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Section A: Introductory

Question 1. Einstein-tensor conservation

Let (M, g) be a Lorentzian manifold. Show that the Bianchi identity ∇[aRbc]de = 0 implies that the Einstein
tensor is divergence free, i.e.

∇a
(
Rab −

1

2
gabR

)
= 0.

Question 2. Scalar and Maxwell matter

Let (M, g) be a Lorentzian manifold.

(a) Let φ ∈ C∞(M). We say that φ satisfies the wave equation iff �gφ := ∇a∇aφ = 0. Define the symmetric
2-covariant tensor field T associated to φ by

T (X,Y ) := (Xφ)(Y φ)− 1

2
g(X,Y )g−1(dφ,dφ).

Show that T is divergence-free, i.e. ∇aTab = 0 if, and only if, φ satisfies the wave equation. Find the
expression for T00 in terms of φ in the special case that (M, g) is the Minkowski spacetime.

(b) Let F be a two-form and define the associated symmetric 2-covariant tensor field

Tab =
1

4π

(
FacF

c
b −

1

4
gabFcdF

cd

)
.

Show that T satisfies ∇aTab = 0 if F satisfies the Maxwell equations dF = 0 and ∇aFab = 0 (the other
direction does in general not hold true). In the special case that (M, g) is the Minkowski spacetime find
the expression for T00 in terms of the electric field Ei = −F0i and the magnetic field Bi = 1

2εijkFjk.

Section B: Core

Question 3. Integrable 2-dimensional distributions

Consider the vector fields V = ∂x + y∂z and W = ∂y + x∂z in R3 with the standard Cartesian coordinates
(x, y, z). Show that span {V,W} is integrable and construct global coordinates (u, v, w) on R3 such that the
integral manifolds are given as level sets of w.

Proof. For f ∈ C∞(M), we have

[V,W ]f = VWf −WV f

= (∂x + y∂z)(∂yf + x∂zf)− (∂y + x∂z)(∂xf + y∂zf)

= (∂x∂yf + x∂x∂zf + y∂y∂zf + xy∂2zf + ∂zf)− (∂x∂yf + x∂x∂zf + y∂y∂zf + xy∂2zf + ∂zf)

= 0

Hence [V,W ] = 0. By Frobenius’ Theorem, span {V,W} is integrable. There exists a coordinate system
(u, v, w) on U ⊆ R3 such that V = ∂u and W = ∂v. Then we have

∂x

∂u
= 1,

∂y

∂u
= 0,

∂z

∂u
= y,

∂x

∂v
= 0,

∂y

∂v
= 1,

∂z

∂v
= x.
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Hence x = u + f(w) and y = v + g(w) for some f, g ∈ C∞(R). Then z = uv + ug(w) + vf(w). Next we
compute the Jacobian:

det J =
∂(x, y, z)

∂(u, v, w)
= −(fg)′(w).

If we want globally defined coordinates (u, v, w), then we need det J 6= 0 for all w ∈ R. For this we may
choose f(w) = 1 and g(w) = w. We have:

x = u+ 1, y = v + w, z = uv + uw + v.

Inversion:
u = x− 1, v = (1− x)y + z, w = xy − z.

The integral manifold is given by
{

(x, y, z) ∈ R3 : w(x, y, z) = xy − z = 0
}
.

Question 4. Static spacetimes

Let (M, g) be a static spacetime, i.e. there exists a timelike and hypersurface-orthogonal Killing vector field
V . Show that one can locally choose coordinates

{
y0, y1, . . . , yn−1

}
such that

• V = ∂
∂y0

;

• gµν is independent of y0;

• g0i = 0 for i = 1, . . . , n.

[Hint: Combine elements of Proposition 1.17 and Corollary 1.35 from the lectures with V being a Killing
vector field.]

Proof. The first and third properties are are proven in Corollary 1.35. We only need to prove the second property.
We have

∂0gµν = LV (gµν) = LV (g(∂µ, ∂ν)) = (LV g)(∂µ, ∂ν) + g(LV ∂µ, ∂ν) + g(∂µ,LV ∂ν).

Since {∂µ} is a coordinate frame of vector fields, we have LV ∂µ = [∂0, ∂µ] = 0. Since V is a Killing vector
field, LV g = 0. Therefore we have ∂0gµν = 0. Hence gµν is independent of y0.

Question 5. Noether charges

Let (M, g) be a Lorentzian manifold and let T be a symmetric 2-covariant tensor field satisfying the conser-
vation equation ∇aTab = 0. Let K be a Killing vector field on (M, g).

(a) Show that the one-form J(·) = T (·,K) is divergence free, i.e. ∇aJa = 0.

(b) Let now (M, g) be (3 + 1) dimensional Minkowski spacetime with the canonical coordinates {t, x, y, z}
and assume that T vanishes for r =

√
x2 + y2 + z2 large enough. Show that for each Killing vector field

K the corresponding charge

Q[K] :=

∫
t=t0

J0 (t0, x, y, z) dx dy dz

is conserved, i.e. independent of time.
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Proof. (a) We choose a local chart (U ;x0, ..., xn) on M . Since K is a Killing vector field, we have

g(∇XK,Y ) + g(X,∇YK).

for any X,Y ∈ Γ(TM). Now take X = ∂µ and Y = ∂ν . In local coordinates we have

∇µKν +∇νKµ = 0.

In local coordinates we have Jµ = TµνK
ν . Therefore the divergence is given by

∇µJµ = Kν∇µTµν + Tµν∇µKν = Tµν∇µKν =
1

2
Tµν(∇µKν +∇νKµ) = 0.

The second equality follows from that T is divergence-less. The third equality follows from that T is
symmetric.

(b) Let N :=
{

(t, x, y, z) ∈M : t ∈ [t0, t1], x
2 + y2 + z2 6 r2

}
be a submanifold of M with boundary

∂N = N1 ∪N2, where N1 := {t0, t1} × {x2 + y2 + z2 6 r2} and N2 := [t0, t1] × {x2 + y2 + z2 = r2},
where we choose r sufficiently large such that T = 0 on N2. Then J = 0 on N2 too.

From Question 4.(c) of Sheet 2 of C3.11 Riemannian Geometry1, we have LJ]Ω = (∇µJµ)Ω = 0,
where Ω = dt∧dx∧dy∧dz is the standard volume form on N . Then by Cartan’s formula and Stokes’
theorem, we have

0 =

∫
N
LJ]Ω =

∫
N

(d ◦ ιJ]Ω + ιJ] ◦ dΩ) =

∫
N

d ◦ ιJ]Ω =

∮
∂N

ιJ]Ω.

We need to compute the interior product ιJ]Ω explicitly:

ιJ]Ω = ιJ](dx0 ∧ · · · ∧ dx3)

= (−1)µιJ](dxµ)(dx0 ∧ · · · ∧ d̂xµ ∧ · · · ∧ dx3)

= (−1)µJµdx0 ∧ · · · ∧ d̂xµ ∧ · · · ∧ dx3

= J0dx ∧ dy ∧ dz − εijkJ idt ∧ dxj ∧ dxk

The facts that J = 0 on N2 and t = const on N1 show that

0 =

∮
∂N

ιJ]Ω =

∫
N1

J0dx ∧ dy ∧ dz =

∫
t=t0

J0dx ∧ dy ∧ dz −
∫
t=t1

J0dx ∧ dy ∧ dz,

where we have used the fact that J0 = −J0 as a special property of the Minkowski metric η. Hence∫
t=t0

J0dx ∧ dy ∧ dz =

∫
t=t1

J0dx ∧ dy ∧ dz

Since t0 and t1 are arbitrary, we deduce that Q[K] is conserved.

Question 6. Macroscopic motion in vacuum

Let (M, g) be the (3 + 1)-dimensional Minkowski spacetime with Cartesian coordinates
{
x0 = t,x

}
,x =(

x1, x2, x3
)
. Let Tab be a symmetric 2-covariant tensor field which satisfies the conservation equation ∂aT ab = 0

1The original requirement that manifold N is compact is not necessary as J] is compactly supported in N .
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and such that for every t ∈ R we have that Tab(t, ·) is compactly supported in space (i.e. in R3
)
. Define

P i(t) :=

∫
R3

T 0i(t,x) d3x, Di(t) :=

∫
R3

T 00(t,x)xi d3x, Qij(t) :=

∫
R3

T 00(t,x)xixj d3x,

where i, j = 1, 2, 3. Show that the following holds:

d

dt
Di = P i,

d

dt
P i = 0,

d2

dt2
Qij = 2

∫
R3

T ij(t,x)d3x.

Proof. We begin with a useful lemma (in fact this is divergence theorem in coordinate disguise): Suppose that
(F 1, F 2, F 3) ∈ C∞

(
R3,R3

)
is compactly supported. Then

d(εijkF
idxj ∧ dxk) = εijkdF

i ∧ dxj ∧ dxk =
∂F i

∂xi
dx ∧ dy ∧ dz =

∂F i

∂xi
d3x,

where d3x = dx ∧ dy ∧ dz is the volume form of R3. By Stokes’ Theorem, for sufficiently large R > 0,∫
R3

∂F i

∂xi
d3x =

∫
B(0,R)

∂F i

∂xi
d3x =

∮
∂B(0,R)

εijkF
idxj ∧ dxk = 0.

Now return to the problem, where we know that Tab is compactly supported in R3 for each fixed t.

dDi

dt
=

∫
R3

∂T 00

∂t
xi d3x = −

∫
R3

∂T j0

∂xj
xi d3x

= −
∫
R3

(
∂

∂xj
(T j0xi)− T j0 ∂x

i

∂xj

)
d3x =

∫
R3

T j0
∂xi

∂xj
d3x

=

∫
R3

T 0i d3x = P i

dP i

dt
=

∫
R3

∂T 0i

∂t
d3x = −

∫
R3

∂T ji

∂xj
d3x = 0

d2Qij

dt2
=

d

dt

∫
R3

∂T 00

∂t
xixj d3x = − d

dt

∫
R3

∂T k0

∂xk
xixj d3x

=
d

dt

∫
R3

T k0
∂(xixj)

∂xk
d3x =

∫
R3

∂T k0

∂t

∂(xixj)

∂xk
d3x

= −
∫
R3

∂T k`

∂x`
∂(xixj)

∂xk
d3x =

∫
R3

T k`
∂2(xixj)

∂xk∂x`
d3x.

We need to prove the following lemma:

∂2(xixj)

∂xk∂x`
= δikδ

j
` + δi`δ

j
k.

If i = j, then
∂2(xixj)

∂xk∂x`
6= 0 only if i = j = k = `. In such case

∂2(xixj)

∂xk∂x`
=
∂2(xi)2

∂(xi)2
= 2. If i 6= j, then

∂2(xixj)

∂xk∂x`
6= 0 only if {i, j} = {k, `}. We will obtain

∂2(xixj)

∂xk∂x`
= 1 for (k, `) = (i, j) and (k, `) = (j, i).

d2Qij

dt2
=

∫
R3

T k`(δikδ
j
` + δi`δ

j
k) d3x = 2

∫
R3

T ij d3x,

Question 7. Stationary stress-energy tensor
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Let (M, g) be the (3 + 1)-dimensional Minkowski spacetime with Cartesian coordinates
{
x0 = t,x

}
,x =(

x1, x2, x3
)
. Let Tab be a symmetric 2-covariant tensor field which satisfies the conservation equation ∂aT ab = 0

and such that for every t ∈ R we have that Tab(t, ·) is compactly supported in space (i.e. in R3 ). Moreover as-
sume that the stress energy distribution is stationary, i.e. that ∂tTab = 0. Verify the following identities which
are used in the lectures to derive the far field of an isolated gravitational body in the linear approximation.

(a) ∂l∂m
(
T lmxixj

)
= 2T ij and show that this implies

∫
R3 T

ij(t,x)d3x = 0.

(b) Show that
∫
R3 T

0j(t,x)d3x = 0.

(c) ∂i
(
T ijx

j
)

= T ii and hence show that
∫
R3 T

i
i(t,x)d3x = 0.

(d) ∂i
(
T 0ixjxk

)
= T 0jxk + T 0kxj and hence show that

∫
R3

(
T 0jxk + T 0kxj

)
(t,x)d3x = 0.

(e) ∂k
(
T kix

ixj − 1
2T

jkxix
i
)

= T iix
j and hence show that

∫
R3 T

i
i(t,x)xjd3x = 0.

(f) 1
|x−x′|R3

= 1
r + x·x′

r3
+O

(
1
r3

)
as a function of x, where r2 = x · x and x′ is bounded.

Note that the space indices i, j, k, l,m, . . . run from 1 to 3.

Proof. Since T is stationary and divergence-less, we have ∂iT iµ = 0.

(a) Note that ∂mT `m = 0 and ∂`T `m = 0. Then

∂2

∂x`∂xm
(T `mxixj) = T `m

∂2(xixj)

∂x`∂xm
= 2T ij ,

where we used the result in Question 6. Therefore for sufficiently large R > 0,∫
R3

T ij d3x =
1

2

∫
B(0,R)

∂`∂m(T `mxixj) d3x =
1

2

∫
B(0,R)

d(εnk`∂m(Tmnxixj) dxk ∧ dx`)

=
1

2

∮
∂B(0,R)

εnk`∂m(Tmnxixj) dxk ∧ dx` = 0

(b) From Question 6 we have ∫
R3

T 0j d3x = P j =
dDj

dt
=

∫
R3

∂T 00

∂t
xj d3x = 0.

(c) Since ∂iT ij = 0, we have ∂i(T ijxj) = T ij∂ix
j = T ijδ

i
i = T ii. For sufficiently large R > 0,∫

R3

T ii d3x =

∫
B(0,R)

∂i(T
i
jx
j) d3x =

∫
B(0,R)

d(εk`mT
k
jx
jdx` ∧ dxm)

=

∮
∂B(0,R)

εk`mT
k
jx
jdx` ∧ dxm = 0

(d) ∂i(T 0ixjxk) = T 0ixj∂ix
k + T 0ixk∂ix

j = T 0kxj + T 0jxk. For sufficiently large R > 0,∫
R3

(T 0kxj + T 0jxk) d3x =

∫
B(0,R)

∂i(T
0ixjxk) d3x =

∫
B(0,R)

d(εi`mT
0ixjxkdx` ∧ dxm)

=

∮
∂B(0,R)

εi`mT
0ixjdx` ∧ dxm = 0

(e) ∂k
(
T kix

ixj − 1
2T

jkxix
i
)

= ∂k
(
T kix

ixj − 1
2T

j
kx

ixi
)

= T j ix
i + T iix

j − T j ixi = T iix
j . For sufficiently
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large R > 0, ∫
R3

T iix
j d3x =

∫
B(0,R)

∂k

(
T kix

ixj − 1

2
T jkxix

i

)
d3x

=

∫
B(0,R)

d

(
εk`m

(
T kix

ixj − 1

2
T jkxix

i

)
dx` ∧ dxm

)
=

∮
∂B(0,R)

εk`m

(
T kix

ixj − 1

2
T jkxix

i

)
dx` ∧ dxm = 0

(f) This is familiar computation in multipole expansion:

1

‖x− x′‖
=
(
(x− x′) · (x− x′)

)−1/2
=
(
r2 − 2x · x′ + ‖x′‖ 2

)1/2
=

1

r

(
1− 2x · x′

r2
+
‖x′‖ 2

r2

)−1/2
=

1

r
+

x · x′

r3
+O(r−3).

Question 8. Geodesics in static spacetimes

Let (M, g) be a Riemannian manifold and let M = R×M with Lorentzian metric g = −dx20 + g. Show that
s 7→

(
σ0(s), σ(s)

)
is an affinely parametrised geodesic inM if, and only if, s 7→ σ(s) is an affinely parametrised

geodesic in M and σ0(s) = λs, λ ∈ R.

Proof. Let ∇0 and ∇ be the Levi-Civita connections on R and M respectively. Let σ(s) = (σ0(s), σ(s)) be a path
in M . The key observation is that (Question 3 of Sheet 1 of C3.11 Riemannian Geometry):

∇σ̇σ̇ = ∇(σ̇0,σ̇)(σ̇
0, σ̇) =

(
∇0
σ̇0 σ̇

0,∇σ̇σ̇
)

= 0 ⇐⇒ ∇0
σ̇0 σ̇

0 = 0 ∧∇σ̇σ̇ = 0.

That is, σ is an (affinely parametrised) geodesic in M if and only if σ0 is an geodesic in R and σ is an
geodesic in M .

Next we expand the condition of being a geodesic on R. We have

∇0
σ̇0 σ̇

0 = σ̇0 · σ̈0 =
1

2

d

ds
(σ̇0)2 = 0 ⇐⇒ σ̇0 = λ for some λ ∈ R

Hence σ0 is a geodesic if and only if σ0(s) = a+ λs for some a, λ ∈ R.

Section C: Optional

Question 9. Noether charges in Minkowski space

Let (M, g) be (3 + 1)-dimensional Minkowski spacetime with canonical {t, x, y, z} coordinates and assume
that T vanishes for r =

√
x2 + y2 + z2 large enough. From Problem 5 we know that each Killing vector field

K results in the corresponding conserved charge

Q[K] :=

∫
t=t0

J0 (t0, x, y, z) dx dy dz.

Express the conserved charges corresponding to the 10 linearly independent Killing vector fields found in
Problem 6.(b) from the first problem sheet in terms of the components of the stress-energy tensor. Give a
physical interpretation of each of these charges.


