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Remark. Personal Conventions.

The Minkowski metric is g = diag(−1,+1,+1,+1). Uppercase letters, like P and U , denote 4-vectors. Bold lowercase letters, like p
and u, denote 3-vectors. Greek letters µ,ν, ... take values from 0 to 4. Latin letters a,b, ... take values from 1 to 4. The bilinear form or
pseudo-inner product X µYµ = gµνX µY ν is denoted by g (X ,Y ).

Question 1

Obtain the transformation equations for 3-force, by starting from the Lorentz transformation of energy-momentum, and then
differentiating with respect to t ′.

[Hint: argue that the relative velocity v of the reference frame is constant, and use or derive an expression for dt/dt ′]

Proof. Let m be a particle moving in the inertial frame S with 3-velocity u. Let S′ be another inertial frame which has velocity v
relative to S.

Consider the Lorentz transformation of 4-momenta:

P ′µ = LµνPν

Taking derivative with respect to t ′:

dP ′µ

dt ′
= d

dt ′
(
LµνPν

)= dt

dt ′
d

dt

(
LµνPν

)= dt

dt ′
Lµν

dPν

dt

in which we used dLµν/dt = 0, because dv/dt = 0 (S′ is an inertial frame).

In terms of components, we have

dP ′

dt
=

(
1

c

dE ′

dt ′
,

dp′

dt ′

)
=

(
1

c

dE ′

dt ′
, f′

)
,

dP

dt
=

(
1

c

dE

dt
, f

)
where f′ and f are the 3-force acting on m in the frame S′ and S respectively.

Let β := v/c. The Lorentz transformation in components:

1

c

dE ′

dt ′
= dt

dt ′
γv

(
1

c

dE

dt
−β · f

)
;

f′ = dt

dt ′
γv

(
f− β

c

dE

dt

)
Let τ be the proper time of the particle. Then

dt

dt ′
= dt

dτ

dτ

dt ′
= γu

γu′

From Question 2 of Sheet 2 we have

γu′ = γuγv

(
1− u ·v

c2

)
Hence

f′ = 1

1−u ·v/c2

(
f− β

c

dE

dt

)
Now we suppose that the rest mass is fixed: dm/dt = 0. We have the invariant

g (U ,F ) = γ(c,u) ·γ
(

1

c

dE

dt
, f

)
= γ2

(
u · f− dE

dt

)

In the (instantaneous) rest frame of m we have g (U ,F ) =−c2 dm

dt
= 0. Hence

dE

dt
= u · f

We obtain the transformation of 3-forces:

f′ = f−v(u · f)/c2

1−u ·v/c2
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Question 2

Consider motion under a constant force, for a non-zero initial velocity in an arbitrary direction, as follows:

(i) Write down the solution for p as a function of time, taking as initial condition p(0) = p0

(ii) Show that the Lorentz factor as a function of time is given by γ2 = 1+α2 whereα= (
p0 + ft

)
/mc

(iii) You can now write down the solution for v as a function of time. Do so.

(iv) Now restrict attention to the case where p0 is perpendicular to f. Taking the x-direction along f and the y-direction along
p0, show that the trajectory is given by

x = c

f

(
m2c2 +p2

0 + f 2t 2)1/2 +const

y = cp0

f
log

(
f t +

√
m2c2 +p2

0 + f 2t 2

)
+const

where you may quote that
∫ (

a2 + t 2
)−1/2

d t = log
(
t +

p
a2 + t 2

)
(v) Explain (without carrying out the calculation) how the general case can then be treated by a suitable Lorentz transfor-

mation. [N.B. the calculation as a function of proper time is best done another way, see later problems. ]

Proof. (i) From f := dp/dt , by integration we have
p = p0 + ft

for constant 3-force f.

(ii) By invariance of 4-momentum, we have

γ2m2c4 = E 2 = p2c2 +m2c4 =⇒ γ2 −1 = p2

m2c2 =
∥∥p0 + ft

∥∥2

m2c2 =α2

Hence γ2 = 1+α2.

(iii) Since γ2 = (
1− v2/c2

)−1
, we have

v = c

√
1− 1

γ2 = c

√
1− 1

1+α2 = cαp
1+α2

= c
∥∥p0 + ft

∥∥√
m2c2 +∥∥p0 + ft

∥∥2

Hence

v = c
(
p0 + ft

)√
m2c2 +∥∥p0 + ft

∥∥2

From (iii) and the chosen directions we have

vx = c f t√
m2c2 +p2

0 + f 2t 2
; vy = cp0√

m2c2 +p2
0 + f 2t 2

The remaining issue are some simple integrations:

x =
∫

vx dt =
∫

c f t√
m2c2 +p2

0 + f 2t 2
dt = c

2 f

∫
1√

m2c2 +p2
0 + f 2t 2

d( f 2t 2) = c

f

√
m2c2 +p2

0 + f 2t 2 +const;

y =
∫

vy dt =
∫

cp0√
m2c2 +p2

0 + f 2t 2
dt = cp0

f

∫
1√

m2c2 +p2
0 + f 2t 2

d( f t ) = cp0

f
log

(
f t +

√
m2c2 +p2

0 + f 2t 2

)
+const

(iv) I assume that the "general case" is when the angle θ between the initial 3-momentum p0 and the constant 3-force f is
arbitrary.
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Question 3

For motion under a pure (rest mass preserving) inverse square law force f =−αr/r 3, where α is a constant, derive the energy
equation γmc2 −α/r = constant.

Proof. This problem is essentially classical. From Question 1 we have
dE

dt
= u · f. The central force has potential V given by

f =−αr

r 3 =−∇
(
−α

r

)
=−∇V

Note that

u · f =−dr

dt
·∇V =−dxa

dt

∂V

∂xa =−dV

dt

Hence
dE

dt
=− d

dt

(
−α

r

)
where E = γmc2 is the only relativistic thing in this problem. Integrating the expression we find that

γmc2 −α/r = const

Question 4

Prove that the time rate of change of the angular momentum L = r∧p of a particle about an origin O is equal to the couple r∧f
of the applied force about O.

If Lµν is a particle’s 4-angular momentum, and we define the 4-couple Gµν ≡ X µFν− X νFµ, prove that (d/dτ)Lµν =Gµν, and
that the space-space part of this equation corresponds to the previous 3-vector result.

Proof.
dL

dt
= dr

dt
∧p+ r∧ dp

dt
= v∧p+ r∧ f = r∧ f

where v∧p = 0 because v and p are linearly dependent.

For the 4-angular momentum,

dLµν

dτ
= d

dτ

(
X µPν−X νPµ

)= (
dX µ

dτ
Pν− dX ν

dτ
Pµ

)
+

(
X µ dPν

dτ
−X ν dPµ

dτ

)
= m(UµUν−UνUµ)+ (X µFν−X νFµ) = X µFν−X νFµ

=Gµν

The spatial parts of these equations are given by
dLab

dτ
=Gab

Applying Hodge dual operator on both sides we obtain

d

dτ
εi j k X i P j = εi j k X i F j =⇒ d

dt
εi j k X i P j = εi j k X i f j =⇒ dL

dt
= r∧ f

which is consistent with the result above.

Question 5

Show that two of Maxwell’s equations are guaranteed to be satisfied if the fields are expressed in terms of potentials A and φ

such that

B =∇∧A

E =−
(
∂A

∂t

)
−∇φ

Pietro

Pietro



4

(i) Express the other two of Maxwell’s equations in terms of A and φ.

(ii) Introduce a gauge condition to simplify the equations, and hence express Maxwell’s equations in terms of 4-vectors,
4-vector operators, and Lorentz scalars (a manifestly covariant form ).

Proof. In differential geometry, the exterior differential d is an operator defined on the exterior algebra. By Poincaré’s Lemma,
d :

∧k (M) →∧k+1(M) satisfies d2 = 0. In vector calculus this corresponds to divcurl = 0 and curlgrad = 0.

From the expression of electromagnetic potentials we have

∇·B =∇· (∇∧A) = 0

and

∇∧E =∇∧
(
−∂A

∂t
−∇φ

)
=− ∂

∂t
(∇∧A)−∇∧∇φ=−∂B

∂t

These are the second and the third Maxwell equations respectively.

(i) The first equation:

∇·E = ρ

ε
=⇒ − ∂

∂t
(∇·A)−∇2φ= ρ

ε0

=⇒
(

1

c2

∂2

∂t 2 −∇2
)
φ− ∂

∂t

(
∇·A+ 1

c2

∂φ

∂t

)
= ρ

ε0

The fourth equation:

∇∧B =µ0j+ε0µ0
∂E

∂t
=⇒ ∇(∇·A)−∇2A =µ0j−ε0µ0

∂

∂t

(
∂A

∂t
+∇φ

)
=⇒

(
1

c2

∂2

∂t 2 −∇2
)

A+∇
(
∇·A+ 1

c2

∂φ

∂t

)
=µ0j

(ii) We choose the Lorenz gauge

∇·A+ 1

c2

∂φ

∂t
= 0

Then the two equations above become(
1

c2

∂2

∂t 2 −∇2
)
φ= ρ

ε0
,

(
1

c2

∂2

∂t 2 −∇2
)

A =µ0j

Now we introduce the 4-current J = (ρc, j) and the 4-potential A = (φ/c,A). The continuity equation of charge becomes

0 =∇·j− ∂ρ

∂t
= ∂µ Jµ

The Lorenz gauge becomes

0 =∇·A+ 1

c2

∂φ

∂t
= ∂µAµ

The Maxwell equations become (
1

c2

∂2

∂t 2 −∇2
)

Aµ =µ0 Jµ

which is equivalent to
∂µ∂µAν =−µ0 Jν

The corresponds form in terms of components of covectors:

∂µ∂µAν =−µ0 Jν

We can define the electromagnetic field tensor components:

Fµν := ∂µAν−∂νAµ
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Then applying the Lorenz gauge we have

∂µFµν = ∂µ(∂µAν−∂νAµ) = ∂µ∂µAν−∂ν∂µAµ = ∂µ∂µAν

The Maxwell equations become
∂µFµν =−µ0 Jν

We can take this one step further to make it coordinate-independent. Then it is surely covariant under Lorentz trans-
formations!

The electromagnetic potential defines a 1-form A= Aµdxµ on the Minkowski space, whose exterior differential is given
by

dA= ∂µAνdxµ∧dxν = 1

2
(∂µAν−∂νAµ)dxµ∧dxν = 1

2
Fµνdxµ∧dxν =: F

By Poincaré’s Lemma, we have
dF= d2A= 0

Now we introduce the Hodge dual operator defined on the exterior algebra such that ? :
∧k (M) → ∧4−k (M) satisfies

λ∧ω= 〈?λ,ω〉σ, where M = (R4, g ) is the Minkowski spacetime, λ ∈ ∧k (M), ω ∈ ∧4−k (M), and σ= cdt ∧dx ∧dy ∧dz.
In particular we have

?
(
dxi1 ∧·· ·∧dxik

)
= 1

(4−k)!
εi1···ik ik+1···i4 dxik+1 ∧·· ·∧dxi4 (summation over {0,1,2,3})

where εi1···i4 is the Levi-civita symbol in 4 dimensions.

Now we compute d?F:

d?F= 1

2
d?

(
Fµνdxµ∧dxν

)
= 1

4
d

(
Fµνε

µνρσdxρ ∧dxσ
)

= 1

4
∂λFµνε

µνρσdxλ∧dxρ ∧dxσ

= 1

4
∂λFµνε

µνρσgλτdxτ∧dxρ ∧dxσ

= 1

4
∂λFµνε

µνρσετρσηgλτ? (dxη)

= 1

4
∂λFµν ·2

(
δ
µ
τδ

ν
η−δντδµη

)
gλτ? (dxη)

= 1

2

(
∂µFµν? (dxν)−∂νFµν? (dxµ)

)
= ∂µFµν? (dxν)

=−µ0 Jν? (dxν)

=−µ0?J

where J := Jνdxν.

We obtain the Maxwell equations which describe the current 1-form and electromagnetic field 2-form on the Minkowski
spacetime:

dF= 0, d?F=−µ0?J

Question 6

How does a 2nd rank tensor change under a Lorentz transformation? By transforming the field tensor, and interpreting the
result, prove that the electromagnetic field transforms as

E′
‖ = E‖ B′

‖ = B‖
E′
⊥ = γ (E⊥+v∧B) B′

⊥ = γ(
B⊥−v∧E/c2)
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[Hint: you may find the algebra easier if you treat E and B separately. Do you need to work out all the matrix elements, or can
you argue that you already know the symmetry?]

Find the magnetic field due to a long straight current by Lorentz transformation from the electric field due to a line charge.

Proof. Let L be a Lorentz transformation. The transformation of the electromagnetic field tensor F is given by

F̃µν = LµρLνσFρσ

In this matrix form, this is given by F = LFLT where Fµν := Fµν.

Informally, we can derive the transformation rules when the 3-velocity v is aligned with x-direction, and then argue that the
general case follows similarly. Then we have

F =


0 Ex /c Ey /c Ez /c

−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0

 , L =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1



LFL−1 =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1




0 Ex /c Ey /c Ez /c
−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1



=


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1




−βγEx /c γEx /c Ey /c Ez /c
−γEx /c βγEx /c Bz −By

γEy /c +βγBz βγEy /c −γBz 0 Bx

−γEz /c −βγBy βγEz /c +γBy −Bx 0



=


0 γ2Ex /c −β2γ2Ex /c γEy /c −βγBz γEz /c +βγBy

β2γ2Ex /c −γ2Ex /c 0 −βγEy /c +γBz −βγEz /c −γBy

−γEy /c +βγBz βγEy /c −γBz 0 Bx

−γEz /c −βγBy βγEz /c +γBy −Bx 0



=


0 Ex /c γ(Ey −βBz )/c γ(Ez /c +βBy )

Ex /c 0 γ(Bz −βEy /c) −γ(By +βEz /c)
γ(Ey −βBz )/c −γ(Bz −βEy /c) 0 Bx

−γ(Ez /c +βBy ) γ(Bz −βEy /c) −Bx 0


Hence

Ẽx = Ex Ẽy = γ(Ey − vBz ) Ẽz = γ(Ez + vBy )

B̃x = Bx B̃y = γ(By + vEz /c2) B̃z = γ(Bz − vEy /c2)

The general forms are:

Ẽ//= E// B̃//= B//

Ẽ⊥ = γ (E⊥+v∧B) B̃⊥ = γ(
B⊥−v∧E/c2)

By Gauss’ Theorem, the electric field of a line charge λ is given by

E = λ

2πrε0
er

The current I = γλv where v = vez can be regarded as the velocity of the moving charges. We transform to the frame where
the charges are stationary. By the transformation rules above, we have

B̃//= B//= 0, B̃⊥ = γ(
B⊥−v∧E/c2)= γvλ

2πrε0c2 ez ∧er = I

2πrµ0
eθ
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Question 7

The electromagnetic field tensor Fµν (sometimes called the Faraday tensor) is defined such that the 4-force on a charged
particle is given by

f µ = qFµνUν

By comparing this to the Lorentz force equation

F = q(E+v∧B)

which defines the electromagnetic and magnetic fields (keeping in mind the distinction between dp/d t and dPµ/dτ) , show
that the components of the field tensor are

Fµν =


0 Ex /c Ey /c Ez /c

−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0



Proof. The 4-force is f = dP

dτ
= γ

dP

dt
= γ

(
1

c

dℰ
dt

,F
)
= γ

(
1

c
v ·F,F

)
. The 4-velocity is U = dX

dτ
= γ

dX

dt
= γ(c,v). Hence the equation

f µ = qFµνUν leads to

1

c
v ·F = q

(−cF 00 + vaF 0a)
f a = q

(
−cF a0 + vbF ab

)
where f a is the component of F rather than f . From F = q(E+v∧B), we have

f a = q
(
E a +εabc vbBc

)
and

v ·F = qv ·E = qvaE a

Comparing the two sets of equations we have

−cF 00 + vaF 0a = vaE a

−cF a0 + vbF ab = E a +εabc vbBc

Therefore F 00 = 0, F 0a = E a , and F ab = εabc Bc . The matrix of F is given by

F =


0 Ex /c Ey /c Ez /c

−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0



Question 8

Show that the field equation

∂λFλν =−µ0ρ0Uν

is equivalent to

∂λ∂λAν−∂ν
(
∂λAλ

)
=−µ0 Jν

where Jν ≡ ρ0Uν (here ρ0 is the proper charge density, and Jν is the 4-current density). Comment.
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Proof. The equation follows from the definition of the electromagnetic field tensor

Fµν := ∂µAν−∂νAµ

See Question 5 for a detailed discussion.

Question 9

Show that the following two scalar quantities are Lorentz invariant:

D = B 2 −E 2/c2

α= B ·E/c

[Hint: for the second, introduce the dual field tensor F̃µν = 1
2εµνκλFκλ.]

Show that if α = 0 but D 6= 0 then either there is a frame in which the field is purely electric, or there is a frame in which the
field is purely magnetic. Give the condition required for each case, and find an example such frame (by specifying its velocity
relative to one in which the fields are E,B). Suggest a type of field for which both α= 0 and D = 0.

Proof. D is obtained by contracting the contravariant and covariant electromagnetic field tensors:

Fµν = F =


0 Ex /c Ey /c Ez /c

−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0

 , Fµν = F′ =


0 −Ex /c −Ey /c −Ez /c

Ex /c 0 Bz −By

Ey /c −Bz 0 Bx

Ez /c By −Bx 0



Let E =

Ex

Ey

Ez

 and ℬ =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

. Then

FµνFµν = tr(FTF′) = tr

((
0 −ET/c

E/c −ℬ
)(

0 −ET/c
E/c ℬ

))
= tr

(−E 2/c2 (ℬE)T /c
−ℬE/c −EET/c2 −ℬ2

)
=−E 2/c2 + tr

(−EET/c2)− tr
(
ℬ2)

=−E 2

c2 − 1

c2 tr

 E 2
x Ex Ey Ex Ez

Ex Ey E 2
y Ey Ez

Ex Ez Ey Ez E 2
z

+ tr

B 2
y +B 2

z −Bx By −Bx Bz

−Bx By B 2
x +B 2

z −By Bz

−Bx Bz −By Bz B 2
x +B 2

y


=−2E 2

c2 +2B 2 = 2D

Hence D is a scalar invariant.

Next we consider the Hodge dual (see Question 5) of the electromagnetic field tensor:

(?F )µν = 1

2
εµνρσFρσ =


0 Bx By Bz

−Bx 0 −Ez /c Ey /c
−By Ez /c 0 −Ex /c
−Bz −Ey /c Ex /c 0

=
(

0 BT

−B −ℰ/c

)

where B =

Bx

By

Bz

 and ℰ =

 0 Ez −Ey

−Ez 0 Ex

Ey −Ex 0

. Then

Fµν(?F )µν = tr

((
0 −ET/c

E/c −ℬ
)(

0 BT

−B −ℰ/c

))
= tr

(
E ·B/c −(ℰE)T/c2

ℬB EBT/c +ℬℰ/c

)
= E ·B

c
+ 1

c
tr(EBT)+ 1

c
tr(ℬℰ ) = 4E ·B

c2 = 4α
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4α is the contraction of a rank 2 contravariant tensor with a rank 2 covariant tensor. Hence α is a scalar invariant.

Now suppose that α = 0 and D 6= 0. Then E and B are orthogonal in any inertial frame. We can first apply a spatial rotation
such that E = Eex and B = Bey after rotation. Now consider a Lorentz boost with v = vez . By the transformation rules given
in Question 6, we find that

Ẽ = γv (E −B v)ex , B̃ = γv (B −Ev/c2)ey

If D > 0, then E/B < c. We take v = E/B . Then Ẽ = 0, and the transformed field is purely magnetic. If D < 0, then E/B > c. We
take v = c2B/E . Then B̃ = 0, and the transformed field is purely electric.

An example of the field with α= 0 and D = 0 is the electromagnetic plane wave in vaccum:

E = E cos(kz −ωt )ex , B = Ec cos(kz −ωt )ey , k = ω

c
ez
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