1)) +a2[-—e‘2'(2r+1))
neoa3 g

2
= (11— 2’ CLatrR +ie“2”"“(2—r+l)
dmeg \ r @ ap ay ay

¢ ¢ i (l L]

oo

rlay

- +
4megr A4meg rooag

The total potential due to the hydrogen atom is

Vi (r) = Vshen(r) + Vaucleus (1) = —— — .- m = Ineq

dmegr 4neg

¢ ie-Z"ﬂu(.l_+.l_] ¢ ie-zmo(_

r ap

n

0=0

|

/

Note that Vi (r) = O(exp(-2r/ap)) as r — oo. This is an exponential decay, which is a "localized potential” according to

the lecture notes, as Vy(r) =o(r~ 1) as r — oo. The sketch of Vy(r):

Figure 1:

(b) The differential cross-section given by the first order Born approximation is

dg W m

2
d_Q znhz el(k—k r Vi (r) d.’lr
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In spherical coordinates,
illk=k'\|r _ a=illk-K'|r
i e i - = r*dr
illk—K'r
o2 0
Vi(r)rsin (Zkrsin E) dr

G ’ r oo
fe“k"k Ty dPr = ff Vi(r)ellk-Rllreost .2 G e qragdyp = an Viy(r)
o

2n

=4—”me (rrsin(|k-k'| rdr=——-
k=KiJo " ksin(@/2) Jo

where 0 is the scattering angle. Plugging in the expression of Vj;(r):

kKT 17y B 2T f°°_ e —2r/a0(l i) '(Zlc Q)
fe Hr)d'r sin@72) Jo 4m:_oe r+ao rsin rsm2 dr

e’a: [ 0
=-—239 e 25(1 + s) sin(as) ds (s:: —r~, a:= 2kaosin~]
goa Jo ay 2
e’a? o0 2
= —_Olm(f a +S)e‘(2—lals ds)
Ega 0
e’al

( 1 1 ) e*al a(a? +8)

=—-—Im|—t—|=————

o (2-ia)* 2-ia goa (a?+4)?

_ e’al (2kaysin(0/2))* +8 B e’al k*al(l-cos)+4
€0 ((2kagsin(0/2))2+4)° 260 (k2a2(1-cos0) +2)°

Hence the differential cross-section is given by

do ™ _( m e*a; k*ai(l-cos6)+4 Jz_az(kza%(l--cos(9)+4)2 \/
dQ 2nh? 260 (k2a2(1-cos0) +2)2) (k2ad(1-cosf) +2)*

m
The sketch of dd—; (0) with different value of kag:

Figure 2: The graph gets lower as kay gets larger.

For a anti-hydrogen atom, the potential energy Vy(r) = =V (r). The differential cross-section is still the same since / Z
there is a square in the formula.

() For kag < 1, we have (k2aZ(1—cos0) +2) " ~ 274 (1-2k2a2(1 - cos0)). Then

do

aa @)~ :—Gaf,(kzag(l —cosG)+4)2[1 —2k%a}(1-cos0) ~ aj [1 - gkzag(l —cos())] +0(k'ap) \/

>

da ™V " >
In particular, Lir_r:]a ()= ap. — C ;/\/ L/T/ %) (_T}az,\ @F@_j
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(d) The condition that the first order perturbation is applicable is

/j( } é) JU'eim—k'l-rVH(r}di‘r

L> Can colc . aw a\f&roﬁe/v/

hk J'c[kza‘%{l—ct_rsl‘?)+2]'2
T e—————

« — > 2na; m|
my kzaﬁ{l—cnsﬂ}+4 0

Question 3
Density ol states for a two-body (inal state:

(a) Show that for two distinguishable particles A and B the momentum associated with the centre-of-mass motion is P =
Pa + pp, and for the relative motion is p = [m,\pu - mgpﬂ] { (ma + my). Hence show d*Pd?p = d* pad® pp and that the
number of (P, p) values with P in the range (P P +dP) and p in the range (p, p+dp) is

32 p2 2
(Vizah)®) pedpPp dpf dn,}fdm,,

(b) Use this result to show that the density of states for a two-body final state in a scattering event with the constraint
P = Py = const is given by

p(E)

_ v %] Q= vy dﬂf Q
T (2nh)P dE " (2nh)? dE

where p; and py are the momenta of particles A and B, respectively, in the centre-of-mass frame, and €2 the direction of
the momentum associated with the relative motion.

(c) Hence show that for the decay process M — A + B the density of states is given by

Vp EqEg
2120 ¢*Epy

pLE) =

where Eyy = mysc?, E4 and Eg are the energies of the three particles involved and p = | p:’\| = | pg| is the value of the
momentum of any of the two daughter particles in the centre-of-mass system, and assuming that the decay is isotropic.

(d) What would change in this result if the daughter particles would be indistinguishable?

Solution. (a) Suppose that we are treating the non-relativistic case. The centre-of-mass velocity is

_Mmavy + mpvp
ma+mg

Then the momentum of the centre of mass is
P=(ma+mg)lV =mavi+mpug=pa+pr \}

In the centre-of-mass frame, the system has zero momentum. The relative momentum j
mapg — MppPa

mava+ Mg mampg
p=maV-vg)=my—————————— —mavy=—————(vg—v4) =
Ma+ Mg my+mg ma+mg

(These formulae also hold for the relativistic case, in which the centre-of-mass frame is defined to be the frame where
the system has zero momentum.)

The Jacobian of the transformation (p 4, pg) — (P, p) is

a(P,p) Iy Iy J
t———— =det —mp iy =1
d(pa.pr) ma+my I3 ma+mp Iy

Hence d* Pd*p = d*p.d’pp.

V2 Vi?
From statistical mechanics we know that the density of state in the k-space is T 27

f d). The density of state
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in the (P, p)-space is /
Vo2 o
[{2mﬁ]3] Pzpaj 'm"f dey

(b) For P = Py held constant, the number of states is given by

2 2 v zd.b‘f
N= ﬂ; Po ((2;:&)5] Py fdn”fdn” fdp (2nh)3‘rfdn” de ke Ay

Since p = p, = p, the density of states

Vpyt dpy Vpgy® dpy j
E d = —_— Q
pE) = @2nh?® dE (2nh)’ dE

(c) In the relativistic case, the energy and momentum is related by

Ef = m?c" + pl?c2 = EdE; :Zczp;dpr-

In the decay process, Eyy = E4 + Eg and psy = pg = p = p, = p,. We have

2:.'2;0 2¢2 pEm dp EaER
—d =—— —d — =
Es PPT TEEs P T dE  22pEn

2 2
dEy =dEp +dEp = —_‘E Papa+
A

Substituting into the result of (b), we obtain

Vp®  EsEp fdﬂ— Vp EsEg J
(2h)? 2¢2 pEy T 2nh? ¢2Ey

[0 \ /q./ (d) If Aand B are indistinguishable, then (E4, Eg) and (Eg, E4) are the same state. The density of state should hwk
Vp EaEp | « -
1207 2E N /1’/

plE) =

pE) =

Question 4

The Klein-Gordon equation is a quantum mechanical wave equation compatible with special relativity. This equation can be
written as

1 8 2, M 2¢?
c? ar? h?

D, 1) =

(a) Let ®(w,t) =exp(—iEt/h+ ip-ax/h) deline a quantum mechanical plane wave solution describing a relativistic particle
of mass m. Show that this solution satisfies the Klein-Gordon equation.

(b) Define the 4-vector k* = (E/ch, p/fi). Show that the 4-scalar product k- x = k" x,, where x,, = (ct, —x), is dimensionless.

{c) The Green's function for the Klein-Gordon equation is defined by

1 _, mc?

Y (' = — &4 — — o — ! _
23 + i Gx'-x)=68"(x"-x)=6(2'-x)5(t' - 1)

[f::‘ e~ %=1 G(k) with

Show that G(x'— x) =

1

A ¥ [y oy Ny

salisfies this definition. (Hint: use the following definition for the Dirac function in 4d:

— d'k —ik(x'~x)
9= [ e :
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Proof. (a) ®(a, 1) =e E/h+ipzih,

2 i 7\2 12 2 ~E*+p? B \/
LE g ) it L (L(GE) L 5 (R ) g L S e g 2
cz i iefonal h?

¢t ot ht cth?

Hence the plane wave satisfies the Klein-Gorden equation.

(b) The 4-scalar product (technically this is not a scalar product as the Minkowski metric is not positive definite)

which is dimensionless.\"f we observe that @ - p has the same dimension as . (This is true indeed by Heisenberg’s
Uncertainty Principle.)

(c) Starting from

18 ., mif , 4
(ap v+ oW -2)=0"( )

We have the Fourier inversion formulae:

1 - SLr et , 1 T T
Gl -2 = g fdG[kJe"kI ) g, 5 - = @ fde =) g
[} "
Then
2, m’c? SR —xy) g4 1 ik — 4
@t fm °)(___V 2 ]e S k:(ZJrJ“f+e Sk
w

By injectivity of Fourier transform we can equate the integrand:

G[kl[ 10 _v24 m*c* E—ik"[xL—.q,] - e—ik"[.r;,—.rp]
2 ar? n? N

_} ) ’q’ — G[k} E? - ;)26 +mPe? e_-lkiru.L__‘.ﬂ? _ e_ik‘r[-":u_-",u]
c*h?
24,2
= Gk = ch = ! J o 3

E?—p?c+mPct ktky+ mPc/h?

Question 5

Write expressions for the following quantities in natural units (i = ¢ = 1, and using powers of eV) , and evaluate them in i)
natural units, and ii in practical units ([E] = eV, [m] = eVicd [t =s, [I]=m)

(a) The reduced Compton wavelength of the proton.
(b) The lifetime of a particle which decays after it propagated by 1 mm, if it moved at 90% of the speed of light.

(c) The mass of a particle which gets produced in the head-on collision of an electron and a positron, both with an energy
of 500 GeV.

(d) The radius of the trajectory of a particle with charge e with a momentum of 1 GeV/¢ in a magnetic field of 1 T.
Solution. Tn natural units, we have:

1eV=1.785-10"" kg
1(eV) ' =6.586-10"" s
1(eV) "' =1.973-107" m

h
(a) The reduce Compton wavelength is given by A = —. In natural units, the reduce Compton wavelength of proton is
me

11

1 _ i
~mp 938 MeV =107:107 (V)
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In SI units: /
1=1.07-1077-1.973- 107" m=2.1-10"%m

-~

f 1 mm
(b) In the lab frame, the lifetime of the particleis = - = ———————
. ¢ 90%-3-10% m/c

lifetime is T = ——— =8.5-10""%s,

V1-v2/e?

In the natural units, these numbers are

3.7-10712 8.5-107'2

t=——— (eV)' =5.6-10° (eV) T=—— (eV)' =1.3-10" (eV) !
6.586.10-10 . 6.586-10-16

(c) The produced particle has mass m = 1000 GeV/c?. In natural units, m = 1000 GeV.

(d) The radius is given by

N
muv= mv p
— =B = r=—=—
r el eB
. . 1GeVie 107 . 3.33 O e
In practical units, r = ——— = m = 3.33 m. In natural units, r = ————— (eV])™' = 1.689- 107" (eV])™".
1T-e 3-108 J 1.973-10°7
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