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Remark. Personal Conventions.

The Minkowski metric is g = diag(—1,+1,+1,+1). Uppercase letters, like P and U, denote 4-vectors. Bold lowercase letters, like p
and u, denote 3-vectors. Greek letters i, v, ... take values from 0 to 4. Latin letters a, b, ... take values from 1 to 4. The bilinear form or
pseudo-inner product X*Y,, = g,,, X#Y" is denoted by g(X,Y).

Question 1

Obtain the transformation equations for 3-force, by starting from the Lorentz transformation of energy-momentum, and then
differentiating with respect to ¢'.

[Hint: argue that the relative velocity v of the reference frame is constant, and use or derive an expression for d¢/dt']

Proof. Let m be a particle moving in the inertial frame S with 3-velocity u. Let S’ be another inertial frame which has velocity v
relative to S.

Consider the Lorentz transformation of 4-momenta:
w_ gt
pH=1kpY
Taking derivative with respect to ¢':

dp'# d dr d dt _,dpPY
=— (L4pY hpY)=—1f
de' dt’( vPY)= dt’dt( ) de' v dt

in which we used dLﬁ,‘ /dt =0, because dv/dt =0 (S’ is an inertial frame).

In terms of components, we have
dp’ (ldE’ dp’ ) (ldE’ )7 dP _(ldE f)
cde’de’) \cde” )’® dr \cdr’
where ' and f are the 3-force acting on m in the frame S’ and S respectively.

Let 3 :=v/c. The Lorentz transformation in components:

1dE’  dr 1dE
(a2

car dr'\cdr
dt BdE
f=—vy,|f-
ar " ( dt) 2
MSS Sose
Let 7 be the proper time of the particle. Then y ov ""‘U's* Ra\le

de _drdr _yu go.c\’bﬂ Qg Y Q&\, Re way

dr —drdf  yu

From Question 2 of Sheet 2 we have v TRe ‘\‘f\m-w% 43 g.L
) E?I/ aQAo &33% g'a N

Yw =YuYv ( Tz
H
ence . 1 . BdE gw Lobo e | asle \Rowe
_l—u-v/cz( c dt)

Now we suppose that the rest mass is fixed: dm/d¢ = 0. We have the invariant

1dE dE
0.9 =iy () = (w7

,dm

In the (instantaneous) rest frame of m we have g(U, F) = —c¢ ar =0. Hence

dE
— —u-f
ar "
We obtain the transformation of 3-forces:
_f-v(u-f/c?

1-u-v/c?


Pietro

Pietro

Pietro


Question 2
Consider motion under a constant force, for a non-zero initial velocity in an arbitrary direction, as follows:
(i) Write down the solution for p as a function of time, taking as initial condition p(0) =
(ii) Show that the Lorentz factor as a function of time is given by yz =1+ a? where a = (po + ft) /mc
(iii) You can now write down the solution for v as a function of time. Do so.
(iv) Now restrict attention to the case where pg is perpendicular to f. Taking the x-direction along f and the y-direction along

Po, show that the trajectory is given by

¢ 12
x=7 (m*c* + p3 + f2t*)"'" + const

y= }70 log(ft+\/m202+p +f2t2)+c0nst

where you may quote that [ (a?+2)"/* dt = log(t +vVa*+ tz)

(v) Explain (without carrying out the calculation) how the general case can then be treated by a suitable Lorentz transfor-
mation. [N.B. the calculation as a function of proper time is best done another way, see later problems. ]

Proof. (i) From f:=dp/d¢, by integration we have
p=po+ft

for constant 3-force f.
(ii) Byinvariance of 4-momentum, we have

v _ o+t Ya
Ymict = =p*ct + m*ct = - s = a?

Hence y*> = 1 + a?.

(iii) Sincey? = (1-v%/¢?)”", we have

/ c||po+fe||
Y ““2 \/1+a2 Vmze? + [po+ ] \/
Hence

¢(po +ft)
\/m2c2+ I po + £z

From (iii) and the chosen directions we have

cft c
Uy = f ; vy = Po

; ¥
\/m2c? + pi + f21? \/m?c? + pi + f21?

The remaining issue are some simple integrations:

fvxdt—f f d(f?t®) = - \/m202+p0+f2t2+const
‘/m262+p +f2t2 “2f \/m202+p +f2e?
y= fvydt—f Cpof d(fr = log(ft+\/m202+p + 212

m2c? + p(z) + f21?
(iv) I assume that the "general case" is when the angle 6 between the initial 3-momentum py and the constant 3-force f is
arbitrary.

wexa. WNQA ) O
L" an Ren J

+ const

m202+p +f2t2
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Question 3

For motion under a pure (rest mass preserving) inverse square law force f = —ar/r3, where a is a constant, derive the energy
equation ymc? — a/r = constant.

dE
Proof. This problem is essentially classical. From Question 1 we have Fri u-f. The central force has potential V given by

rd r
Note that
u f__dr VV__dx“ 6V__dV
T © o dt axe dt
Hence
d_E__i(_z)
dr  dr\ r

where E = ymc? is the only relativistic thing in this problem. Integrating the expression we find that /

}/mc2 —a/r =const

Question 4

Prove that the time rate of change of the angular momentum L = r A p of a particle about an origin O is equal to the couple r A f
of the applied force about O.

If L*V is a particle’s 4-angular momentum, and we define the 4-couple G*¥ = X#FY— XV FH, proxqs/éat (d/dt)L* = G*, and
that the space-space part of this equation corresponds to the previous 3-vector result.

Proof.
dL dr dp
— == +rA— =vAp+rAf=raf
dr _dr PTG TYARTEALEY
where v A p =0 because v and p are linearly dependent. /
For the 4-angular momentum,
dar#v  d dx# dxv dpv dpH
= — (XHPY - XVPH)= | —PpY - = pH| 4| XH— XV —
dr dr ( ) dr dr ) ( dr dr )
=mU*UY-U"U" + X*FY - X"F*) = XFF¥ - X" F*
The spatial parts of these equations are given by
dL* Gab
dr
Applying Hodge dual operator on both sides we obtain
d o o d P - dL
EsiijlP] = EiijlF] - &EiijlP] = Eiijlf] - a =rAf
which is consistent with the result above.
Question 5

Show that two of Maxwell’s equations are guaranteed to be satisfied if the fields are expressed in terms of potentials A and ¢
such that

B=VAA

e (3]
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(i) Express the other two of Maxwell’s equations in terms of A and ¢.

(ii) Introduce a gauge condition to simplify the equations, and hence express Maxwell’s equations in terms of 4-vectors,
4-vector operators, and Lorentz scalars (a manifestly covariant form).

Proof. In differential geometry, the exterior differential d is an operator defined on the exterior algebra. By Poincaré’s Lemma,

d: /\k (M) — /\k+1 (M) satisfies d? = 0. In vector calculus this corresponds to divcurl = 0 and curlgrad = 0. /
1
From the expression of electromagnetic potentials we have -\’Q«{. O S wre M& L 9 S
. \e
V-B=V-(VAA) =0 5,&:\?% @em&e Joo "ﬁ '

Qlﬁ-\-"saw CDMQA;V\Q‘\" Qs sg
OB Se~vanves, B omanite

E '-\Dolwxw:é Q;euwwo_ \S

and

V/\E—V/\(—G—A—V(,b)——i(VAA)—V/\V(p——
- ot oot B

These are the second and the third Maxwell equations respectively. "o oo @aW; c le X &u(r\___ 5
(i) The first equation: - &‘Q\ _ A e(P—I\, "
L
vE=L = —g(vA)—vz(p:ﬁ TR comtenie, W& s =2,
\/ ‘ ' 2 0 vS ’\'m\l‘-aQ,
— (ia__vz)¢_i(v.A+ i@_(/)) _r
c? or? ot c2ar) g

The fourth equation:

. OE 2 ] 0 (0A
\/ VAB = poj+eopo 5 = V(V-A) = VA= poj —eoto 5| 5+ V¢

ot
2
- (ia__vz

A+V
c2 or?

VA+la—¢)— j
62 Ot _IJ'O]

(ii) We choose the Lorenz gauge
10¢p
c2 ot

(162 1 62 \/

20 w2l P 29 w2lA= i
c? or? V)([) g’ (020t2 V)A HoJ

V-A+ 0

Then the two equations above become

Now we introduce the 4-current J = (pc, j) and the 4-potential A = (¢p/c,A). The continuity equation of charge becomes

op
=V:-7— — = 13
0=V:j-= =0,/

The Lorenz gauge becomes
L% \/
0=V-A+—— =09,A
c2or M

The Maxwell equations become

1 0
(__ _vZ) AH = 'uojl“

c? 0t?
which is equivalent to \/

Moy A" =—poJ”
The corresponds form in terms of components of covectors:

aﬂauAv =—uoly
We can define the electromagnetic field tensor components:

Fyy =0, Ay —0, Ay,
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Then applying the Lorenz gauge we have
0HF,y =0" (0, Ay -0y Ay) =010, Ay - 0,0 Ay =0%0, A,

The Maxwell equations become
a'uF;w =—poly

We can take this one step further to make it coordinate-independent. Then it is surely covariant under Lorentz trans-
formations!

The electromagnetic potential defines a 1-form A = A, dx* on the Minkowski space, whose exterior differential is given
by
1 1
See fove dA =0, Ay A dx" = 20 Ay = Oy Ap)dx Adx” = 2 it nd” =:F

>< By Poincaré’s Lemma, we have
T T dF =d’A=0

Now we introduce the Hodge dual operator defined on the exterior algebra such that % : A (M) — AR (M) satisfies
AAw={(*x1,w)c, where M = (R?, g) is the Minkowski spacetime, A € A (M), w e A**(M), and o = cdt Adx A dyndz.
In particular we have

. ) 1 o
* (dx’1 /\---Adx”‘) = 7= k)'E”""’“””l"'l“dx,-k+1 A Adxg, (summation over {0,1,2,3})

where £/ is the Levi-civita symbol in 4 dimensions.
Now we compute d x F:
]' v
dxF= Ed*(Fmdx” Adx")
1
= Zd (Fuve""P?dxp A dxo)
1
= A—l6,1F,“,£"W’D‘7dx7L Adx, Adx,
1
= ZGAF,WE'“VPUg’”de ANdx, Adxy
1
= ZaAFyvg'uv'oggerng/h * (dx)
1 A
= 201Fu -2(556; —5;5#) ¢ % (dx")
1
=5 (0HFyy % (dx") — 0" Fpyy x (dx*))
= 01 Fjy # (dx")

=—UoJy * (dxv)
=—po*J

where J := J,dx".

We obtain the Maxwell equations which describe the current 1-form and electromagnetic field 2-form on the Minkowski

spacetime:
dF =0, d*F:—/,t()*J \/ O

Question 6

How does a 2nd rank tensor change under a Lorentz transformation? By transforming the field tensor, and interpreting the
result, prove that the electromagnetic field transforms as

E| =E B| =B
E| =y(EL +VAB) B, =y(BL-VAE/c?)
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[Hint: you may find the algebra easier if you treat E and B separately. Do you need to work out all the matrix elements, or can
you argue that you already know the symmetry?]

Find the magnetic field due to a long straight current by Lorentz transformation from the electric field due to a line charge.

Proof. Let L be a Lorentz transformation. The transformation of the electromagnetic field tensor F is given by

ngL;FpU iﬁua@a .PQC?QQ vse
.]: ""0 ble».o\-e 4&"\:

In this matrix form, this is given by F = LELT where F,, := FFV.

Informally, we can derive the transformation rules when the 3-velocity v is aligned with x-direction, and then argue that the
general case follows similarly. Then we have

0 Exlc Eylc E;lc Yy By 0 0
F= —Ex/c 0 B, -By = -By 1y 0 O
-Eylc -B; 0 By | 0 0 10
-E/c B, -By 0 0 0 01
Yy By 0 O 0 Exlc Eylc E;lc Yy By 0 0
IFL-! = -By vy 0 Of|-Ex/c 0 B, -By||-By vy 0 0
0 0 1 Of|-Ey/lc -B; 0 By 0 0 1 0
0 0 0 1)\-E./c By —By 0 0 0 0 1
Yy By 0 O —-PByEx/c YEx/c Eylc Elc
|=-Br vy 00 —YEx/c ByEy/c B, -By
1o 0 1 Of| yEy/lc+pyB. PByEylc—yB, 0 By
0 0 0 1)\-yvE:/c-pyBy PyE./c+yBy, -—By 0
0 Y?*Exlc—p?y*Exlc  YE,/c—PyB,  YE.lc+pyB,
_ | B*Y*Exlc—y*Exlc 0 —-BYEylc+yB; —PyE;/c-yBy
| -YE,/c+ByB: BYEy/c—YB, 0 By
—YE./c— ByBy BYE:/lc+yB) —By 0
0 Exlc Y(Ey—=PBBz)lc  y(E./c+BBy)
B E.lc 0 Y(Bz—PBEy/c) —y(By+pE;/c)
Y(Ey—BB;)lc —y(B,—-BEy/c) 0 B,
—Y(E./c+pBy) y(B,—BEy/c) —B, 0
Hence
E.=E, E,=y(E,-vB,) E,=y(E.+VB))
By = By By =y(By +VE,/c? B.=y(B,—vE,/c®)
The general forms are:
E/=E B/=B /
E, =y(EL+VAB) B, =y(BL-VAE/c?)
By Gauss’ Theorem, the electric field of a line charge A is given by
%? ! g- %
. = e
,7\10 7\\3' 27rey r
The curren where v = ve,(can be regarded as)the velocity of the moving charges. We transform to the frame where
the charges are stationary. By the transformation rules above, we have
~ ~ YvA I
B/=B,=0, B, =y(B.-VAE/®)=—"—e,ne =
4 " L Y( L7V ¢ ) 2nreyc? CzNer 27r o €
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Question 7

The electromagnetic field tensor F*V (sometimes called the Faraday tensor) is defined such that the 4-force on a charged
particle is given by

f*=qF*U,
By comparing this to the Lorentz force equation
F=gE+VAB)

which defines the electromagnetic and magnetic fields (keeping in mind the distinction between dp/dt and dP*/dt), show
that the components of the field tensor are

0 Exlc Eylc Eglc
—E,lc 0 B, —-By
—-Eylc -B; 0 By
—E;/c By —By 0

FHY =

. dp dp 1d% 1 o dx .
Proof. The 4-force is f = e =vy|-—,F| =y|-v-FF|. The 4-velocity is U = — = v(c,v). Hence the equation
c

T_YE_ c dt dr ZYE
fH*=qF* U, leads to

%v~F =q(~cF® + v,F*?)
f*=q (—CF“0 + va“b)
where f¢ is the component of F rather than f. From F = g(E + v A B), we have
fo= q(Ea +EabcvbBc)

and
v-F=gv-E=qu,E*

Comparing the two sets of equations we have

—cF% 4 y,F% = y,E¢
—cF™ 4 v, F% = B + £%%¢ ) B,
Therefore F% = 0, F° = E, and F® = ¢*°B,. The matrix of F is given by
0 Eylc Eylc Elc
~EgJc 0 B, -By

~Ey/c -B, 0 By
~EJ/c By -By 0

Question 8

Show that the field equation
02 F" = —popoU”
is equivalent to
0"0r A~ 0" (0,4") = —pioJ”

where JV = poU"” (here py is the proper charge density, and JV is the 4-current density). Comment.
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Proof. The equation follows from the definition of the electromagnetic field tensor
FHV .= gFAY — §¥ AH

See Question 5 for a detailed discussion.

Question 9
Show that the following two scalar quantities are Lorentz invariant:
D=B*-F?*/c?
a=B-E/c
[Hint: for the second, introduce the dual field tensor ﬁﬂv = %e,m( 1F KA ]

Show that if « = 0 but D # 0 then either there is a frame in which the field is purely electric, or there is a frame in which the
field is purely magnetic. Give the condition required for each case, and find an example such frame (by specifying its velocity
relative to one in which the fields are E, B). Suggest a type of field for which both « =0 and D = 0.

Proof. D is obtained by contracting the contravariant and covariant electromagnetic field tensors:

0 Exlc Eylc Elc 0 —Ex/lc —-Eylc -E;lc
FHY Z = —-E.lc 0 B, -By Fo—F = E.lc 0 B, -By
-Eylc -B, 0 By | v Eylc  —B; 0 By
—-Ezlc By, —Bx 0 E;lc By —By 0
E, 0 B, -B,
LetE=|E,|and B =|-B; 0 By |. Then
E, B, -Bx 0

T T
F’”Fuvztr(FTF’)ztr(( 0 E /c)( 0 E /c))

E/lc -9% J\Elc B
B (BE)" /¢

" \-BE/c -EE'/c*-R?
=—E?/c? +tr(~EE'/c?) - tr (#?)

, E2  E.E, E.E, B3 +B: —-BxB, —B:B;
B 2 2 2
T2 ;tr ExEy Ey EyE.|+tr| -ByBy By+B; -ByB;
ExE; EyE, E2 —BxB; —ByB; BJZC+BJZ/ /
2E? 2
= — — +2B“=2D
C

Hence D is a scalar invariant.

Next we consider the Hodge dual (see Question 5) of the electromagnetic field tensor:

0 By By B,
1 -B 0 —-E,lc E,lc 0 BT

*xF = - FPY = x Z y :( )

OBy g Euveo -B, Elc 0 —E /¢ -B -%Jc

-B; -—Eylc Exlc 0

B, 0 E, -E,
whereB=|By|and & = | -E, 0 E, |. Then
B, E, -Ex 0

0 —ET/c)(O B! ))_tr(E-B/c —(%E)T/cz)
Elc -% J\-B -&lIc/]] "\ BB EB"/c+RB&Ic

. /

E-B 1 1 4E
= — +- (BB + - tr(BE) = —— =4a
c Cc c

FHY(%F) py = tr((
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Now suppose that @ = 0 and D # 0. Then E and B are orthogonal in any inertial frame. We can first apply a spatial rotation
such that E = Ee, and B = Bey, after rotation. Now consider a Lorentz boost with v = ve,. By the transformation rules given
in Question 6, we find that

4a is the contraction of a rank 2 contravariant tensor with a rank 2 covariant tensor. Hence « is a scalar invariant. \/

E=y,(E-Bvle,, B=y,(B-Evicde,

If D >0, then E/B < c¢. We take v = E/B. Then E = 0, and the transformed field is purely magnetic. If D <0, then E/B > c. We
take v = ¢c>B/E. Then B = 0, and the transformed field is purely electric.

An example of the field with a = 0 and D = 0 is the electromagnetic plane wave in vaccum: /

w
E=Ecos(kz—wt)ey, B =Eccos(kz—wr)ey, k=—e;
c
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