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Question 1

It is required to find an extremal of the functional

� b

a

F (x, y(x), y�(x), y��(x)) dx

among all smooth functions y(x) which satisfy the boundary conditions

y(a) = y(b) = 0

Show that such an extremal must be a solution of the differential equation

∂F

∂y
− d

dx

∂F

∂y
+

d2

dx2

∂F

∂y��
= 0

and must satisfy the natural boundary conditions

∂F

∂y��
= 0 at x = a and x = b.

Proof. Let y be a minimizer of the functional S[y] =
� b

a

F (x, y(x), y�(x), y��(x)) dx and η be a smooth function such that η(a) =

η(b) = 0. Then y + αη satisfies the same constraints as y for any α ∈ R. In particular we have

d

dα
J [y + αη]

����
α=0

= 0

Expanding the expression:

� b

a

�
η
∂F

∂y
+ η�

∂F

∂y�
+ η��

∂F

∂y��

�
dx = 0

By integration by parts, we have:

� b

a

η

�
∂F

∂y
− d

dx

∂F

∂y�
+

d2

dx2

∂F

∂y��

�
dx+

�
η
∂F

∂y�
+ η�

∂F

∂y��
− η

d

dx

∂F

∂y�

�x=b

x=a

= 0

Since η(a) = η(b) = 0, the equation simplifies to

� b

a

η

�
∂F

∂y
− d

dx

∂F

∂y�
+

d2

dx2

∂F

∂y��

�
dx+ η�

∂F

∂y��

����
x=b

x=a

= 0

By Lemma 2.3 in the notes, we deduce that

∂F

∂y
− d

dx

∂F

∂y�
+

d2

dx2

∂F

∂y��
= 0

∂F

∂y��
(a) =

∂F

∂y��
(b) = 0

Question 2

An elastic beam has vertical displacement y(x), x ∈ [0, l]. (The x-axis is horizontal and the y-axis is vertical and directed
upwards.) The ends of the beam are supported, that is, y(0) = y(l) = 0, and the displacement minimizes the energy

� l

0

�
1

2
D (y��(x))

2
+ ρgy(x)

�
dx,

whereD, ρ and g are positive constants. Write down the differential equation and the boundary conditions that y(x)must
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satisfy and show that

y(x) = − ρg

24D
x(l − x)

�
l2 + x(l − x)

�

Proof. Let L =
1

2
D (y��(x))2 + ρgy(x) and S[y] =

� b

a

L dx. By Question 1, the Euler-Lagrange equation is

∂L
∂y

− d

dx

∂L
∂y�

+
d2

dx2

∂L
∂y��

= 0

Hence

Dy���� + ρg = 0

with boundary conditions

y(0) = y(l) = 0 Dy��(0) = Dy��(l) = 0

Integrating four times we obtain

y(x) = − ρg

24D
x4 + C3x

3 + C2x
2 + C1x+ C0

Substituting the boundary conditions

C0 = 0, − ρg

24D
l4 + C3l

3 + C2l
2 + C1l + C0 = 0, 2C2 = 0, − ρg

2D
l2 + 6C3l + 2C2 = 0.

Then C3 =
ρg

12D
l, C1 =

ρg

24D
l3 − ρg

12D
l3 = − ρg

24D
l3. The solution y is given by

y(x) = − ρg

24D
x4 +

ρg

12D
lx3 − ρg

24D
l3x = − ρg

24D
x(x3 − 2lx2 + l3) = − ρg

24D
x(l − x)

�
l2 + x(l − x)

�

Question 3

Find the extremal corresponding to

� 1

−1

y dx

when subject to y(−1) = y(1) = 0 and

� 1

−1

(y2 + y�2) dx = 1

Solution. Let I[y] =
� 1

−1

y dx =

� 1

−1

F dx and J [y] =

� 1

−1

(y2 + y�2) dx =

� 1

−1

G dx. Given the constraint J [y] ≡ 1, by the method

of Lagrange multipliers we can write the Euler-Lagrange equation as follows

d

dx

∂

∂y�
(F − λG)− ∂

∂y
(F − λG) = 0

We obtain that

−2λy�� − (1− 2λy) = 0 =⇒ y�� − y = − 1

2λ

The general solution to the differential equation is

y(x) = A sinhx+B coshx+
1

2λ

The boundary conditions are y(−1) = y(1) = 0. In addition we need to obtain another constraint for y by computing G
and J [y]:
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G(y, y�) = y2 + y�2 =

�
A sinhx+B coshx+

1

2λ

�2

+ (A coshx+B sinhx)
2
=

(A2 +B2) cosh 2x+ 2AB sinh 2x+
1

λ
(A sinhx+B coshx) +

1

4λ2

Therefore

J [y] =

� 1

−1

G(y, y�) dx =

� 1

−1

�
(A2 +B2) cosh 2x+

B

λ
coshx+

1

4λ2

�
dx (we use the fact that sinhx is odd)

=

�
1

2
(A2 +B2) sinh 2x+

B

λ
sinhx+

x

4λ2

�x=1

x=−1

= (A2 +B2) sinh 2 +
2B

λ
sinh 1 +

1

2λ2

The other two constraints are

−A sinh 1 +B cosh 1 +
1

2λ
= 0 A sinh 1 +B cosh 1 +

1

2λ
= 0

The solution for the coefficients are A = 0, B = ± 1√
1 + cosh 2− sinh 2

and 1/2λ = −B cosh 1. Hence the solution for

the original problem is

y(x) = ± 1√
1 + cosh 2− sinh 2

(coshx− cosh 1)

Question 4

(a) Suppose that F : R7 → R is aC2 function and that theC2 function u : R → R gives a stationary value to the integral
�

V

F (x, y, z, u, ux, uy, uz) dxdydz

and satisfies u = f on the smooth simple closed surface ∂V which bounds the open set V inR3, Show that u satisfies
the Euler equation

∂

∂x

∂F

∂ux
+

∂

∂y

∂F

∂uy
+

∂

∂z

∂F

∂uz
=

∂F

∂u

(b) Let V = {(x, y, z) ∈ R3 : x2 + y2 + z2 < 1}. Find an extremal u = u(x, y, z) for the problem of minimizing the
integral

�
V

(u2
x + u2

y + u2
z) dxdydz

wehn subject to the constraints
�

V

u dxdydz = 4π

and u = 1 on the boundary of V .

Solution. (a) Consider any smooth function η : R3 → R that satisfies η = 0 on ∂V . Similar to the 1-dimensional case, if u
minimize the functional

I[u] =

�
V

F (x, y, z, u, ux, uy, uz) dxdydz

the variation (along any smooth path):

δI =
dI

dα
[u+ αη]

����
α=0

= 0

cosh/sinh(1), not cosh/sinh(2)
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We expand this expression:
�

V

�
η
∂F

∂u
+

∂η

∂xi

∂F

∂ui

�
dτ = 0

By chain rule:

�
V

�
η
∂F

∂u
+

∂

∂xi

�
η
∂F

∂ui

�
− η

∂

∂xi

∂F

∂ui

�
dτ = 0

If we denote the vector field G =

�
∂F

∂ux
,
∂F

∂uy
,
∂F

∂uz

�
, then

∂

∂xi

�
η
∂F

∂ui

�
= ∇ · (ηG). By divergence theorem, we

have:
�

V

η

�
∂F

∂u
− ∂

∂xi

∂F

∂ui

�
dτ −

�
∂V

ηG · dS = 0

The surface integral is zero because η = 0 on ∂V . Since η is arbitrary, we deduce that

∂F

∂u
− ∂

∂xi

∂F

∂ui
=

∂F

∂u
− ∂

∂x

∂F

∂ux
− ∂

∂y

∂F

∂uy
− ∂

∂z

∂F

∂uz
= 0

(b) Suppose that F = u2
x + u2

y + u2
z and G = u. By the method of Lagrange multipliers, the function F − λG satisfies

the Euler-Lagrange equation. We have:

2(uxx + uyy + uzz) = −λ =⇒ ∇2u = −λ

2

We observe that the constraint of u are spherically symmetry. So we shall look for a spherically symmetric solution
u = u(r). (Once the solution is determined, it is unique by the uniqueness theorem for Laplace’s equations.)

In spherical coordinates, the Laplacian has the form

∇2 =
1

r2
∂

∂r

�
r2

∂

∂r

�
+

1

r2
L̂2

�2

Therefore, u satisfies the ODE

1

r2
d

dr

�
r2

du

dr

�
= −λ

2

By integrating twice we find that

u(r) = − λ

12
r2 +Br−1 + C

Since we want u to be bounded at r = 0, we put B = 0. The constraint u(r = 1) = 1 implies that C = 1+
λ

12
r2. And

for the other constraint:
�

V

u dxdydz = 4π

=⇒
� 1

0

u(r)r2 dr = 1

=⇒
� 1

0

�
− λ

12
r4 +

�
1 +

λ

12

�
r2
�

dr = 1

=⇒ − λ

12
· 1
5
+

1

3

�
1 +

λ

12

�
= 1

=⇒ λ = 60

The solution is given by u(r) = −5r2 + 6. In Cartesian coordinates, the solution is
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u(x, y, z) = −5(x2 + y2 + z2) + 6.

Question 5

Let p be a positive real-valued function differentiable on the bounded interval [a, b] and let q and r be positive real-valued
continuous functions on [a, b]. Show that the extremals of

J [y] =

� b

a

�
py�2 + qy2

�
dx

subject to the constraint

� b

a

ry2 dx = 1

must satisfy
(py�)� + (−q + λr)y = 0 (A)

with py� = 0 at x = a and x = b.

Show that if y1 and y2 are solutions to (A) for λ = λ1,λ2 respectively, where λ1 �= λ2, then

� b

a

ry1y2 dx = 0 (B)

Find the extremals of
� π

0

y�2 dx subject to
� π

0

y2 dx = 1 and the corresponding values of λ. Verify that these extremals

satisfy (B).

Solution. Let F (x, y, y�) = py�2 + qy2 and G(x, y) = ry2. By the method of Lagrange multipliers, the Euler-Lagrange equation
of the problem is

d

dx

∂

∂y�
(F − λG)− ∂

∂y
(F − λG) = 0

which is

2(py�)� − 2qy + λ(2ry) = 0 =⇒ (py�)� + (−q + λr)y = 0

The differential equation satisfies the natural boundary condition:

∂

∂y�
(F − λG) = 2py� = 0 at x = a and x = b.

Let L : y �→ −(py�)� + qy be the Sturm-Liouville operator. By Part A Differential Equations II we know that L is a (fully)
self-adjoint operator with respect to the inner product defined by integration:

�u(x)|v(x)� :=
� b

a

u(x)v(x) dx

We have Ly1 = λ1ry1 and Ly2 = λ2ry2. Then

λ1

� b

a

ry1y2 dx = �λ1ry1|ry2� = �Ly1|y2� = �y1|Ly2� = �y1|λ2ry2� = λ2

� b

a

ry1y2 dx

Since λ1 �= λ2, we have
� b

a

ry1y2 dx = 0.
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For the extremals of
� π

0

y�2 dx subject to
� π

0

y2 dx = 1, we observe that p = 1, q = 0 and r = 1. The differential equation

satisfied by y is

y�� + λy = 0, y�(0) = y�(π) = 0

As we require that y� vanishes at two distinct points, we require that λ > 0. The general solution of y is

y(x) = A cos
√
λx+B sin

√
λx.

The boundary conditions imply that B = 0 and
√
λπ ∈ πZ. Then λn = n2 for n � 1 and yn(x) = cosnx.

Form �= n:
� π

0

ynym dx =

� π

0

cosnx cosmx dx

=

� π

0

1

2
(cos(m+ n)x+ cos(m− n)x) dx

=

�
1

2(m+ n)
sin(m+ n)x+

1

2(m− n)
sin(m− n)x

�π

0

= 0

The orthogonality condition is satisfied as expected.


