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Remark. Iran out of time when doing this problem sheet. As a result, Question 4 and 6 are only partially answered.

Question 1

Find the general solutions to the ODEs

Y42y +y=1 @
y'+2y+y=H (i)
V'+2y +y=8o (i)

in 2'(R), where H is Heaviside’s function and & is Dirac’s delta-function at 0. What are the classical solutions to (i) and (ii)?

Proof. JFirst we consider the homogeneous equation
f ZLy=y"+2y'+y=0 (H)

% is alinear operator on @’ (R). For y;,y2 € Z'([R) and A1, A2 €R, L1 y1 + A2)2) =M L y1 + A L ys.
N
6L In the theory of ordinary differential equations of C?(R) functions, the next thing is to prove that dimker . = 2, a key step of
k 2

which is to invoke the Picard-Lindel6f Theorem in Part A Differential Equations I. However, I don't think it can be generalised
& h w to distributional differential equations (especially we don’t have a clear definition of an initial value problem).

’:f{) Assuming that dimker £ = 2, for any inhomogeneous problem

X b’ ! /

Ly=y"+2y'+y=u N)

where u € @'(R), the general solution is given by

Yy=yptayit+c)y2

L where y, € 2'(R) is any solution of (N), y1,y» € 2'(R) are linearly independent solutions of (H), and cj, c; € R are arbitrary
constants.

Let us solve (H) explicitly. Note that
Ly= (d—2+21+1)y= (i+1)2y
dx?  dx dx /
Letz= (i + 1) y. Then
dx

d
—+1
X

! d X X !
z2=0—=> 2 +2=0—= —(e"2)=e€e" (2 +2)=0
Yo dx

By the identity theorem for distributions we have e* z = const. Hence z is a regular distribution given by z = ¢, e™* for some
¢, € R. Next we solve

(i+1)y=z = Y ry=pe ¥t = i(e)‘y)=e"(y'+y)=02
dx dx

By the fundamental theorem of calculus for distributions, y is a regular distribution and we have e* y = cox ‘7/ for some

c1 € R. Hence the general solution to (H) is given by

y(x) = (c1 + C2x) e"‘/

1(x) =e™* and y,(x) = xe™*. The Wronskian W (x) = y1y} — 2y} = e >*.

Now we
consider

nsider the inhomogeneous problems (N). To find a particular solution,

€ the variation of parameters and

where u;, up € 2'(R) ar

To show that y, isas on to (N), first note that
- +
nythny

! !
hytupy2= W



We compute:

0

(i)

(iii)

ere [ve D' (R)is such that (f v) = vin @' ([R).

= u1yy + uzy, by Leibniz’s rule. And

Uy + Uy Y,
I /

_ YiYo =12 U=u

w

indeed a solution to (N).

ypz—e_x/xexu+xe_x/exu

Note that the regular distribution y =1 is a particular solution to equation (i). Therefore the general solution to (i) is a
regular distribution given by
Y@ =1+(c1+cox)e™

for some ¢y, ¢ € R. The solution is completely classical because it is &°°.
From the previous discussions, we need to find the primitives of the distributions xe* H, and e* H.
Note that H is given by the regular distribution H(x) = 1(9,c). We have

Avpd\
. {(x—l)ex+1, x=0 B {e"—l, x=0 AO&!X‘S Wbkt
fxe H= , fe H=
0, x<0 0, x< buk WL .

- —
Here is a quick check of the above equations:

! o0
<([xexH) ,(p>=—<fxexH,(p'>=—f0 (x—De*+1)¢'(x)dx

= f xe*pdx—((x-1)e* +1)p(x)
0

o (b is e O
/ . Yk prent YA
([ern)oy==([ema)=-[Te-vowas jwmxx dor ek

= f e“pdx—(e*-1px)
0

. w L\ R
=(e"H,¢p)

CN\‘OW.MU\S

Then the particular solution is given by \'\/\.\[\/\ .

) 1-(x+1De™, x=0
X) =
Yp 0, x<0

1+(cz—-Dxe ™ +(c;—-1e™*, x=0
yx) =

=(xe*H,¢p)

The general solution is given by

coxe *+ce ™, x<0

=(1-(x+De ™ )Hx) +(c1 +c2x) e

The general solution is still regular distribution induced by a continuous function. This distributional solug#on agree
with the classical solution everywhere except at x = 0, where the classical derivative y” does not exist.

We need to find the primitives of the distributions xe*dy, and e*dy. Note that x§y = 0 by Question 5 in Sheet 2. So



\,m& akROn ~~  pOKe X0 prowt ARy wowid cond- Y
g W pex Wk W= S :

f xe*§y is a constant function by the identity theorem, and we can set it equal to 0. Next note that
~/\/\-
(e*80, )= (b0, ) = e%(0) = ¢(0) = (60,9)

So f e*dg = f 69 = H. The particular solution is given by

a NN
Vp(x) =xe * H(x)
The general solution is given by /
yx)=xe “Hx) +(c+cx)e™™
which is a regular distribution given by a function with a jump discontinuity at x = 0. O

Question 2

The principal logarithm is defined on the cut plane C\ (—oo, 0] as
logz:=log|z| +iArg(z), Arg(z)e€ (—m,m)

Define log(x +1i0) and log(x —i0) for each ¢ € & (R) by the rules
(log(x +1i0), ) := limf log(x +ie)p(x)dx
eN0J -0

(a) Show thatlog(x +i0) hereby are distributions on R.
Now let k € N and define the distributions (x +i0) % and (x —i0) % as

(l)kl

k.
(x+i0)~ (k Dt dx —

log(x +i0) in2'W)

(b) Show that for each ¢ € 2 (R) with (p(j) (0) =0for j €{0,..., k} we have

<(xii0)7k,<p> = j:: %dx

(c) Prove that log(x +i0) — log(x — i0) = 27iH, where H is the Heaviside function. Deduce the Plemelj-Sokhotsky jump
relations:

ok -D* 4o
(x +10) (x—10)~ —an(k 1)'(5

where § is Dirac’s delta-function on R concentrated at 0.

(d) Show that
x(x+i0)'=1 inD'®)
Deduce that
(x+i0) 7! (x80) = 0 # 8 = ((x +i0) ' x) &

Next, show, for instance by using the differential operator xd% on the case k = 1 iteratively, that

Fx+ipF=1 nI'®
holds for each k € N.

Proof. (a) We need to show that log(x +i0) € 2'(R). First we show that log(x +i0) € &' (R).

* log(x +1i0) is well-defined:



We have .
\log(x+ i£)| = |log(\/ x2 4+ 82) +iArg(x+i£)| <+ > |10g(x2 + 82)|

Then

1
|<10g(x+i£),(p>| < suple(x)] limf (n + = \log(x2 + 82)| dx
xeR e\0Jsupp 2

1
f logxdx| = 27
0
Hence |<log(x + i£),<p>| < oo. It is well-defined.

In addition, the same proof also shows that
tous 0ok T

Liixll)fK|log(x+i£)|dx 0&“\' UM YV\.(Lk ﬁ&u (1N 3
is bounded on any compact set K < R. N f-{ Q\)‘QJ[\ WUU)-“-

* log(x+1i0) is linear: W$ GW
For ¢1,¢p2 € Z(R) and 11, 1, € R, we have

Qg

Note that [log(x? + £?)| is bounded on supp ¢\ [-1,1]. And

1
[ |log(x2 +£2)| dx<2+4
-1

(e @)
(log(x +10), 111 + A2p2) =£i{r(1)f log(x +ie) (A1¢p1(x) + A2¢p2(x)) dx
—00

=M limf log(x +ig)p(x)dx + Ay lim[ log(x +i€)py(x)dx
eN0J-0o eN0J—co
= A1 {log(x +10), @1 ) + A2 (log(x +10), 2 )

Hence log(x +i0) is a linear functional.
* log(x+1i0) is continuous:

Suppose that {¢,} € D (R) and ¢ € D (R) such that ¢, — ¢ in D (R). Let K <R be a compact set such that
supp @, supp ¢ < K. We have

|(log(x +10), ¢, ) — (log(x +1i0), )| = 21;1{% U log(x +i€) (@n(x) — p(x)) dx

< - li 1 ie)| d

<ou =@l tim [ flogtx+ie)] x <X
7;!”—<P||OOM(K)—»0 ok \0. ’

as @ — 9|, — 0. Hence log(x +i0) is continuous. w\/\o.k S aj@d

We deduce that log(x +i0) € 2’ (R). Similarly log(x —i0) € 2’ (R). /\/ M v

(b) First we note that there is a complex version of integration by parts. Suppose that f(x) = u(x) +iv(x) where u, v are
differentiable real-valued functions. Then for ¢ € & (R)

ff(x)(p’(x)dx:fu(x)(p’(x)dx+if v(x)(p’(x)dxz—f u’(x)(p(x)dx—if v’(x)(p(x)dxz—ff’(x)(p(x)dx
R R R R R R

Second, note that

k k
o7 loglrie) = ——logz =DM k- xieF

z=x+ie

Then for ¢ € D (R),

. (kL gk (-Dk
(Ce£in)*,¢) = <(k e klog(x+10) (p> <(k_1), log(x +10), (~1)Fp®

— (k)




(©

(d)

( 1)k+1
(k-1 e\of dx klOg(x+1€)<P(x)dx

@(x)
=lim
eN0Jr (x i)k

For sufficiently small € > 0, there exists C > 0 such that

@(x)
xk

p(x)
(x+ie)k|

/

Since ¢/ (0) = 0 for j < k, we use the 'Hoptial’s rule k times and find

P
hn% (p(f) — lim ) k'(x) _0/
x—» x—»
* Nl .

is bounded near x = 0. Since supp ¢ is compact, the function is integrable over R. By Dominated Conver-

ok _ @(x) @(x) (p(x)
<(xi10) N7 > ll\o R—(x+1€)kd = [RE\O(x+1£)kdx Tk dx /

Hence M
xk

gence Theorem,

Fore >0,

. 1 22y, €
log(x i) = Elog(x +¢€ )ilarctan;

Then c
log(x +ie) —log(x —ie) = 2iarctan :

For x > 0, lim2iarctan £_ 0; for x < 0, lim2iarctan £_ 27i.
e\\0 X e\\0 X
Then for ¢ € D (R),
(log(x +i0) —log(x —i0), ) = li{r(l)f (log(x +ie) —log(x —ie)) p(x) dx
eNOJR
=2ilim f arctan f(p(x) dx
eNO0JRrR X

€
=2i | limarctan —¢(x)dx (bounded convergence theorem)
REN0 X

0
= sz @(x)dx = 27i(H,¢)

where H is the distribution such that { H,(x)) = ( H,(-x) ) for ¢ € @ (R). We deduce that log(x+i0) —IVZMFI.

Taking the distributional derivative k times, we have
4 (log(x +10) —log(x —i0)) 2mi ™
ik 8 8

Using the result in (b) and the fact that H' = §y, we have

ko kg (CDE g
(x +1i0) (x—1i0) _an(k 1)'6 /

s =1 _ =1 T
(x(x£10)7, @) = ((x £i0) ,x(p(x))—ll{%wx

For p e Z(R),

The integrand is continuous and compactly supported. Hence by bounded convergence theorem we have

(x(x+i0)7, ) = fl\o @(x)dx = f(p(x)dx (1,¢)

X +ie
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Hence x(x +i0)~! = 1. We deduce that
(x+i0) 7! (x80) = 0 # 8¢ = ((x +i0) ' x) &g /

which suggests the product of two general distributions may not be well-defined.

A~ —r N T N,
We use induction on k to prove that x¥(x+i0)~*= 1. The base case k = 1 is proven above. Suppose that x*(x+i0) =¥ = 1.

Then
d
0=xo (xk(xiiO)_k) = kxF(x+i0)F = kb L (x+10)"F D = xF(x+i0)" kD = (K (x+i0) K =/

Hence x¥(x +i0)~% =1 for all 17 O

Question 3

Letge LIIOC(IR{) and assume that g is T-periodic for some T > 0: g(x + T) = g(x) holds for almost all x € R. Define for each j € N
the function

gix)=g(x), xe(0,1)

Prove that

1 T
gjﬁ?j; gdx in 2'00,1) as j—oo

Proof. Let
1 T
f(x):zg(x)——f g(ndr /
T Jo
and
X X x T
F(x)::f f(t)dt:f g(t)dt——f g(pdt /
0 0 T Jo

Then F is absolutely continuous and T-periodic:

x+T x T x+T x T X x T
Flx+ T):f g(t)dt—(1+—)[ g(t)dt:f g(t)dt——f g(t)dt:f g(t)dt——f g(t)dt = F(x)
0 T/ Jo T T Jo 0 T Jo

In particular, F is bounded on R, because F(R) = F([0, T]) is cornpact\/

For p e Z(R),
1T 1T
<gj—?/0 g(t)dt,(p>=fR(,0(x) (g(jx)—?fo g(t)dt)dx
=fRf(jx)(p(x)dx

o
:f L{X)go()c)dx

2 /
1
= ——.f F(jx)¢'(x)dx
JJR
Since F is bounded and ¢’ is compactly supported, there exists M > 0 such that

sM/

URF(jx)(p’(x) dx

1 T
‘<gj_?f0 g(t)dt,<l’>

1 rT
as j — oco. We deduce that g; — ?f g(t)dtini@’yé. O
0

&Mw M%Muw\k.

forall j = 1. Then

M
<— -0




Question 4
Let0 € Z(R).
(i) Explain how the convolution 6 = u is defined for a general distribution u € @'(R).
(ii) Prove that 6 = u e C*°(R) when u € 2'(R).

(i) Let (p¢),., be the standard mollifier on R. Show that for a general distribution u € 2'(R) we have that

pe* u— uin D' (R) as e \ 0

(iv) Show that for each u € 2'(R) we can find a sequence (u;) in 2 (R) such that

uj—uinP'R) as j— oo

Proof. (i) 0= uis the distribution defined by N
(0xu, @) =(u,0x¢)

for all ¢ € D (R), where 6(x) := (—x). We can check that the definition agrees with the usual convolution for regular

distributions u(x) € Llloc([R):

(0% u,¢p) =f u(x)(0 * @) (x) dx
R

=f u(x) (f w(y)é(x—y)dy)dx
R R

- f 0167] (/ u(x)0(y —x) dx) dy (Fubini’s Theorem)
R R

=fR<p(y)(0 *u)(y)dy /

Then by the adjoint identity scheme, 0 * u is a distribution for any u € 2’ (R).

(ii) Sorry thatIdid not have enough time to finish the rest of the question. In fact this is a bookwork question, whose complete
proof is given in Lemma 4.12, Lemma 4.14 and Theorem 5.9. We don’t really need the general form in Theorem 5.9. A

variant of Lemma 4.12 is sufficient for (ii). ) 7
No  wewuss ~ wo’ g e
Wqu(v\ Ao | TS
Question 5 ‘\- b (
o Trask wob  Supariong--: )

p@d) = )Y c0* (keNandcq€C)

lal<k

be a partial differential operator on R” in the usual multi-index notation. For an open subset Q of R” and u € &'(Q2) show that
the supports always obey the rule:

supp(p(0)u) < supp(u)

Give an example of a distribution v € @'(R) such that the distributional derivative v’ # 0 has compact support, but v itself
hasn’t. Next, show that also the singular supports satisfy the rule

sing.supp(p(D)u) < sing.supp(u)
and give an example of a distribution u € &' (IR%Z) and a partial differential operator p(d) so

sing.supp(«) = R? and sing.supp(p(@)u) = @



Proof. For x ¢ supp(u), there exists an open neighbourhood U € Q of x such that u|; = 0. For ¢ € @'(U),

(p@u, )= < Z cadau,(p> = <u, Z Ca(—1)|a6“(p> =0

la|<k lal<k

Hence p(@)uly =0. x ¢ supp(p(d)u). We deduce that supp(p(d)u) < supp(u)/
Let B(x) be the standard bump function on [-1,1], and let

X
v(x) :f B()dt+C
7 0

where C > 5 is a constant. Then v is a smooth function, and it defines a regular distribution v € @'(R). Its distributional
derivative v’ is exactly the usual derivative B(x). The support of v and v’ as distributions are exactly the support as functions
on R. We have supp(v) = R and supp(v’) = supp(B) % 1]. Therefore v’ is compactly supported but v is not. Nice -

For x ¢ sing.supp(u), there exists an open neighbourhood U < Q of x such that#|;; € C*°(U). Then p(d) ul;; € C*°(U). Hence
x ¢ sing. supp(p(0) u). We deduce that sing.supp(p(8) u) < sing.supp(u).

Consider the Dirichlet function on R?:

) =1y Bk w=0 w \-—\00- § :\)/ ?

Then u € L1 ([RZ), and it defines a regular distribution. Slnce u is nowhere continuous, sing.supp(u) = R. Consider the
trivial dlfferentlal operator p(d) = 0. Then p(0) u = 0 has singular support sing. supp(p(0) u) = M {v
wok IU.. .

Question 6

Let F : C — C be an entire function that is not identically zero. Explain why the formula f =log|F| defines a distribution on C
Prove that its distributional Laplacian equals

Af = Z 2n mjézj
jeJ
where {z; : j € J} are the distinct zeros for F and {m; : j € J} their multiplicities.

[Hint: Use the Cauchy-Riemann operators to calculate the Laplacian.]

Proof. From complex analysis we know that the zeros of F are isolated. Suppose that z; € C is a zero of F with multiplicity 72;. Then
in some open disc B(z;, ), we have
F(2) = (z-2zj)™ Fj(2)

where F; is holomorphic with F;(z;) # 0. In B(z;,r), we can choose a branch cut and define a holomorphic branch of
logarithm in the cut disc. We have
log|F| = mjloglz - z;| +log|F;|

log|F;| is locally bounded in the cut disc, and log|z — z;| is locally integrable, as discussed in Question 2(a). Hence log|F],
defined on a simply-connected subset of C\ F~!({0}), is locally integrable. Thus log|F| is a regular distribution.

Sorry I did not have enough time to solve the question. I believe a good answer is given on https://math.stackexchange.
com/questions/3056814. O



