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Affine connection for diagonal gµν :

Γλµν =
1

2gλλ

(
∂gλµ
∂xν

+ ∂gλν
∂xµ

− ∂gµν

∂xλ

)
NO SUM OVER λ

Ricci Tensor:

Rµκ = 1

2

∂2 ln |g |
∂xκ∂xµ

−
∂Γλµκ

∂xλ
+Γη

µλ
Γλκη−

Γ
η
µκ

2

∂ ln |g |
∂xη

FULL SUMMATION

Question 1. Birkhoff’s Theorem

In this problem, we will set c = 1.

a) Birkhoff’s theorem states that outside of a spherical distribution of matter, the metric tensor must be independent of
time and equal to the Schwarzschild metric - even if the matter distrbution is changing (keeping spherical symme-
try) with time. A corollary is that within the hollow of an external spherical distribution of matter, the metric tensor
is Minkowski spacetime. These are the precise relativistic analogues of the Newtonian results of a point mass 1/r po-
tential outside any spherical distribution of matter, and the vanishing of the gravitational field inside a cavity with a
spherical external distribution of matter. Birkhoff’s theorem is critical to formulating cosmology. To prove the theorem
is straightforward but a bit painful, because we need to calculate the Ricci tensor Rµκ, and that is always a nuisance.
Both because Birkhoff’s theorem is important, as well as to get practice working with the Ricci tensor, we will explicitly
evaluate the key Rtr component here, a critical step in the proof 1. The Rtr component vanishes identically for the static
Schwarzschild metric. Consider the line element for a general time-dependent spherical system,

−dτ2 =−B(r, t )d t 2 + A(r, t )dr 2 + r 2dθ2 + r 2 sin2θdφ2 ≡ gµνd xµd xν

The nonvanishing affine connection components Γa
bc from this metric tensor are the same nonvanishing set we found

for the Schwarzschild metric, plus three others that used to be zero. In particular, show that

Γr
r t =

Ȧ

2A
, Γt

r r =
Ȧ

2B
Γt

t t =
Ḃ

2B

where we will use notation Ȧ for a time derivative and A′ for an r derivative. A warm welcome to our new three new
affine connection members.

b) We will now show that Rtr = −Ȧ/r A, which sure looks simple but in fact involves a large cancellation. The point now
is that since all the Rµκ terms must vanish in a vacuum, Ȧ = 0, and A cannot depend on time. The other components
of the Ricci tensor then all revert back to their Schwarzschild forms. (We won’t show this explicitly, only because it is
a long and dull exercise, but it is not particularly difficult). A reduction to the Schwarzschild problem means that any
possible time dependence in B can appear only as an overall multiplicative factor f (t ), which can then be completely
eliminated by a simple time coordinate transformation d t ′ = f d t . The static metric is then identical to Schwarzschild.
This is Birkhoff’s theorem.

Using the Ricci tensor above, show that the first two groupings

1

2

∂2 ln |g |
∂xκ∂xµ

−
∂Γλµκ

∂xλ

cancel one another out precisely. This is progress. (g is the determinant of gµν.)

c) Show next that for Rµκ = Rtr

Γ
η

µλ
Γλκη−

Γ
η
µκ

2

∂ ln |g |
∂xη

=− Ȧ

r A

(Use §6.1 from the notes for any Γ ’s you need.) You will find that everything cancels once again, except for one final
term in the ln |g | derivative, shown on the right. With Ȧ = 0, Birkhoff’s theorem follows relatively easily, as the remaining
Rµκ = 0 equations reduce to the Schwarzschild problem.

Proof. a) In general the metric should also have a cross term C (r, t )dt dr . Perhaps the question neglects this for simplicity...
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The metric tensor is given by
g =−B(r, t )dt 2 + A(r, t )dr 2 + r 2 (

dθ2 + sin2θdϕ2)
The Lagrangian is given by

L =−B(r, t )

(
dt

dλ

)2

+ A(r, t )

(
dr

dλ

)2

+ r 2
(

dθ

dλ

)2

+ r 2 sin2θ

(
dϕ

dλ

)2

where λ is an affine parameter. By Euler-Lagrange equation, we have

−2
d

dλ
(B ṫ )+ ∂B

∂t
ṫ 2 − ∂A

∂t
ṙ 2 = 0 =⇒ ẗ + ∂t B

2B
ṫ 2 + ∂r B

B
ṙ ṫ + ∂t A

2B
ṙ 2 = 0

=⇒ Γt
t t =

∂t B

2B
, Γt

r t =
∂r B

2B
, Γt

r r =
∂t A

2B

2
d

dλ
(Aṙ )+ ∂B

∂r
ṫ 2 − ∂A

∂r
ṙ 2 = 0 =⇒ r̈ + ∂r B

2A
ṫ 2 + ∂t A

A
ṙ ṫ + ∂r A

2A
ṙ 2 = 0

=⇒ Γr
t t =

∂r B

2A
, Γr

r t =
∂t A

2A
, Γr

r r =
∂r A

2A

2
d

dλ
(r 2θ̇)−2r 2 sinθcosθϕ̇2 = 0 =⇒ θ̈+ 2

r
ṙ θ̇− sinθcosθϕ̇2 = 0

=⇒ Γθrθ =
1

r
, Γθϕϕ =−sinθcosθ

2
d

dλ
(r 2 sin2θϕ̇) = 0 =⇒ ϕ̈+ 2

r
ṙ ϕ̇+2cotθθ̇ϕ̇= 0

=⇒ Γ
ϕ
rϕ = 1

r
, Γ

ϕ

θϕ
= cotθ

where the dot denotes d/dλ. Now all non-vanishing Christoffel symbols are given by

Γt
t t =

∂t B

2B
, Γt

r t =
∂r B

2B
, Γt

r r =
∂t A

2B
, Γr

t t =
∂r B

2A
, Γr

r t =
∂t A

2A
, Γr

r r =
∂r A

2A

Γθrθ =
1

r
, Γθϕϕ =−sinθcosθ, Γ

ϕ
rϕ = 1

r
, Γ

ϕ

θϕ
= cotθ

b) The expressions cancel when (µ,κ) = (t ,r ):

1

2

∂2 ln |det g |
∂t∂r

= 1

2

∂2

∂t∂r
ln(|AB |r 4 sin2θ) = 1

2

∂

∂r

(
∂t A

A
+ ∂r A

A

)
= 1

2

(
A∂t∂r A−∂t A∂r A

A2 + B∂t∂r B −∂t B∂r B

B 2

)
∂Γλtr

∂xλ
= ∂Γt

tr

∂t
+ ∂Γr

tr

∂r
= ∂

∂t

(
∂r B

2B

)
+ ∂

∂r

(
∂t A

2A

)
= 1

2

(
A∂t∂r A−∂t A∂r A

A2 + B∂t∂r B −∂t B∂r B

B 2

)

Hence
1

2

∂2 ln |det g |
∂t∂r

= ∂Γλtr

∂xλ
as claimed.

c) From the formula

Rtr = 1

2

∂2 ln |g |
∂r∂t

− ∂Γλtr

∂xλ
+ΓηtλΓλrη−

Γ
η
tr

2

∂ ln |g |
∂xη

We continue the computation:

Γ
η

tλΓ
λ
rη = Γt

t tΓ
t
r t +Γr

t tΓ
t
r r +Γt

trΓ
r
r t +Γr

trΓ
r
r r

= ∂t B

2B

∂r B

2B
+ ∂r B

2A

∂t A

2A
+ ∂r B

2B

∂t A

2A
+ ∂t A

2A

∂r A

2A

= 1

4

(
∂t A∂r A

A2 + ∂t B∂r B

B 2 + 2∂r B∂t A

AB

)

Γ
η
tr

2

∂

∂xµ
ln |det g | = Γt

tr

2

∂

∂t
ln(|AB |r 4 sinθ)+ Γ

r
tr

2

∂

∂r
ln(|AB |r 4 sinθ)

= 1

2

∂r B

2B

(
∂t A

A
+ ∂t B

B

)
+ 1

2

∂t A

2A

(
∂r A

A
+ ∂r B

B
+ 4

r

)
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= 1

4

(
∂t A∂r A

A2 + ∂t B∂r B

B 2 + 2∂r B∂t A

AB

)
+ ∂t A

r A

Then we deduce that Rtr =−∂t A

r A
. As Einstein’s equation requires that Rtr = 0, we deduce that A is time-independent.

Question 2

In this problem we will show that the TOV equation must be obeyed if we demand that the total energy (including the gravi-
tational contribution) is minimised when we vary ρ(r ) throughout a star of uniform entropy per particle, subject to the con-
straint that the total number of particles the same.

a) Use the method of Lagrange multipliers to show that the above statement translates into the condition that variations
of the quantity

M −λN ≡
∫ ∞

0
4πr 2ρdr −λ

∫ ∞

0
4πnr 2 A1/2dr

must be zero. Of course ρ and n vanish outside the star, so the integration limits are formal. Notation: ρ is the energy
density (divided by c2

)
,n the number density of baryons, and A is gr r from the interior stellar metric of §8.2 in the

notes:

A = (
1−2GM (r )/r c2)−1

, M (r ) =
∫ r

0
4πρr ′2dr ′

Finally, λ is the (constant) Lagrange multiplier.

b) Prove that the first order variation δ of this equation gives:

δM −λδN =
∫ ∞

0
4πr 2

[
δρ−λA1/2δn −λG A3/2

r c2 nδM

]
dr

c) For the constant entropy (adiabatic) perturbations, the first law of thermodynamics is dE =−PdV where E is the energy
within some volume V ,P is the pressure and dV is a small volume change. If particle number is conserved so that nV
also remains constant, show that δn and δρ are related by:

δn = nδρ

ρ+P/c2

d) Put all these results together and show that

δM −λδN =
∫ ∞

0
4πr 2δρ

[
1− λn A1/2

ρ+P/c2 − λG

c2

∫ ∞

r

(
4πr ′n A3/2dr ′)]dr = 0

[Hint: In the expression for δM , you will need to invert the order of integration for r and r ′. Also, they are just dummy
variables, so you are allowed to interchange their names at the end!]

e) If the result of 2d) is to hold for any δρ, show that 1/λ = F (r ), where F is a function of r, which you should determine.
But remember that λ must be constant, so that in fact dF /dr = 0! Show that this leads to the TOV equation,

dP

dr
=−G A

r 2

(
M +4πr 3P/c2)(ρ+P/c2)

[Hint: in a constant entropy star, the equation of part 2c) also holds with δn and δρ replaced by dn/dr and dρ/dr . Why
is that?]

We have thus shown that when the TOV is satisfied, the total energy is minimised for a star of constant entropy. The TOV
equation itself is valid independently of any thermodynamics: it is a direct consequence of the field equations of gravity. But
the constant entropy case allows a variational formulation for it. Notice as well that we reach the Newtonian limit in our final
equation by setting A = 1 and letting c →∞. Could we set A = 1 at the start of our derivation and reach the Newtonian limit?
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Proof. a) The metric is given by
g =−B(r )dt 2 + A(r )dr 2 + r 2 dθ2 + r 2 sin2θdϕ2

Note that the spatial volume element is given by

dV =√|gi i |dr ∧dθ∧dϕ= A1/2r 2 sinθdr ∧dθ∧dϕ

The total energy is ℳ at infinity, which is given by

M =ℳ(+∞) = 4π
∫ ∞

0
ρr 2 dr

The total number of particles is given by

N =
∫
Σ

n dV =
∫
R3

n
√|gi i |dr ∧dθ∧dϕ= 4π

∫ ∞

0
n A1/2r 2 dr

(The difference in the factor A1/2 may be due to that n is defined in the rest inertial frame...)

Now we need to minimise M while keeping N constant. By the method of Lagrange multipliers (in the form of varia-
tional calculus), we should minimise the functional

I [ρ] := M −λN =
∫ ∞

0
4πr 2ρdr −λ

∫ ∞

0
4πnr 2 A1/2dr

So the variation of I is given by
δI [ρ]

δρ
:= d

ds
I [ρ(r )+ sη(r )]

∣∣∣∣
s=0

= 0

for any η ∈ C∞
c (0,∞).

b) The variation δI of the functional I satisfies

I [ρ+ sη] = I [ρ]+δI [ρ]+o(ε)

and the variation δρ is simply sη for small s.

Let f (r,ρ) := 4πr 2
(
ρ−λA1/2(ρ,r )n(ρ,r )

)
. Then

δI =
∫ ∞

0

∂ f

∂ρ
δρdr =

∫ ∞

0
4πr 2

(
δρ−λA1/2δn −λ∂A1/2

∂ℳ
δℳ

)
dr =

∫ ∞

0
4πr 2

(
δρ−λA1/2δn −λG A3/2

r c2 δℳ
)

dr

c) The energy is given by

E =
∫

V
ρc2 dV

So the variation is given by
δE = c2(ρδV +V δρ)

By first law of thermodynamics we have

c2(ρδV +V δρ) =−PδV =⇒ δV =− V

ρ+P/c2 δρ

With nV = const, we have δn =− n

V
δV . Hence

δn = n

ρ+P/c2 δρ

d) By definition

ℳ = 4π
∫ r

0
ρr ′2 dr ′ =⇒ δℳ = 4π

∫ r

0
δρr ′2 dr ′

Hence by Fubini’s Theorem,∫ ∞

0
−4πr 2λ

G A3/2(r )

r c2 δM dr =
∫ ∞

0
−4πrλ

G A3/2(r )

c2

∫ r

0
δρ4πr ′2 dr ′ dr =

∫ ∞

0
−4πr 2δρ

λG

c2

∫ ∞

r
4πr ′n A3/2(r ′)dr ′ dr

Pietro
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Combining all results we obtain

δM −λδN =
∫ ∞

0
4πr 2δρ

(
1− λn A1/2

ρ+P/c2 − λG

c2

∫ ∞

r
4πr ′n A3/2(r ′)dr ′

)
dr = 0

e) By fundamental lemma of calculus of variations, we have

1− λn A1/2

ρ+P/c2 − λG

c2

∫ ∞

r
4πr ′n A3/2(r ′)dr ′ = 0

Hence we have a constant
1

λ
= n A1/2

ρ+P/c2 + G

c2

∫ ∞

r
4πr ′n A3/2(r ′)dr ′ =: F (r )

Finally,
d

dr

(
n A1/2

ρ+P/c2 + G

c2

∫ ∞

r
4πr ′n A3/2(r ′)dr ′

)
= 0

It is quite a painful process to compute the derivative... For the first term, we have

d

dr

(
n A1/2

ρ+P/c2

)
= d

dr

(
n

ρ+P/c2

)
A1/2 + n

ρ+P/c2

dA1/2

dr

=
dn

dr

(
ρ+ P

c2

)
−n

(
dρ

dr
+ 1

c2

dP

dr

)
(ρ+P/c2)2 A1/2 + n

ρ+P/c2

G A3/2

c2

d

dr

(
ℳ
r

)
The result in (c) shows that

dn

dr

(
ρ+ P

c2

)
= n

dρ

dr

Hence

d

dr

(
n A1/2

ρ+P/c2

)
=− n A1/2

(ρ+P/c2)2c2

dP

dr
+ n

ρ+P/c2

G A3/2

c2

d

dr

(
ℳ
r

)
=− n A1/2

(ρ+P/c2)2c2

dP

dr
+ n

ρ+P/c2

G A3/2

c2

(
1

r

dℳ
dr

− ℳ
r 2

)
=− n A1/2

(ρ+P/c2)2c2

dP

dr
+ n

ρ+P/c2

G A3/2

c2

(
1

r

d

dr

∫ r

0
4πr ′2ρdr ′− ℳ

r 2

)
=− n A1/2

(ρ+P/c2)2c2

dP

dr
+ n

ρ+P/c2

G A3/2

c2

(
4πrρ− ℳ

r 2

)
Hence we have

− n A1/2

(ρ+P/c2)2c2

dP

dr
+ n

ρ+P/c2

G A3/2

c2

(
4πrρ− ℳ

r 2

)
− G

c2 4πr n A3/2 = 0

Rearranging the expression, we obtain the TOV equation:

dP

dr
=−G A

(
ρ+ P

c2

)(
ℳ
r 2 + 4πr P

c2

)
In the Newtonian limit, A = 1 and c →∞. We obtain

dP

dr
=−Gℳρ

r 2

We cannot set A = 1 at the start, otherwise we will not obtain the dependence of ℳ in our final expression.

Question 3. Rotating, relativistic stars.

a) Do the following Exercise from §4.6 in the notes. Starting with the formal stress tensor conservation equation for an
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ideal fluid,

0 = ∂P

∂xν
+ 1

|g |1/2

∂

∂xµ
[|g |1/2 (

ρ+P/c2)UµUν

]−Γµ
νλ

(
ρ+P/c2)UµUλ

use the general expression for Γµ
νλ

to show that this may be written (more simply) as:

0 = ∂P

∂xν
+ 1

|g |1/2

∂

∂xµ
[|g |1/2 (

ρ+P/c2)UµUν

]+ (
ρ+P/c2)Uµ

∂Uµ

∂xν

b) Next, consider the case of a rotating star. The uniform rotation rateΩ= dφ/d t is assumed to be constant. On the surface
(and in the interior) of the star, the 4-velocity component Uφ = dφ/dτ=ΩU 0, where as usual U 0 = d t/dτ. There are no
other 4 -velocity Uµ components, and no t or φ dependence of the stellar structure. Show that, under these conditions,
our equation becomes

0 = ∂P

∂xν
− (
ρc2 +P

) ∂ lnU 0

∂xν

c) Work now with spatial coordinates, i , j ,k for ν. Recall that if Ai is a covariant vector, the curl operator ∇×A = ∂ j Ai −∂i A j

is also a vector, as the affine connection terms from the covariant derivatives cancel. Show that if surfaces of constant
of ρ and constant P (or any two functions at all) coincide, then (∂i P )

(
∂ jρ

)= (
∂ j P

)(
∂iρ

)
.

d) Using 3c), show that for a rotating star, surfaces of constant ρ,P, and U 0 all coincide. Viewed by an observer at infinity,
do surface clocks on a rotating neutron star run faster at the equator or the poles? Does spherical symmetry matter?

Proof. a) The Christoffel symbol is given in terms of the metric by

Γ
µ

νλ
= 1

2
gµσ

(
∂νgλσ+∂λgνσ−∂σgνλ

)
Hence

Γ
µ

νλ
UµUλ = 1

2
gµσUµUλ

(
∂νgλσ+∂λgνσ−∂σgνλ

)
= 1

2
UσUλ

(
∂νgλσ+∂λgνσ−∂σgνλ

)
= 1

2
UσUλ∂νgλσ

Note that −c2 =UλUσgλσ. We have

0 = ∂ν(−c2) = ∂ν(UλUσgλσ) =UλUσ∂νgλσ+Uλgλσ∂νUσ+Uσgλσ∂νUλ

=UλUσ∂νgλσ+2Uµ∂νUµ

Hence
Γ
µ

νλ
UµUλ =−Uµ∂νUµ

We deduce that

0 = ∂P

∂xν
+ 1

|det g |1/2

∂

∂xµ
[|det g |1/2 (

ρ+P/c2)UµUν

]+ (
ρ+P/c2)Uµ

∂Uµ

∂xν

b) The 4-velocity is given by
U= (U 0,0,0,Uϕ) =U 0(1,0,0,Ω)

We look at the third term:

Uµ
∂Uµ

∂xν
=U0

∂U 0

∂xν
+Uϕ

∂Uϕ

∂xν
= (

U0 +ΩUϕ

) ∂U 0

∂xν
= U0U 0 +UϕUϕ

U 0

∂U 0

∂xν
= −c2

U 0

∂U 0

∂xν
=−c2 ∂ lnU 0

∂xν

For the second term, since the metric is diagonal, it vanishes automatically for ν= r,θ. For ν= 0,ϕ, we can use the fact

Pietro
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that det g , ρ and P have no dependence on xν. We have

1

|det g |1/2

∂

∂xµ
[|det g |1/2 (

ρ+P/c2)UµUν

]= (ρ+P/c2)∂µ(UµUν) =
{

(ρ+P/c2)g00∂0(U 0U 0), ν= 0

(ρ+P/c2)gϕϕΩ2∂ϕ(U 0U 0), ν=ϕ

But
−c2 =U 0U0 +UϕUϕ = (

g00 +Ω2gϕϕ
)
U 0U 0

So the fact that g00 and gϕϕ are independent of t and ϕ implies that U 0 is independent of t and ϕ. We deduce that the
second term vanishes for ν= 0,r,θ,ϕ. The equation of hydrostatic equilibrium becomes

0 = ∂P

∂xν
− (
ρc2 +P

) ∂ lnU 0

∂xν

c) For the Euclidean space R3, we know that if two scalar fields have the same surfaces of constant, then their gradient
vectors are parallel. With some similar idea we may generalise the result to the manifold. That is, ∇P = λ∇ρ for some
λ 6= 0. In terms of components this is

∇i P ·∇ jρ =∇ j P ·∇iρ

And we know that ∇i = ∂i when acting on scalar fields.

d) Assuming that P is a function of ρ. Then the surfaces of constant of P and ρ coincide. Note that the gradient vector of
P and lnU 0 are parallel as indicated by the hydrostatic equilibrium equation.

It seems that we may need some theorem like: Let N be a hypersurface of the Riemannian manifold (M , g ). There exists a
function ξ on M such that (dξ)] ∈ (Tp N )⊥ for all p ∈ N . Then ξ= const on N . I don’t know if this is correct. If we assume
this then U 0 is constant on the level sets of P . So the surfaces of constant of P , ρ and U 0 coincide.

U 0 measures the local time dilation effect. On the surface of the rotating star, P = const. Hence U 0 = const. In other
words, the time dilation effect is uniform on the surfaec of the neutron star. This result does not require the rotating
star to be spherically symmetric.

Question 4. Explicit degenerate ideal gas neutron star equations.

a) Show that the differential equations for a star neutron star with a fully degenerate ideal gas equation of state are (refer
to and use §8.5 of the notes for complete background and definitions):

d t

d y
=− 4m

y2(1−2m/y)

(
sinh t −2sinh(t/2)

cosh t −4cosh(t/2)+3

)(
1+ πy3

8m
[sinh t −8sinh(t/2)+3t ]

)
dm

d y
= 3πy2

8
(sinh t − t )

The dimensionless variables m and y are defined in terms of radius r and M (mass within r ) by:

ρchar = 8πm4
nc3/3h3, r ≡ c

(
Gρchar

)−1/2 y, M ≡ c3G−3/2ρ−1/2
char m

Recall the equation of state parameterisation from the notes:

ρ(t ) = 3ρchar

32
(sinh t − t ), P (t ) = ρchar c2

32
[sinh t −8sinh(t/2)+3t ]

A neutron star model consists of picking some t = t0 at y = 0 to fix the central density ρ0 = (3/32)ρchar (sinh t0 − t0) ,
setting m = π (sinh t0 − t0) y3/8 at small y (justify!), and integrating the equations until t = 0 at some finite value of y .
This defines the outer edge of the star. A value of t0 ' 3 yields the maximum mass of 0.7M¯.

b) Take the limit t →∞ and recover the extreme relativistic TOV equation:

dρ

dr
=−4GM (r )ρ

r 2c2

(
1+ 4πρr 3

3M (r )

)(
1− 2GM (r )

r c2

)−1

Pietro

Pietro

Pietro
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Proof. a) From the notes, the parameter t is given by

t = 4arsh

(
pF

mnc

)
First we compute dP/dt :

dP

dt
= ρcharc2

32

d

dt
(sinh t −8sinh(t/2)+3t ) = ρcharc2

32
(cosh t −4cosh(t/2)+3)

Then
dP

dr
=

√
Gρchar

c

dP

dy
=

√
Gρchar

c

dP

dt

dt

dy
= dt

dy

G1/2ρ3/2
charc

32
(cosh t −4cosh(t/2)+3)

where dP/dr is given by the TOV equation:

dP

dr
=−G

(
ρ+ P

c2

)(
ℳ
r 2 + 4πr P

c2

)(
1− 2Gℳ

r c2

)−1

=−G · ρchar

8
(sinh t −2sinh(t/2)) ·

cρ1/2
char

G1/2

(
m

y2 + 1

8
πy(sinh t −8sinh(t/2)+3t )

)
·
(
1− 2m

y

)−1

=−1

8
G1/2cρ3/2

char

m

y2(1−2m/y)
(sinh t −2sinh(t/2))

(
1+ πy2

8m
(sinh t −8sinh(t/2)+3t )

)
We obtain the expression for dt/dy :

dt

dy
=− 4m

y2(1−2m/y)

(
sinh t −2sinh(t/2)

cosh t −4cosh(t/2)+3

)(
1+ πy3

8m
[sinh t −8sinh(t/2)+3t ]

)
Since

ℳ =
∫ r

0
4πr ′ρdr ′

We have
dm

dy
= y

ρchar
4π · 3ρchar

32
(sinh t − t ) = 3πy

8
(sinh t − t )

Regarding the comments in part (a), for small y we may treat t = t0 as a constant, and integrate dm/dy :

m =
∫ y

0

dm

dy
dy =

∫ y

0

3πy2

8
(sinh t0 − t0)dy = πy3

8
(sinh t0 − t0)

b) Note that in general we have

P (t ) = c2

3
(ρ(t )−8ρ(t/2))

For large t , ρ(t ) ∝ (sinh t − t ) grows like exp t . Hence ρ(t ) À ρ(t/2). In the ultra-relativistic approximation, we have

P = c2

3
ρ

Substituting into the TOV equation:

dρ

dr
= dρ

dP

dP

dr
=−3G

c2

(
ρ+ P

c2

)(
ℳ
r 2 + 4πr P

c2

)(
1− 2Gℳ

r c2

)−1

=−4Gℳρ

r 2c2

(
1+ 4πr 3ρ

3ℳ

)(
1− 2Gℳ

r c2

)−1

Pietro

Pietro


