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Convention: All spaces are topological spaces. Maps of spaces are always continuous.

Question 1

Show that chain homotopy of chain maps C• → �C• is an equivalence relation.

Proof. Suppose that (C•,∂•) and ( �C•,�∂•) are two chain complexes in an Abelian category A.

• Reflectivity:

Let f• : C• → �C• be a chain map. We take h• : C• → �C [1]• defined by hn = 0 for all n ∈ N. Then trivially we
have

fn − fn = hn−1 ◦∂n +�∂n+1 ◦hn

Hence f• � f•.

• Symmetry:

Let h• be a chain homotopy from f• to g•. Then −h• is a chain homotopy from g• to f•.

• Transitivity:

Let h• be a chain homotopy from f• to f �
• , and h�

• be a chain homotopy from f �
• to f ��

• . Then h•+h�
• is a chain

homotopy from f• to f ��
• .

Question 2

Show that the relative homology H1(R,Q) of the pairQ⊆R is a free Abelian group, and find a basis.

Proof. From the short exact sequence of chain maps

0 C•(Q) C•(R) C•(R,Q) 0

We can construct the long exact sequence of reduced homology groups

· · · �H1(R) H1(R,Q) �H0(Q) �H0(R) · · ·δ

Since R is contractible, we have �H0(R) = 0 and �H1(R) = 0. By exactness we have H1(R,Q) ∼= �H0(Q). Since the path
components ofQ are the singletons, we have

H0(Q) =
�

x∈F (Q)
Zx

where F :Ab→ Set is the forgetful functor.

From Sheet 1 Question 4 we have H0(Q) ∼= �H0(Q)⊕Z. Hence H1(R,Q) is isomorphic to a direct summand of the
free Abelian group H0(Q). H1(R,Q) is the free Abelian group Z⊕N.

We fix a base point x0 ∈ F (Q). Then H1(R,Q) is generated by the basis {[x0, x] : x ∈ F (Q)}.

Question 3

In the course notes, from a short exact sequence 0 A B C 0i π we built the long exact sequence
(LES):

· · · H•(A) H•(B) H•(C ) H•−1(A) · · ·i• π• δ i•[−1]

In the notes we showed exactness at H•(C ).



2

Prove exactness at H•(A) and H•(B) in the LES.

Proof. Let us sweep the dirt under the carpet by using the snake lemma. Consider a chain complex (C•,∂•). The differ-
ential map ∂n : Cn →Cn−1 induces an exact sequence

0 ker∂n Cn Cn−1 coker∂n 0
∂n

Connecting the differential maps we obtain a commutative diagram:

ker∂n+1 ker∂n ker∂n−1

Cn+1 Cn Cn−1 Cn−2

coker∂n+1 coker∂n coker∂n−1

∂n∂n+1 ∂n−1

�∂n

Since im∂n ⊆ ker∂n−1 and im∂n+1 ⊆ ker∂n , ∂n factors through the cokernel and the kernel as shown in the dia-
gram. It induces �∂n : coker∂n+1 → ker∂n−1. Note that we have

ker�∂n = ker∂n

im∂n+1
= Hn , coker�∂n = ker∂n−1

im�∂n
= ker∂n−1

im∂n
= Hn−1

1

Now we consider the following commutative diagram:

· · · · · · · · ·

0 ker∂A
n+1 ker∂B

n+1 ker∂C
n+1

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

coker∂A
n+1 coker∂B

n+1 coker∂C
n+1 0

0 ker∂A
n−1 ker∂B

n−1 ker∂C
n−1

· · · · · · · · ·

�∂A
n

�∂B
n

�∂C
n

∂A
n+1 ∂B

n+1 ∂C
n+1

By snake lemma, the blue line in the diagram gives a long exact sequence. In particular, every row in the diagram
is exact. Then we apply snake lemma again to the last two rows, which gives a long exact sequence

ker�∂A
n ker�∂B

n ker�∂C
n coker�∂A

n coker�∂B
n coker�∂C

n
δn

which is the long exact sequence of homology groups:

Hn(A) Hn(B) Hn(C ) Hn−1(A) Hn−1(B) Hn−1(C )
δn

1I think Hn = ker�∂n is a better way to define homology in a general Abelian category, so that we can avoid the annoying notion of image.
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By gluing together patches of long exact sequences for different n, we obtain the desired long exact sequence of
homology groups.

Question 4

a) Use the excision theorem to prove that, if each xi ∈ Xi has a contractible neighbourhood, then

�H•

�
�

i
Xi

�
=

�
i

�H•(Xi )

b) Construct a topological space X such that for all k � 0, Hk (X ) ∼=Znk , where nk ∈N are arbitrary.

c) Construct a connected topological space X with the same homology group as the tours T 2, which is not
homotopy equivalent to T 2.

Proof. a) We use induction on n.2 Suppose that the result holds for n−1. Let Yn−1 =
n−1�
i=1

Xi , and X = Xn∨Yn−1 =
n�

i=1
Xi .

Let xn ∈ Xn has contractible neighbourhood Vn ⊆ Xn . We have the short exact sequence of chain complexes:

0 C•(Xn) C•(Xn ∨Yn−1) C•(Xn ∨Yn−1, Xn) 0
ι• π•

which induces the long exact sequence of reduced homology groups

�Hq (Xn) �Hq (Xn ∨Yn−1) Hq (Xn ∨Yn−1, Xn) �Hq−1(Xn)
ιq πq δq

The inclusion map ι : Xn → Xn ∨Yn−1 has a retraction r : Xn ∨Yn−1 → Xn . Formally we can write Xn ∨Yn−1

as (Xn × {y0})∪ ({xn}×Yn−1), where y0 ∈ Yn−1. Then we have

ι(x) = (x, y), r (x, y) =
�

x, y = y0

xn , y �= y0

and r ◦ ι= idXn . By functoriality of H•, ιq : �Hq (Xn) → �Hq (Xn ∨Yn−1) is injective. Hence δq = 0. The long exact
sequence divides into short exact sequences

0 �Hq (Xn) �Hq (Xn ∨Yn−1) Hq (Xn ∨Yn−1, Xn) 0
ιq πq δq

The sequence splits because ιq has a retraction. We deduce that

�Hq (X ) ∼= �H1(Xn)⊕Hq (Xn ∨Yn−1, Xn)

We have

Hq (Xn ∨Yn−1, Xn) ∼= Hq (Xn ∨Yn−1 \ (Xn \Vn), Xn \ (Xn \Vn)) (excision theorem)

= Hq (Vn ∨Yn−1,Vn)

= Hq (Yn−1, {∗}) (Vn is contractible)

= �Hq (Yn−1)

Finally, by induction hypothesis, we have

�Hq (X ) ∼= �Hq (Xn)⊕ �Hq (Yn−1) ∼=
n�

i=1

�Hq (Xi )

2We assume that the index set is finite. The result is much easier to prove using the Mayer-Vietoris sequence.
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which completes the induction.

b) We may have to use the infinite version of the result in (a), though I do not know how to prove it...

For each k � 1, we take nk copies of k-spheres Sk
1 , ...,Sk

nk
. We note that

�Hn(Sk ) =
�
Z, n = k

0, n �= k

Take Y =
∞�

k=0

nk�
i=1

Sk
i . Then we have �Hk (Y ) ∼=Znk for k � 1. Next we take a finite set {1,2, ...,n0−1} with discrete

topology. We set

X = Y � {1,2, ...,n0 −1} =
∞�

k=0

nk�
i=1

Sk
i � {1,2, ...,n0 −1}

Then
H0(X ) = H0(Y )⊕H0({1,2, ...,n0 −1}) =Zn0 , Hk (X ) = Hk (Y ), (k � 1)

We conclude that HK (X ) =Znk for all k � 0.

c) The homology groups of torus are given by

H0(T 2) =Z, H1(T 2) =Z×Z, H2(T 2) =Z, H3(T 2) = ·· · = 0

By the construction in part (b), the space
X = S1 ∨S1 ∨S2

has the same homology groups with those of T 2. But by Seifert-van Kampen Theorem,

π1(X ) =π1(S1)∗π1(S1)∗π1(S2) ∼=Z∗Z �∼=Z×Z∼=π1(T 2)

Hence T 2 and X are not homotopic equivalent.

Question 5

a) Compute H•(Sn \ (k +1) points) and H•(R2 \ k points).

b) Compute H•(Σ2, A) and H•(Σ2,B), where

c) Using Mayor-Vietoris, calculate H•(Sn) and H•(K ) where K is the Klein bottle.

Proof. a) From Question 1.(g) in Sheet 1, we know that

Sn \ (k +1) points � Sn−1 ∨ · · ·∨Sn−1
� �� �

k copies

, R2 \ k points ∼=D2 \ k points � S1 ∨ · · ·∨S1
� �� �

k copies

We know that

Hq (Sn) =
�
Z q = n,0

0 otherwise
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Hence by Question 4.(a),

Hq (Sn \ (k +1) points) =





Zk q = n −1

Z q = 0

0 otherwise

Hq (R2 \ k points) =





Zk q = 1

Z q = 0

0 otherwise

b) We note from the picture that (Σ2, A) and (Σ2,B) are good pairs. Hence we have Hn(Σ2, A) ∼= �Hn(Σ2/A) and
Hn(Σ2,B) ∼= �Hn(Σ2/B).

From the picture we have Σ2/A � T 2 ∨T 2 and Σ2/B � T 2 ∨S1. Hence

Hn(Σ2, A) = �Hn(T 2)⊕ �Hn(T 2) =





Z2 n = 2

Z4 n = 1

0 otherwise

Hn(Σ2,B) = �Hn(T 2)⊕ �Hn(S1) =





Z n = 2

Z3 n = 1

0 otherwise

c) We prove by induction on n that

�Hq (Sn) =
�
Z, q = n

0, otherwise

For n = 0, the result is clear. Suppose that the result holds for n − 1. Let A be an open neighbourhood of
the northern hemipshere of Sn abd B be an open neighbourhood of the southern hemipshere of Sn . Then
A � B � Dn , Sn = A ∪B and A ∩B � Sn−1. The theorem of Mayor-Vietoris sequence produces a long exact
sequence

Hn(A∩B) Hn(A)⊕Hn(B) Hn(Sn) Hn−1(A∩B) Hn−1(A)⊕Hn−1(B)
δn

Since A and B are contractible, �Hn(A)⊕ �Hn(B) = 0. We have �Hn(Sn) ∼= �Hn−1(Sn−1). By induction hypothesis,
�Hn(Sn) ∼=Z. Hence

Hq (Sn) =
�
Z, q = 0,n

0, otherwise

This completes the induction.

The Klein bottle is obtained by gluing the boundary circle of two Möbius bands A� and B �. Let A,B be open
neighbourhoods of A and B in K respectively. Then A � A� � B � � B , K = A∪B , and A∩B � S1.

· · · �H2(S1) �H2(A)⊕ �H2(B) �H2(K )

�H1(S1) �H1(A)⊕ �H1(B) �H1(K ) 0

We need to compute the homology groups of the Möbius band A. We impose a Δ-complex structure on A
as follows.
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The boundary maps are given by

∂1 : a �→ u − v, b �→ v −u, c �→ 0, d �→ u − v

∂2 : U �→ a +b −c, L �→ a + c −d

Hence

H0(A) ∼=Z, H1(A) = 〈a +b, a −d ,c〉
〈a +b −c, a +c −d〉

∼=Z, H2(A) = 0

Put these into the long exact sequence we obtain

0 �H2(K ) Z Z⊕Z �H1(K ) 0δ (i∗,− j∗) π∗

Note that the inclusion (i∗,− j∗) : H1(S1) → H1(A)⊕H1(B) is induced by the inclusions i : S1 → A and j : S1 → B .
So (i∗,− j∗) : 1 �→ (2,−2). By first isomorphism theorem,

�H1(K ) = imπ∗ ∼=
Z⊕Z
kerπ∗

= Z⊕Z
im(i∗,− j∗)

∼= Za ⊕Zb

〈2a −2b〉
∼=Z⊕Z/2

Since (i∗,− j∗) is injective, we have δ= 0 and hence �H2(K ) = 0.

In conclusion, the homology groups of K are given by 3

Hn(K ) =





Z⊕Z/2 n = 1

Z n = 0

0 otherwise

Question 6

Build an explicit homeomorphism Dn/Sn−1 ∼= Sn in a way that preserves the orientation.

Hint: Parametrise points of Dn by (t x1, ..., t xn) where (x1, ..., xn) ∈ Sn−1 and t ∈ [0,1].

Proof. We parametrise points of Dn by (t x1, ..., t xn) where (x1, ..., xn) ∈ Sn−1 and t ∈ [0,1]. We define ϕ : Dn → Sn by

ϕ(t x1, ..., t xn) =
��

1− (2t −1)2x1, ...,
�

1− (2t −1)2xn ,2t −1
�

The map clearly descends to �ϕ : Dn/Sn−1 → Sn , which is a homeomorphism. Geometrically �ϕ maps each ray in
Dn to the corresponding longitude on Sn . For n = 2 we have the following picture:

3This method is much more complicated than direct computation of simplicial homology groups of K !!!



7

Question 7

If X retracts onto A, prove that H•(X ) ∼= H•(A)⊕H•(X , A).

Proof. We have essentially proven this as a byproduct in the proof of Question 4.(a).

Let ι : A → X be the inclusion map and r : X → A be a retraction map. Let ιn : Hn(A) → Hn(X ) and rn : Hn(X ) →
Hn(A) be the induced maps for the respective homology groups. We have a long exact sequence of relative ho-
mology groups

Hn(A) Hn(X ) Hn(X , A) Hn−1(A)
ιn δn

Since r ◦ ι= id, rn ◦ ιn = id. Hence ιn is injective. Note that by exactness at Hn−1(A), we have imδn = ker ιn−1 = 0.
Hence δn = 0. We break the long exact sequence into short exact sequences

0 Hn(A) Hn(X ) Hn(X , A) 0
ιn

Now ιn has a retraction rn . By splitting lemma the sequence splits. We have Hn(X ) ∼= Hn(A)⊕Hn(X , A).

Question 8

a) Viewing points as singular 1-chains (Δ1 ∼= I ), prove that a constant path c is a boundary: c ∈ ∂C2(X ).

b) For paths f , g : I → X with f (1) = g (0), let f ∗ g : I → X be the concatenated path. Prove that f ∗ g − f − g ∈
∂C2(X ).

c) Let f −1 denote the reversed path. Prove that f + f −1 ∈ ∂C2(X ).

d) If f , g are homotopic paths relative to ∂I , prove that f − g ∈ ∂C2(X ).

e) Deduce that there exist group homomorphisms (Hurewicz homomorphism)

π1(X , x) πab
1 (X , x) H1(X ) , where πab

1 is the Abelianisation.

f) Assume from now on that X is path-connected. Fix x ∈ X . Pick a path γy : I → X from x to y , for each

y ∈ X , with γx = cx . Show that there exists a homomorphism H1(X ) →πab
1 (X , x) which on chains is the group

homomorphism: ϕ : C1(X ) →πab
1 (X , x), ϕ( f : I → X ) = γ f (0) ∗ f ∗γ−1

f (1).

Deduce that H1(X)∼=πab
1 (X,x) for any path-connected X .

Proof. a) Consider the singular 2-simplex σ : Δ2 → {c0} ⊆ X . Then ∂σ= c − c + c = c ∈C1(X ), where c : Δ1 → {c0} ⊆ X is
the constant map.

b) For parts (b), (c) and (d), it is easier to argue with pictures.

Let σ :Δ2 → X be a singular 2-simplex defined in the following way:

Then ∂σ= f � g − f − g ∈ ∂C2(X ).

c) σ :Δ2 → X be a singular 2-simplex defined in the following way, where c f (0) is the singular 1-simplex repre-
senting the constant path at f (0) ∈ X .
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Then ∂σ= f + f −1 −c f (0) ∈ ∂C2(X ). Since c f (0) ∈ ∂C2(X ), we have f + f −1 ∈ ∂C2(X ).

d) Let H : I × I → X be the homotopy from f to g . We impose a Δ-complex structure on I × I .

We have f +cb −h ∈ ∂C2(X ) and h − g −ca ∈ ∂C2(X ). Since ca ,cb ∈ ∂C2(X ), we have f − g ∈C2(X ).

e) For a based loop f : I → X with f (0) = f (1) = x, let [ f ]π denotes the homotopy class of f , and [ f ]H denotes
the class f +∂C2(X ) in H1(X ). Let ψ : π1(X ) → H1(X ) defined by [ f ]π �→ [ f ]H . This is well-defined by (d): if
f , g : I → X are such that [ f ]π = [g ]π, then f � g and hence f − g ∈ ∂C2(X ).

ψ is a group homomorphism. For f , g : I → X , we have

[ f ]H + [g ]H = f + g +∂C2(X ) = f � g +∂C2(X ) = [ f � g ]H =ψ([ f ]π · [g ]π)

Finally, since H1(X ) is Abelian, [π1(X , x),π1(X , x)] ∈ kerψ. ψ descends to the group homomorphism

�ψ : πab
1 (X , x) = π1(X , x)

[π1(X , x),π1(X , x)]
→ H1(X )

f) For a singular 1-simplex f , let ϕ( f ) = [γ f (0)� f �γ−1
f (1)] ∈πab

1 (X , x) and extend this Z-linearly. That is, ϕ(n f +
mg ) = n[ f ]+m[g ] ∈πab

1 (X , x). Then ϕ : C1(X ) →πab
1 (X , x) is a group homomorphism.

For f ∈ ∂C2(X ), we have f = ∂

�
n�

i=1
miσi

�
, where mi ∈ Z and σi are singular 2-simplices. We write ∂σi =

τi 0 −τi 1 +τi 2. After some labourious manipulation of Δ-complexes we may assume that each τi j is a loop
based at x ∈ X .4

Now consider ϕ( f ) =
n�

i=1
mi [∂σi ] ∈πab

1 (X , x), since σi gives a null-homotopy of the loop τi 0 −τi 1 +τi 2, then

[ f ] = 0. We deduce that ∂C2(X ) ⊆ kerϕ. Hence ϕ induces a group homomorphism �ϕ : H1(X ) → πab
1 (X , x). It

is easy to check that �ϕ is the inverse of �ψ. In conclusion, H1(X ) ∼=πab
1 (X , x),

Question 9

Let X = [0,1] and A = {0}∪ { 1
n : n ∈Z>0}. H =

�
n∈Z>0

B

�
(

1

n
,0),

1

n

�
⊆R2 ("Hawaiian earring"). W =

�
n∈Z>0

S1.

• Show that H and W are not homeomorphic.

4See the second-last paragraph of p. 167, Algebraic Topology by Allen Hatcher for detail.
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• Is X /A homeomorphic to H or to W ?

• Show that H1(X , A) �∼= �H1(X /A). (Note A ⊆ X is not a good pair.)

(You do not need ot fully compute �H1(X /A).)

Proof. • Suppose that f : H → W is a homeomorphism. We must have f (0,0) = (−1,0), because every point on
H \ {(0,0)} and on W \ {(−1,0)} has a neighbourhood homeomorphic to I . For any neighbourhood V ⊆ H of
(0,0), there exists n ∈N such that B(( 1

n ,0), 1
n ) ⊆V . So V is not contractible. But f (V ) ⊆W is contractible for

sufficiently small diamV . This is a contradiction. H �∼=W .

• X /A ∼= H is intuitively correct.

• We compute H1(X , A). The long exact sequence of relative homology groups is given by

�H1(A) �H1(X ) H1(X , A) �H0(A) �H0(X )

Since X is contractible, we have �H1(X ) = 0, �H0(X ) = 0. Hence H1(X , A) ∼= �H0(A) ∼=Z⊕N. In particular H1(X , A)
is countable.

Since X /A ∼= H , for each n ∈ Z+, there exists a retraction rn : X /A →Cn := B(( 1
n ,0), 1

n ). Then rn induces the

group epimorphism rn∗ : π1(X /A) → Z. So there exists a group homomorphism ϕ : π1(X /A) →
∞�

n=1
Z. For

each {an} ∈
∞�

n=1
Z, we can define a loop f : I → X /A such that f goes an times around Cn in the time interval

�
1− 1

n
,1− 1

n +1

�
. This implies that ϕ is in fact surjective.

Since
∞�

n=1
Z is Abelian, ϕ descends to a group epimorphism �ϕ : πab

1 (X /A) →
∞�

n=1
Z. By Question 8, since X /A

is path-connected, we have H1(X /A) ∼= πab
1 (X /A). Therefore

∞�
n=1

Z is isomorphic to a quotient of �H1(X /A).

Since
∞�

n=1
Z is uncountable, �H1(X /A) is also uncountable.

We conclude that �H1(X /A) �∼= H1(X , A).


