Peize Liu
St. Peter’s College
University of Oxford

Problem Sheet 2

C3.1: Algebraic Topology

30 October, 2020



Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

Show that chain homotopy of chain maps C. — C. is an equivalence relation.

Proof. Suppose that (C.,0.) and (6.,5.) are two chain complexes in an Abelian category A.
* Reflectivity:

Let f. : C. — C. be a chain map. We take A, : C. — C[1]. defined by h,, = 0 for all n € N. Then trivially we
have |

fn_fn = hn—loan+5n+1°hn
Hence f. = f..

¢ Symmetry:
Let h, be a chain homotopy from f. to g.. Then —h, is a chain homotopy from g. to f.. \/
¢ Transitivity:

Let h. be a chain homotopy from f, to f/, and h, be a chain homotopy from f] to f!’. Then h. + k. is a chain

homotopy from f. to f!'. \/ O

Question 2

Show that the relative homology H; (R, Q) of the pair Q@ < R is a free Abelian group, and find a basis.

Proof. From the short exact sequence of chain maps
0 — C.Q —— C.R) —— C.RQ) —— 0
We can construct the long exact sequence of reduced homology groups J

S R — HRQ) —2 Hy@) — Hy® — -

Since R is contractible, we have Hy(R) = 0 and H, (R) = 0. By exactness we have H; (R, Q) = Hy(Q). Since the path

components of  are the singletons, we have
H@= @ Zx \/
x€F(@Q)

where F : Ab — Set is the forgetful functor.

From Sheet 1 Question 4 we have Hy(Q) = Hy(Q) ® Z. Hence H; (R, Q) is isomorphic to a direct summand of the
free Abelian group Hy(Q). H; (R, Q) is the free Abelian group Z7°®N,

We fix a base point xp € F(Q). Then H; (R, Q) is generated by the basis {[xo, x]: x € F(Q)}.

oA

Question 3
In the course notes, from a short exact sequence 0 yA—yB-TsC > 0 we built the long exact sequence
(LES):
9 lo[—1]

3y H(A) — 3 H(B) —= H.(C) —2— H,_(A) === ...

In the notes we showed exactness at H, (C).



Prove exactness at H, (A) and H,(B) in the LES.

Proof. Let us sweep the dirt under the carpet by using the snake lemma. Consider a chain complex (C.,0.). The differ-
ential map 0, : C, — C,—1 induces an exact sequence

0 — kerd,, — Cy, aﬁ” Cy,_1 —— cokerdo,, — 0

Connecting the differential maps we obtain a commutative diagram:

kerd, 1 kero, kerd,_;
7 o ™
// 7 / /
I / l /’/ // I //
anﬂ/ -7 an g 0y /
/ n-1,
b Cpat — s €, 5% Cpot — 5 Cpog ——
/ QL 1 QL . l
7 7 7
// // ~ //
- -0, P
cokerd,, 41 cokerd, cokerd,_;

Since imd,, € kerd,_; and imd,; < kerd,, 8, factors through the cokernel and the kernel as shown in the dia-
gram. It induces 0, : cokerd,.; — kerd,_;. Note that we have

~ kero ~ kerd,_; kerd,_
kero,, = - n =H,; cokerod,, = ('er it t.ar n-l =H, ! u
imad, 41 imad, imd,

Now we consider the following commutative diagram:

~ ~ ~
0 —— kerdﬁﬂ — kerdgﬂ  — kerdgﬂ
Y Y Y
~ ~ ~
0 —_— An+1 ’ > Bn+1 » Cn+1 e 0
A 63/ C
611+l n+1 an+1

0 > An > > By » Cn > 0
¥ / ¥ 2

i
\\

Cokerajl‘+l — Cokelrafff+l — Cokelrag+l — 0
oy on G
0 — kerd4_ | — kerdB | — kerd®

By snake lemma, the blue line in the diagram gives a long exact sequence. In particular, every row in the diagram
is exact. Then we apply snake lemma again to the last two rows, which gives a long exact sequence

kerd? —— kerd? —— kerd$ i} cokerd4 — cokerd? —— cokerd$

which is the long exact sequence of homology groups:

5
H,(A) — H,(B) — H,(C) — H,_1(A) — H,_1(B) — Hy,_1(C)

11 think H;, = kerdy, is a better way to define homology in a general Abelian category, so that we can avoid the annoying notion of image.



By gluing together patches of long exact sequenceds for different n, we obtain the desired long exact sequence of

homology groups. DK, % O

Question 4
a) Use the excision theorem to prove that, if each x; € X; has a contractible neighbourhood, then

H. (\i/xl-) = Qlaﬁ (Xi)

b) Construct a topological space X such that for all k =0, Hy(X) = 72", where ny € N are arbitrary.

c) Construct a connected topological space X with the same homology group as the tours T2, which is not
homotopy equivalent to T2.

n-1 n

Proof. a) Weuse induction on n.2 Suppose that the result holds for n—1. Let Y,,_; = \/ Xj,and X=X, vY,_1 = \/ X;.
i=1 i=1

Let x,, € X;, has contractible neighbourhood V,, € X;,. We have the short exact sequence of chain complexes:

t. n.
0 —> Co(Xn) —> Co(XnVYn—l) —> Co(XnVYn—LXn) —> 0 J
which induces the long exact sequence of reduced homology groups
. lg  ~ g 6 J
— Hq(Xn) — Hq(XnVYn—l) — Hq(XnVYn—I;Xn) — Hq—l(Xn) —

The inclusion map ¢: X;, — X, v Y,,_; has aretraction r : X;, v Y;,_; — Xj,. Formally we can write X, v Y;;—;
as (Xy x {yoh) U ({xp} x Y,—1), where yg € Y;,—1. Then we have

X Y=JYo

Lx) =(x,y), r(x,y):{
Xn, Y#Yo

and rot=idy,. By functoriality of H., 1 : ﬁq (Xn) — ﬁq(Xn Vv Y,_1) is injective. Hence 6 ; = 0. The long exact
sequence divides into short exact sequences

~ lg  ~ s 0
00— Hq(Xn) — Hq(Xn vV Yn-1) _q> Hq(Xn V Yp-1,Xn) _67> 0
The sequence splits because i, has a retraction. We deduce that

Hy(X) = Hy(Xy) ® Hy(Xn V Yno1, X)

We have
Hy(Xp VY1, X5) £ Hg(Xn V Y1 VN (X \ Vi), X \ (X \ V) (excision theorem)
= Hq(Vn V Yn-1, Vi)
= Hg(Yp-1,{*}) (V,, is contractible)
= Hy(Yn1) e |
!
Finally, by induction hypothesis, we have CO F
~ ~ ~ n ~
Hy(X) = Hy(Xp) ® Hy (Y1) =@ Hy(X;)
i=1
2We assume that the index set is finite. The result is much easier to prove using the Mayer-Vietoris sequence,
N Ve Wl vy nok we WA
Plex 2BU T ortve N

et (X N0) V5 opd pod Tk e HN T

1o !



which completes the induction.
b) We may have to use the infinite version of the result in (a), though I do not know how to prove it...

For each k = 1, we take ny copies of k-spheres Sk, . Sflk. We note that

~ Z, n=k
Hn(S )=
0, n#k
oo Ng .
Take Y = \/ V Sf. Then we have Hy(Y) = 2" for k = 1. Next we take a finite set {1, 2, ..., ng — 1} with discrete
k=0i=1
topology. We set
oo Ng
X=Yu{l,2,.,ng-1=\ \/ SFui1,2,.,no -1}
k=0i=1

Then
Ho(X) = Hy(Y)® Ho({1,2,..,ng—A}) = 2™, Hi(X) = Hi(Y), (k=1)

We conclude that Hx(X) = Z™ for all k= 0.

¢) The homology groups of torus are given by
Hy(T?) =2, H(T)=ZxZ, H(T*=1Z, (TH)=--=0

By the construction in part (b), the space
X=8"vs'vs?

has the same homology groups with those of T2. But by Seifert-van Kampen Theorertn/
(X)) = (S *m (S * M (SHZZ*ZEZ xZ =7y (T?)

Hence T2 and X are not homotopic equivalent. OQ_/ O

Question 5
a) Compute H.(S"\ (k+ 1) points) and H.(R?\ k points).

b) Compute H.(X;, A) and H.(Z,, B), where

¢) Using Mayor-Vietoris, calculate H,(S") and H. (K) where K is the Klein bottle.

Proof. a) From Question 1.(g) in Sheet 1, we know that

S"\ (k+1) points = §" L v...v §*71 R?\ k points = D?\ k points = S' v --- v §!
[ —— R —
k copies k copies
We know that

z =n0

0 otherwise



Hence by Question 4.(a),

zk qg=n-1 z* qg=1
Hy(S"\(k+1) points)=4Z q=0 Hy®R*\kpoints) =4Z =0

0 otherwise 0 otherwise

b) We note from the pictur(\e—yat (22, A) and (Zy, B) are good pairs. Hence we have H,(Z;, A) = H,(Z,/A) and
Hy(22,B) = Hy(22/B).

From the picture we have X,/ A= T? v T? and Z,/B = T? @ Hence

72 n=2 7Z n=2
Hy(Z5,A) = Hy(T?) & Hy(TH =1 7* n=1 UHH(ZZ,B) = H,(TH e Hy(SH) =427 n=1
0 otherwise 0 otherwise
¢) We prove by induction on 7 that
~ Z, =n
0, otherwise

For n = 0, the result is clear. Suppose that the result holds for n — 1. Let A be an open neighbourhood of
the northern hemipshere of S” abd B be an open neighbourhood of the southern hemipshere of S”. Then

A=B=D" S§"=AuUB and[A NB=~g§"1! The theorem of Mayor-Vietoris sequence produces a long exact

sequence (\(\O'\_‘ g %

— Hu(ANnB) — Hn(A)GBHn(B) — Hn(S") —> Hy1(ANB) — Hp-1(A) @ Hy1(B) —

Since A and B are contractible, ﬁn(A) ® \f-lj,(B) = (0. We have fIn(S”) = ﬁn_l (™ 1y, By induction hypothesis,
H, (8™ = Z. Hence
Z, qg=0,n

0, otherwise

Hy (8™ = {

This completes the induction.

The Klein bottle is obtained by gluing the boundary circle of two Mébius bands A’ and B'. Let A, B be open
neighbourhoods of A and B in K respectively. Then A= A'~B'~B, K= AuB,and AnB = S'.

. —— Hy(S"Y) ——— Hy(A)® Hy(B) ——— Hy(K)

Hy(S'") ~— Hy(A)® H(B) — H;(K) —— 0

We need to compute the homology groups of the Mobius band A. We impose a A-complex structure on A

as follows. \
b TS
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The boundary maps are given by

0i:a—u—-v,b—v—u,c—0,d—u-v
0:U—a+b—-c, L—a+c—d

Hence
Ho(A)=Z,  Ha)=-—4Fba-do -, gy
0w =o YY" asb—cat+c—-dy 2V

Put these into the long exact sequence we obtain

00— B —2 s 7T a7 T B —— 0

Note that the inclusion (i, —j.): H;(S') — H;(A) @ H;(B) is induced by the inclusions i: S' — Aand j: S' — B.

So (is,—J«): 1 \Hﬁ, —2). By first isomorphism theorem,

ZeoZ  Ze&Z _ Za®lb

i:I =i *E = =
1K) =1im7 kerm, im(i.,—j.) {(2a-2b)

=ZeZ/2

Since (i, — j«) is injective, we have § = 0 and hence ﬁz (K) =0.

In conclusion, the homology groups of K are given by 3

ZoZ12 n=1
H,(K)=<{7Z n=0 O
0 otherwise

Question 6

Build an explicit homeomorphism D”/8"~! = §” in a way that preserves the orientation.

Hint: Parametrise points of D" by (¢xy, ..., tx,) where (X, ..., X,) € S" 1 and te|0,1].

Proof. We parametrise points of D" by (tx, ..., tx,) where (xy, ..., X,) € S" Land re[0,1]. We define ¢:D" — S" by
(p(txl,...,txn)z( 1—(21‘—1)2x1,...,\/1—(2t—1)2xn,2t—1) \/

The map clearly descends to @ : D*/S"~! — S", which is a homeomorphism. Geometrically ¢ maps each ray in
D" to the corresponding longitude on S”. For n = 2 we have the following picture:

L;*O )
3This method is much more complicated than direct computation of simplicial homology groups of K!!! ®) L,\ C/{_,'D

e M LS

)



Question 7

If X retracts onto A, prove that H.(X) = H.(A) @ H.(X, A).

Proof. We have essentially proven this as a byproduct in the proof of Question 4.(a).

Let:: A — X be the inclusion map and r : X — A be a retraction map. Let i, : H,(A) — H,(X) and r;, : H,(X) —
H;,(A) be the induced maps for the respective homology groups. We have a long exact sequence of relative ho-
mology groups

S Hy(A) — s H,(X), ——— Hy (X, A) —2 s H,y 1 (A) ——

Since r ot =1id, r, o1, =id. Hence t, is injective. Note that by exactness at H,_;(A), we have imé, = kert,_; = 0.
Hence §,, = 0. We break the long exact sequence into short exact sequences J

l
0 — Hp(A) —— Hy(X) —— Hp(X,A) —— 0
Now ¢, has a retraction r,. By splitting lemma the sequence splits. We have H,,(X) = H,(A) ® H, (X, A). \/ O

Question 8
a) Viewing points as singular 1-chains (A! = I), prove that a constant path c is a boundary: ¢ € 0C, (X).

b) For paths f,g: I — X with f(1) = g(0), let f * g: I — X be the concatenated path. Prove that fxg—f—ge
0C,(X).

c) Let f ~1 denote the reversed path. Prove that f + f 1e0C(X).
d) If f, g are homotopic paths relative to 61, prove that f — g € 0C,(X).

e) Deduce that there exist group homomorphisms (Hurewicz homomorphism)
T (X, x) — n'i‘b (X,x) — H;(X) ,where n*l‘b is the Abelianisation.

f) Assume from now on that X is path-connected. Fix x € X. Pick a path Yy : I — X from x to y, for each

y € X, with y = ¢. Show that there exists a homomorphism H; (X) — n?b (X, x) which on chains is the group
homomorphism: ¢ : C;(X) — n‘i‘b(X, X, o(f: I=X)=vro) * f *y]:(ll).

Deduce that H; (X)) = w2 (X, ) for any path-connected X.

Proof. a) Consider the singular 2-simplex 0 : A?> — {cy} € X. Then 0 = c— c+ ¢ = c € C; (X), where c: Al — {cp} € X is
the constant map.

b) For parts (b), (c) and (d), it is easier to argue with pictures. j ‘3 E 5

Leto:A2— Xbea singular 2-simplex defined in the following way: wm o &,:D» oA
)
\Q/"E)\/Sﬁ& \) f T = f i = \MDL/O \ 5
cs- i3 s Ael\Led
” KR sl 4

Thendo = fxg—f—gedC(X).

f(l) =g

¢) 0:A? — X be a singular 2-simplex defined in the following way, where Cr(o) is the singular 1-simplex repre-
senting the constant path at f(0) € X.



fu) ' OO\We

f -
LN f =
f(n) f fu)

J‘\o) Cfm f(o)

Then do = f+ f~! = cf(0) € 0C2(X). Since cf(g) € IC,(X), we have f+ [~ € IC,(X). \/

d) Let H:Ix I — X be the homotopy from f to g. We impose a A-complex structure on I x I.

a b

Ca Co

We have f+ ¢, —hedCr(X) and h— g —c, € 0C2(X). Since cq4, cp € 0C2(X), wehave f— g &Z(X).

e) Forabasedloop f:1— X with f(0) = f(1) = x, let [f]; denotes the homotopy class of f, and [f]x denotes
the class f +0C,(X) in H)(X). Let y: m(X) — H1(X) defined by [f]; — [f]x. This is well-defined by (d): if
f,g:I1— X aresuch that [f]; = [g], then f = gand hence f— g€ dC,(X). /-'?

alis need

is a group homomorphism. For f,g: I — X, we have -
¥ is a group p fg 96”~-C(|§‘{5(ﬂ)vo
1
VS Ui+ (g1 = £+ g +0CoX) = f % +0C00 = [f % gl = Y[l gl _,SDH—/#‘

Finally, since H; (X) is Abelian, [ (X, x), 7 (X, x)] € kery. y descends to the group homomorphism W.Q}.’CA

p =Pl
~ ab ﬂl(X,x)
yray (X, x) = 71 (X, 0.1 (X, 0] — H (X) .
A y both shed\gu

f) Forasingular 1-simplex f,let ¢(f) = [y * f * y}(ll)] € ni‘b (X, x) and extend this Z-linearly. Thatis, p(nf +

mg) =nl[fl+mlgle nel‘b(X, x). Then ¢ : C1(X) — ni‘b (X, x) is a group homomorphism.

n
For f € 0C»(X), we have f = O(Z m;o; |, where m; € Z and o; are singular 2-simplices. We write do; =
i=1
Tio — Ti1 + T;2. After some labourious manipulation of A-complexes we may assume that each 7;; is a loop
based at x € X.*
n
Now consider ¢(f) = Z m;[0o;] € ﬂ‘i‘b
i=1
[f1=0. We deduce that 0C,(X) < ker¢. Hence ¢ induces a group homomorphism ¢ : H; (X) — n‘i‘b (X,x). It
is easy to check that ¢ is the inverse of . In conclusion, H; (X) = ni‘b (X, x), O

D) o4

(X, x), since o; gives a null-homotopy of the loop 79— 7;1 + 7;2, then

Question 9

1 1
LetX=[0,1]and A={0}u{i:nez,0}. H= | B((—,O),—);[R{z ("Hawaiian earring"). W= \/ S’
n n

neZsg neZs

* Show that H and W are not homeomorphic.

“4See the second-last paragraph of p. 167, Algebraic Topology by Allen Hatcher for detail.



* Is X/ Ahomeomorphic to H or to W?

* Show that H; (X, A) Z H;(X/A). (Note A< X is not a good pair.)

(You do not need ot fully compute ﬁl (X1A))

Proof.

e Suppose that f : H — W is a homeomorphism. We must have f(0,0) = (-1,0), because every point on

H\{(0,0)} and on W\ {(—1,0)} has a neighbourhood homeomorphic to I. For any neighbourhood V < H of
(0,0), there exists n € N such that B((%, 0), %) c V. So V is not contractible. But f(V) € W is contractible for
sufficiently small diam V. This is\7antradiction. HZW. \/

X/ A= H is intuitively correct.

We compute H; (X, A). The long exact sequence of relative homology groups is given by

— Hj(A) —— Hi(X) —— H(X,A) — Hy(A) —— Hy(X) ——

Since X is contractible, we have H; (X) = 0, Hy(X) = 0. Hence H; (X, A) = Hy(A) = Z®N. In particular H, (X, A)
is countable.

Since X/A = H, for each n € Z, there exists a retraction r, : X/A— Cy, := B((%,O), %). Then r, induces the

[e.]
group epimorphism ry, : 71 (X/A) — Z. So there exists a group homomorphism ¢ : 7, (X/A) — H Z. For
n=1

(e8]
each {a,} € H Z,we can define aloop f: I — X/ A such that f goes a; times around C,, in the time interval
n=1
1 1
1-—1-— ] . This implies that ¢ is in fact surjective.
n n+1

o0 oo
Since 1_[ is Abelian, ¢ descends to a group epimorphism @: ﬂ?b (X1A) — Z. By Question 8, since X/A

n=1 n=1

(o]
is path-connected, we have H; (X/A) = n*l‘b (X/A). Therefore ]_[ Z is isomorphic to a quotient of H; (X/A).

n=1
oo
Since H Z is uncountable, ﬁl (X/A) is also uncountable. \/
n=1
We conclude that H; (X/A) Z H; (X, A). O



