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Remark. I ran out of time when doing this problem sheet. As a result, Question 4 and 6 are only partially answered.

Question 1

Find the general solutions to the ODEs

y 00+2y 0+ y = 1 (i)

y 00+2y 0+ y = H (ii)

y 00+2y 0+ y = ±0 (iii)

in D0(R), where H is Heaviside’s function and ±0 is Dirac’s delta-function at 0. What are the classical solutions to (i) and (ii)?

Proof. First we consider the homogeneous equation
L y = y 00+2y 0+ y = 0 (H)

L is a linear operator on D0(R). For y1, y2 2D0(R) and ∏1,∏2 2R, L (∏1 y1 +∏2 y2) =∏1L y1 +∏2L y2.

In the theory of ordinary differential equations of C2(R) functions, the next thing is to prove that dimkerL = 2, a key step of
which is to invoke the Picard-Lindelöf Theorem in Part A Differential Equations I. However, I don’t think it can be generalised
to distributional differential equations (especially we don’t have a clear definition of an initial value problem).

Assuming that dimkerL = 2, for any inhomogeneous problem

L y = y 00+2y 0+ y = u (N)

where u 2D0(R), the general solution is given by

y = yp + c1 y1 + c2 y2

where yp 2D0(R) is any solution of (N), y1, y2 2D0(R) are linearly independent solutions of (H), and c1,c2 2 R are arbitrary
constants.

Let us solve (H) explicitly. Note that

L y =
µ

d2

dx2 +2
d

dx
+1

∂
y =

µ
d

dx
+1

∂2

y

Let z =
µ

d
dx

+1
∂

y . Then
µ

d
dx

+1
∂

z = 0 =) z 0+ z = 0 =) d
dx

(ex z) = ex (z 0+ z) = 0

By the identity theorem for distributions we have ex z = const. Hence z is a regular distribution given by z = c2 e°x for some
c2 2R. Next we solve µ

d
dx

+1
∂

y = z =) y 0+ y = c2 e°x =) d
dx

(ex y) = ex (y 0+ y) = c2

By the fundamental theorem of calculus for distributions, y is a regular distribution and we have ex y = c2x + c1 for some
c1 2R. Hence the general solution to (H) is given by

y(x) = (c1 + c2x)e°x

Let y1(x) = e°x and y2(x) = x e°x . The Wronskian W (x) = y1 y 0
2 ° y2 y 0

1 = e°2x .

Now we consider the inhomogeneous problems (N). To find a particular solution, we use the variation of parameters and
consider

yp = u1 y1(x)+u2 y2(x)

where u1,u2 2D0(R) are such that

u0
1 =° y2(x)

W (x)
u =°x ex u, u0

2 =
y1(x)
W (x)

u = ex u

To show that yp is a solution to (N), first note that

u0
1 y1 +u0

2 y2 =
°y1 y2 + y1 y2

W
u = 0
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Hence y 0
p = u1 y 0

1 +u2 y 0
2 by Leibniz’s rule. And

y 00
p = u1 y 00

1 +u2 y 00
2 +u0

1 y 0
1 +u0

2 y 0
2

We compute:

L yp = y 00
p +2y 0

p + yp

= u1 y 00
1 +u2 y 00

2 +u0
1 y 0

1 +u0
2 y 0

2 +2(u1 y 0
1 +u2 y 0

2)+u1 y1 +u2 y2

= u0
1 y 0

1 +u0
2 y 0

2

=
y1 y 0

2 ° y2 y 0
1

W
u = u

Therefore yp is indeed a solution to (N).

yp =°e°x
Z

x ex u +x e°x
Z

ex u

where
R

v 2D0(R) is such that (
R

v)0 = v in D0(R).

(i) Note that the regular distribution y = 1 is a particular solution to equation (i). Therefore the general solution to (i) is a
regular distribution given by

y(x) = 1+ (c1 + c2x)e°x

for some c1,c2 2R. The solution is completely classical because it is C1.

(ii) From the previous discussions, we need to find the primitives of the distributions x ex H , and ex H .

Note that H is given by the regular distribution H(x) = 1(0,1). We have

Z
x ex H =

(
(x °1)ex +1, x   0

0, x < 0
,

Z
ex H =

(
ex °1, x   0

0, x < 0

Here is a quick check of the above equations:

øµZ
x ex H

∂0
,'

¿
=°

øZ
x ex H ,'0

¿
=°

Z1

0
((x °1)ex +1)'0(x)dx

=
Z1

0
x ex 'dx ° ((x °1)ex +1)'(x)

ØØØØ
1

0

=
≠

x ex H ,'
Æ

øµZ
ex H

∂0
,'

¿
=°

øZ
ex H ,'0

¿
=°

Z1

0
(ex °1)'0(x)dx

=
Z1

0
ex 'dx ° (ex °1)'(x)

ØØØØ
1

0

=
≠

ex H ,'
Æ

Then the particular solution is given by

yp (x) =
(

1° (x +1)e°x , x   0

0, x < 0

The general solution is given by

y(x) =
(

1+ (c2 °1)x e°x +(c1 °1)e°x , x   0

c2x e°x +c1 e°x , x < 0

=
°
1° (x +1)e°x¢

H(x)+ (c1 + c2x)e°x

The general solution is still regular distribution induced by a continuous function. This distributional solution agree
with the classical solution everywhere except at x = 0, where the classical derivative y 00 does not exist.

(iii) We need to find the primitives of the distributions x ex ±0, and ex ±0. Note that x±0 = 0 by Question 5 in Sheet 2. So
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Z
x ex ±0 is a constant function by the identity theorem, and we can set it equal to 0. Next note that

≠
ex ±0,'

Æ
=

≠
±0,ex '

Æ
= e0'(0) ='(0) =

≠
±0,'

Æ

So
Z

ex ±0 =
Z
±0 = H . The particular solution is given by

yp (x) = x e°x H(x)

The general solution is given by
y(x) = x e°x H(x)+ (c1 + c2x)e°x

which is a regular distribution given by a function with a jump discontinuity at x = 0.

Question 2

The principal logarithm is defined on the cut plane C\ (°1,0] as

log z := log |z|+ iArg(z), Arg(z) 2 (°º,º)

Define log(x + i0) and log(x ° i0) for each ' 2D(R) by the rules

hlog(x ± i0),'i := lim
"&0

Z1

°1
log(x ± i")'(x)dx

(a) Show that log(x ± i0) hereby are distributions on R.

Now let k 2N and define the distributions (x + i0)°k and (x ° i0)°k as

(x ± i0)°k := (°1)k°1

(k °1)!
dk

dxk
log(x ± i0) in D0(R)

(b) Show that for each ' 2D(R) with '( j )(0) = 0 for j 2 {0, . . . ,k} we have

D
(x ± i0)°k ,'

E
=

Z1

°1

'(x)

xk
dx

(c) Prove that log(x + i0) ° log(x ° i0) = 2ºi eH , where H is the Heaviside function. Deduce the Plemelj-Sokhotsky jump
relations:

(x + i0)°k ° (x ° i0)°k = 2ºi
(°1)k

(k °1)!
±(k°1)

0

where ±0 is Dirac’s delta-function on R concentrated at 0.

(d) Show that

x(x ± i0)°1 = 1 in D0(R)

Deduce that

(x + i0)°1 (x±0) = 0 6= ±0 =
°
(x + i0)°1x

¢
±0

Next, show, for instance by using the differential operator x d
dx on the case k = 1 iteratively, that

xk (x ± i0)°k = 1 in D0(R)

holds for each k 2N.

Proof. (a) We need to show that log(x ± i0) 2D0(R). First we show that log(x + i0) 2D0(R).

• log(x + i0) is well-defined:
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We have ØØlog(x + i")
ØØ=

ØØØlog
≥p

x2 +"2
¥
+ iArg(x + i")

ØØØ…º+ 1
2

ØØlog(x2 +"2)
ØØ

Then

ØØ≠log(x + i"),'
ÆØØ… sup

x2R
|'(x)| lim

"&0

Z

supp'

µ
º+ 1

2

ØØlog(x2 +"2)
ØØ
∂

dx

Note that
ØØlog(x2 +"2)

ØØ is bounded on supp'\ [°1,1]. And

Z1

°1

ØØlog(x2 +"2)
ØØ dx … 2+4

ØØØØ
Z1

0
log x dx

ØØØØ= 2+4 <1

Hence
ØØ≠log(x + i"),'

ÆØØ<1. It is well-defined.

In addition, the same proof also shows that

lim
"&0

Z

K

ØØlog(x + i")
ØØ dx

is bounded on any compact set K µR.

• log(x + i0) is linear:

For '1,'2 2D(R) and ∏1,∏2 2R, we have

≠
log(x + i0),∏1'1 +∏2'2

Æ
= lim
"&0

Z1

°1
log(x + i")

°
∏1'1(x)+∏2'2(x)

¢
dx

=∏1 lim
"&0

Z1

°1
log(x + i")'1(x)dx +∏2 lim

"&0

Z1

°1
log(x + i")'2(x)dx

=∏1
≠

log(x + i0),'1
Æ
+∏2

≠
log(x + i0),'2

Æ

Hence log(x + i0) is a linear functional.

• log(x + i0) is continuous:

Suppose that {'n} µD(R) and ' 2D(R) such that 'n !' in D(R). Let K µR be a compact set such that
supp'n , supp'µ K . We have

ØØ≠log(x + i0),'n
Æ
°

≠
log(x + i0),'

ÆØØ= lim
"&0

ØØØØ
Z1

°1
log(x + i")('n(x)°'(x))dx

ØØØØ

…
∞∞'n °'

∞∞
1 lim

"&0

Z

K

ØØlog(x + i")
ØØ dx

…
∞∞'n °'

∞∞
1 M(K ) ! 0

as
∞∞'n °'

∞∞
1 ! 0. Hence log(x + i0) is continuous.

We deduce that log(x + i0) 2D0(R). Similarly log(x ° i0) 2D0(R).

(b) First we note that there is a complex version of integration by parts. Suppose that f (x) = u(x)+ iv(x) where u, v are
differentiable real-valued functions. Then for ' 2D(R)

Z

R
f (x)'0(x)dx =

Z

R
u(x)'0(x)dx + i

Z

R
v(x)'0(x)dx =°

Z

R
u0(x)'(x)dx ° i

Z

R
v 0(x)'(x)dx =°

Z

R
f 0(x)'(x)dx

Second, note that
dk

dxk
log(x ± i") = dk

dzk
log z

ØØØØØ
z=x±i"

= (°1)k°1(k °1)!(x ± i")°k

Then for ' 2D(R),

D
(x ± i0)°k ,'

E
=

*
(°1)k°1

(k °1)!
dk

dxk
log(x ± i0),'

+
=

*
(°1)k°1

(k °1)!
log(x ± i0), (°1)k'(k)

+

=° 1
(k °1)!

lim
"&0

Z

R
log(x ± i")'(k)(x)dx
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= (°1)k+1

(k °1)!
lim
"&0

Z

R

dk

dxk
log(x ± i")'(x)dx

= lim
"&0

Z

R

'(x)

(x ± i")k
dx

For sufficiently small "> 0, there exists C > 0 such that
ØØØØ

'(x)

(x ± i")k

ØØØØ…C
ØØØØ
'(x)

xk

ØØØØ

Since '( j )(0) = 0 for j … k, we use the l’Hôptial’s rule k times and find

lim
x!0

'(x)

xk
= lim

x!0

'(k)(x)
k !

= 0

Hence
ØØØØ
'(x)

xk

ØØØØ is bounded near x = 0. Since supp' is compact, the function is integrable over R. By Dominated Conver-

gence Theorem, D
(x ± i0)°k ,'

E
= lim
"&0

Z

R

'(x)

(x ± i")k
dx =

Z

R
lim
"&0

'(x)

(x ± i")k
dx =

Z

R

'(x)

xk
dx

(c) For "> 0,

log(x ± i") = 1
2

log(x2 +"2)± iarctan
"

x

Then
log(x + i")° log(x ° i") = 2iarctan

"

x

For x > 0, lim
"&0

2iarctan
"

x
= 0; for x < 0, lim

"&0
2iarctan

"

x
= 2ºi.

Then for ' 2D(R),

≠
log(x + i0)° log(x ° i0),'

Æ
= lim
"&0

Z

R

°
log(x + i")° log(x ° i")

¢
'(x)dx

= 2i lim
"&0

Z

R
arctan

"

x
'(x)dx

= 2i
Z

R
lim
"&0

arctan
"

x
'(x)dx (bounded convergence theorem)

= 2ºi
Z0

°1
'(x)dx = 2ºi

≠ eH ,'
Æ

where eH is the distribution such that
≠ eH ,'(x)

Æ
=

≠
H ,'(°x)

Æ
for' 2D(R). We deduce that log(x+i0)°log(x°i0) = 2ºi eH .

Taking the distributional derivative k times, we have

d

dxk

°
log(x + i0)° log(x ° i0)

¢
2ºi eH (k)

Using the result in (b) and the fact that H 0 = ±0, we have

(x + i0)°k ° (x ° i0)°k = 2ºi
(°1)k

(k °1)!
±(k°1)

0

(d) For ' 2D(R),

≠
x(x ± i0)°1,'

Æ
=

≠
(x ± i0)°1, x'(x)

Æ
= lim
"&0

Z

R

x
x ± i"

'(x)dx

The integrand is continuous and compactly supported. Hence by bounded convergence theorem we have

≠
x(x ± i0)°1,'

Æ
=

Z

R
lim
"&0

x
x ± i"

'(x)dx =
Z

R
'(x)dx =

≠
1,'

Æ
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Hence x(x ± i0)°1 = 1. We deduce that

(x + i0)°1 (x±0) = 0 6= ±0 =
°
(x + i0)°1x

¢
±0

which suggests the product of two general distributions may not be well-defined.

We use induction on k to prove that xk (x± i0)°k = 1. The base case k = 1 is proven above. Suppose that xk (x± i0)°k = 1.
Then

0 = x
d

dx

≥
xk (x ± i0)°k

¥
= kxk (x ± i0)°k °kxk+1(x ± i0)°(k+1) =) xk+1(x ± i0)°(k+1) = xk (x ± i0)°k = 1

Hence xk (x ± i0)°k = 1 for all k   1.

Question 3

Let g 2 L1
loc(R) and assume that g is T -periodic for some T > 0 : g (x +T ) = g (x) holds for almost all x 2R. Define for each j 2N

the function

g j (x) = g ( j x), x 2 (0,1)

Prove that

g j !
1
T

ZT

0
g dx in D0(0,1) as j !1

Proof. Let

f (x) := g (x)° 1
T

ZT

0
g (t )dt

and

F (x) :=
Zx

0
f (t )dt =

Zx

0
g (t )dt ° x

T

ZT

0
g (t )dt

Then F is absolutely continuous and T -periodic:

F (x +T ) =
Zx+T

0
g (t )dt °

≥
1+ x

T

¥ZT

0
g (t )dt =

Zx+T

T
g (t )dt ° x

T

ZT

0
g (t )dt =

Zx

0
g (t )dt ° x

T

ZT

0
g (t )dt = F (x)

In particular, F is bounded on R, because F (R) = F ([0,T ]) is compact.

For ' 2D(R),

ø
g j °

1
T

ZT

0
g (t )dt ,'

¿
=

Z

R
'(x)

µ
g ( j x)° 1

T

ZT

0
g (t )dt

∂
dx

=
Z

R
f ( j x)'(x)dx

=
Z

R

F 0( j x)
j

'(x)dx

=°1
j

Z

R
F ( j x)'0(x)dx

Since F is bounded and '0 is compactly supported, there exists M > 0 such that
ØØØØ
Z

R
F ( j x)'0(x)dx

ØØØØ… M

for all j   1. Then ØØØØ
ø

g j °
1
T

ZT

0
g (t )dt ,'

¿ØØØØ…
M
j

! 0

as j !1. We deduce that g j !
1
T

ZT

0
g (t )dt in D0(R).
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Question 4

Let µ 2D(R).

(i) Explain how the convolution µ§u is defined for a general distribution u 2D0(R).

(ii) Prove that µ§u 2 C1(R) when u 2D0(R).

(iii) Let
°
Ω"

¢
">0 be the standard mollifier on R. Show that for a general distribution u 2D0(R) we have that

Ω"§u ! u in D0(R) as "& 0

(iv) Show that for each u 2D0(R) we can find a sequence
°
u j

¢
in D(R) such that

u j ! u in D0(R) as j !1

Proof. (i) µ§u is the distribution defined by ≠
µ§u,'

Æ
=

≠
u, eµ§'

Æ

for all ' 2D(R), where eµ(x) := µ(°x). We can check that the definition agrees with the usual convolution for regular
distributions u(x) 2 L1

loc(R):

≠
µ§u,'

Æ
=

Z

R
u(x)(eµ§')(x)dx

=
Z

R
u(x)

µZ

R
'(y)eµ(x ° y)dy

∂
dx

=
Z

R
'(y)

µZ

R
u(x)µ(y °x)dx

∂
dy (Fubini’s Theorem)

=
Z

R
'(y)(µ§u)(y)dy

Then by the adjoint identity scheme, µ§u is a distribution for any u 2D0(R).

(ii) Sorry that I did not have enough time to finish the rest of the question. In fact this is a bookwork question, whose complete
proof is given in Lemma 4.12, Lemma 4.14 and Theorem 5.9. We don’t really need the general form in Theorem 5.9. A
variant of Lemma 4.12 is sufficient for (ii).

Question 5

Let

p(@) =
X

|Æ|…k
cÆ@

Æ (k 2N and cÆ 2C)

be a partial differential operator on Rn in the usual multi-index notation. For an open subset≠ of Rn and u 2D0(≠) show that
the supports always obey the rule:

supp(p(@)u) µ supp(u)

Give an example of a distribution v 2D0(R) such that the distributional derivative v 0 6= 0 has compact support, but v itself
hasn’t. Next, show that also the singular supports satisfy the rule

sing.supp(p(D)u) µ sing.supp(u)

and give an example of a distribution u 2D0 °R2¢ and a partial differential operator p(@) so

sing.supp(u) =R2 and sing.supp(p(@)u) =;



8

Proof. For x › supp(u), there exists an open neighbourhood U µ≠ of x such that u|U = 0. For ' 2D0(U ),

≠
p(@)u,'

Æ
=

*
X

|Æ|…k
cÆ@

Æu,'

+
=

*
u,

X

|Æ|…k
cÆ(°1)|Æ|@Æ'

+
= 0

Hence p(@)u|U = 0. x › supp(p(@)u). We deduce that supp(p(@)u) µ supp(u).

Let B(x) be the standard bump function on [°1,1], and let

v(x) =
Zx

0
B(t )dt +C

where C > 5 is a constant. Then v is a smooth function, and it defines a regular distribution v 2 D0(R). Its distributional
derivative v 0 is exactly the usual derivative B(x). The support of v and v 0 as distributions are exactly the support as functions
on R. We have supp(v) =R and supp(v 0) = supp(B) = [°1,1]. Therefore v 0 is compactly supported but v is not.

For x › sing.supp(u), there exists an open neighbourhood U µ≠ of x such that u|U 2 C1(U ). Then p(@)u|U 2 C1(U ). Hence
x › sing.supp(p(@)u). We deduce that sing.supp(p(@)u) µ sing.supp(u).

Consider the Dirichlet function on R2:
u(x, y) = 1Q2

Then u 2 L1
loc(R2), and it defines a regular distribution. Since u is nowhere continuous, sing.supp(u) = R2. Consider the

trivial differential operator p(@) = 0. Then p(@)u = 0 has singular support sing.supp(p(@)u) =?.

Question 6

Let F :C!C be an entire function that is not identically zero. Explain why the formula f = log |F | defines a distribution on C
Prove that its distributional Laplacian equals

¢ f =
X

j2J
2ºm j±z j

where
©

z j : j 2 J
™

are the distinct zeros for F and
©
m j : j 2 J

™
their multiplicities.

[Hint: Use the Cauchy-Riemann operators to calculate the Laplacian.]

Proof. From complex analysis we know that the zeros of F are isolated. Suppose that z j 2C is a zero of F with multiplicity m j . Then
in some open disc B(z j ,r ), we have

F (z) = (z ° z j )m j F j (z)

where F j is holomorphic with F j (z j ) 6= 0. In B(z j ,r ), we can choose a branch cut and define a holomorphic branch of
logarithm in the cut disc. We have

log |F | = m j log |z ° z j |+ log |F j |

log |F j | is locally bounded in the cut disc, and log |z ° z j | is locally integrable, as discussed in Question 2(a). Hence log |F |,
defined on a simply-connected subset of C\ F°1({0}), is locally integrable. Thus log |F | is a regular distribution.

Sorry I did not have enough time to solve the question. I believe a good answer is given on https://math.stackexchange.
com/questions/3056814.


