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Section A: Introductory

Question 1

Prove that for A, B € Z-Mod, ¥ i > 1, Ext}, (A, B) = 0 = Tor? (A, B).

Proof.

The one-line answer is that Z is a PID so that it has Krull'’s dimension 1. \/

Let m: Z®4 — Abe the projection epimorphism. Then we have a short exact sequence

0 s kerrm s 704 Ty 4y

Z@A

Since Z is a PID, by Question 6 of Sheet 2, every submodule of the free module is free. Hence kerx is free.

The sequence above is a free resolution of A. \/

We note that Tor; (A, B) = H;(A. ®7 B) where Ay = 794 A =kerm, and A; =0 for i > 1. Hence Torl.Z(A,B) =0 for
i>1/

Similarly, Ext’, (4, B) = H'(Homy (A., B)). We have Ext}, (4, B) = 0 for i > 1.\/ O

Section B: Core

Before going into Question 2 and 3, whe following lemma about the Hom functor, which will be useful

later;

Do you mean "propose"?

Lemma 1

1. For a= b,c =0, Homy pa(Z/2Y,7/2¢) = z//2minib.c}

2. Forn=2,Homyz(Z/n,7Z) =0.

Proof.

1. Let ¢ € Homz/2a(Z/22,212°). ¢ is uniquely determined by ¢(1) € Z/2¢. If b = ¢, then ¢(1) could be any
element in ¢. Hence Homyz,»4(Z/27,7/2°) is bijective to Z/2°. It is easy to check that this is in fact a Z/2%-

V module isomorphism. On the other hand, if b < ¢, then 2b o) = (p(zb) € Z/2°. Hence ¢(1) lies in the unique

subgroup of Z/2€ which is isomorphic to Z/2". It is easy to check that we have a Z/2%-module isomorphism
Homy,2«(Z/2P,7/2¢) = 7/2P.

2. Let ¢ e Homz(Z/n,Z). Then ne(1) = ¢(n) = ¢(0) = 0. Since Z is torsion-free, ¢ (1) = 0 and hence ¢ = 0. We
have Homz(Z/n,Z) = 0. O

uestion 2
L0

Compute the following Ext, Tor groups:

(a) Tor™ (

k[x] k[x]
x—a x-b

) for a, b € k a field.

(b) Tor? (%,%) fora,be Z.

. (2 2z
(C) EXtZ/4 E,E .

z]24

7 7
(d) ExtZ (—,—) fora=b=c.
2b’ 2¢

(e) Ext® 2) (k, k).

Proof.

klx,y1/ (x%,xy,y

(a) We first find a free resolution P, — A for A:=k[x]/{x — a). This is easy:



V4

By tensoring B := k[x]/ (x — b) to the free resolution, we obtain the chain complex:

N R C ) , K] 50
(x—a)

k[x] 01 k(x]

0 > > 0
" (x-Db) " (x-Db) ’
Therefore
cokero;, n=0
Tork™(4,B) = { kerd;, n=1
0, n>1
k k
e If a= b, then the map 0;: [x] — [x] is zero. We have
(x=by <(x-b)

klx] n=01 \/

Tor™(A,B) = (x—a)’
0, n>1

e If a# b, then (x— a) and (x — b) are coprime ideals of k[x]. Hence 0; is bijective. We have

Tork™(A4,B)=0, neN

(b) A:=Z/ahas a free resolution:

~
N
~
N

0 > Zla — 0

Tensoring B :=Z/b:

)
0 s ZIb —~ 7/b 50

Letd =gcd(a, b),a = pd and b = qd. Then
kerd; ={n: blan}={n: qln}=qz/bz=272/dz

and
zlbz  7/bz _ Z

= = ZZ/dZ
imo; (aZ+bZ)/IbZ aZ+bZ

cokero; =

Hence

Zlged(a,b)Z, n=0,1
Tor2(Z/a,Z1b) ={ \/

0, n>1
In particular, if @ and b are coprime, then Tor(Z/a, Z/b) = 0 for all n € N.
(c) We take a free resolution of Z/2: this map isn't injective, so this isn't a resolution.

0 AL m)ZM > Z12 > 0

Applying the contravariant functor Homz,4(—, Z/2) to the free resolution:

0 — Homy4(Z/4,Z/2) —22% Homy,4(Z/4,Z/2) —— 0

Note that Homz,4(Z/4,7/2) = Z/2. So it is equivalent to

0

0 > 712 > 712 > 0




Hence
712, n=0,1

X

Extgl4(Z/2,Z/2) =
0, n>1

: b.
(d) We take a free resolution of Z/2°: again, this isn't injective.
0 — 7/2° 7124 —— 7/2b — 0

Applying the contravariant functor Homgz/ s« (—, Z/2°):

b
0 —— Homy »(Z/2%,2/2¢) —22"3 Homy sa(Z/2%,7/2°) —— 0

Note that Homy,24(Z/2%,7/2€) = Z/2€. So it is equivalent to

0 s 2/2¢ —% 7/2° >0
Hence

Zz/2°Z, n=0,1

Ext?,.(Z/2",2/2°) = ><
0, n>1

klx, y1 TS . .
(e) LetR:= ﬁ for simplicity. First we note that k has a unique R-module structure givenby x-1 = y-1 =
X5, XY,y

0. This is because 0 = x?> -1 = (x-1)? in k and k is a domain implies that x-1 = 0. Similarly y-1 = 0.

We construct a free resolution for k as follows. Consider the projection 7 : R — k given by x, y — 0. We have
kerm = (x,y) <R. Next, choose ¢ : R — R given by (1,0) — x, (0,1) — y. Then im¢ = (x,y) = kerz. Note
that

p(a+bx+cy,d+ex+fy)=ax+bx*+cxy+dy+exy+fy*=ax+dy

Hence kerg = (x, y) ® (x, y) = kerm @ ker n. Inductively we can construct an infinite sequence:

(@, ) @ T

> R? > R

> R* > k 5 0
Apply the functor Hompg (-, k):

0 — Homp(k k) —25 Homa(R,k) —2 Homp(R2 k) — %) Hompa (R k) —— ---

It is clear that Hompg(R", k) = k", Also, Homp(k, k) = k, because v € Hompg(k, k) is uniquely determined by
(1) € k. Then we look at the induced maps.

Since 7|, =idy, 7 : R — k induces the identity map on k.

Consider the induced map — o ¢ : Hompg (R, k) — Hompg(R, k) of p: R% — R. For w € Hompg(R, k),
Yyopla+bx+cy,d+ex+fy)=vwlax+dy)=0

Hence — o ¢ = 0. We have the (augmented) chain complex:

0 0

Taking the cohomology, we obtain the Ext modules:
Extl(k,k) = k%', neN Very nice! -

Question 3

Y+ Compute all terms and maps in the following long exact sequences:



i) - — Ext}(2/2,2) —> Ext},(Z/4,Z) — Ext,(Z/2,7) — Ext}'1(2/2,2) — -
ii) - — Ext}(Z,2/2) — Ext,(Z,Z/4) — Ext},(Z,Z/2) — Ext}'1(Z,2/2) — ---

associated with the short exact sequence 0 — Z/2 i) Zl4 g > 712 > 0 in Z-Mod.

iii) - —> Ext}, o(Z/2,7/4) — Bxtl, o(Z/4,Z14) — Extl, o(Z/2,714) — Ext} 2 (Z/2,214) — -

z/8
associated with the short exact sequence 0 —— Z/2 i} Z/4 g> Z/2 > 0 in Z/8-Mod.

iv) - —> Bxt} ,,(2/2,2/2%) — Ext} . (2/4,212%) — Extl, ,,(Z/2,212%) — Ext}}),(212,2/2b) — -

associated with the short exact sequence 0 — Z/2 i) Z/4 § > 712 > 0 in Z/2%-Mod where a > b =

2.

Proof. i) Firstwe write down a free resolution for Z/2. By Horseshoe Lemma, we obtain the split short exact sequence
of resolutions.

0

!

0 > Z A > 212

s

Z14 = 0

18

0 > Z > Z > 712
0

We apply the dual functor ()" := Homz (-, Z) to the diagram. We have (Z")¥ = Z" and (Z/n)" = 0. Therefore
we have a short exact sequence of the (row) complexes
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For simplicity we let f: Z — Z be the multiplication by 2. The Snake Lemma gives a long exact sequence

0 —— kerf —— ker(f,f) —— kerf

coker f —— coker(f, f) —— cokerf —— 0
which is the long exact sequence of the Ext groups:

n=0 0 > 0 > 0

/
zlz(ywZM Z/2

X =t 0

n=2 0 5 0 y ..

ii) We write down the an injective resolution for Z/2.


soren
Notat
This is not the correct map. It should be the dual of the kernel of the map f: Z^2--> Z/4 from the previous diagram, which must necessarily kill one of the Z-factors.

This leads to a wrong result.


0 v 22 1212 g7 2 4 gz 5 0

By Horseshoe Lemma, we obtain the split short exact sequence of resolutions.

!

<—o
S

0 — 772 1213 2 QI s 0
i l (2,2) l

0 — 7/4 — QIZ0Q/Z "2 Q176 Q/Z7 — 0

0 — 712 . Q/Z s Q/Z 5 0
0 0 0

To get the Ext groups we apply the functor Homz(Z,—). But Homz(Z,-) is naturally isomorphic to the
identity functor on Z-Mod. So we are left with the same diagram. In particular, the row complexes are exact.
Therefore the Ext groups are zero for all n e N.

iv) We write down a projective resolution for Z/2.  thjs map isn't injective, so this isn't a resolution.

0 — z/2¢ z/2% > 212 > 0

Apply the Horseshoe Lemma:

Apply the functor Homz/sa (-, 7/2Y). Since a = b = 2, we have Homy,»4(Z/2, 712 =772, Homy 24 (Z/4, z/2b) =
Z/4, Homy2«(Z/2%,7/2Y) = 7/2%, and Homyz 2« ((Z/2%)%,Z/2Y) = (Z/2)2.

0 0 0
0 — 7/2 s 7120 25 7100 3 9
g !
A b2 (-2,-2) b
0 — 7/4 — (7/20)2 “2°5) 7700y g
7l ! |
0 — 7/2 v 7126 25 7/90b 3 g
0 0 0

Let f:Z/2P — 7/2% be the multiplication by 2. We have ker f = Z/2"~! and coker f = Z/2~1. The Snake
Lemma gives a long sequence

0 —— kerf — ker(f,f) —— kerf

0
coker f —— coker(f, f) —> coker f — 0


soren
Notat
I agree that 0 is not a natural number, but what happens for n = 0?

soren
Notat
You are forgetting that a resolution of a module M should have M as either the kernel of the first map (or cokernel of the last). Therefore M will appear as the zeroth (co)homology.

soren
Notat
Yes, and Hom = Ext^0. 


This is exactly the long exact sequence of the Ext modules:

(o)

n=0 Z/2b"1 22y 7yob-l1g 7/0b-1 1 Z/2b-1
5
n=1 Z/2b-1 0 Z/2b"1g 7/2b-1 1 Z/2b-1
(o)
n=2 0 5 0 5 e

It remains to compute the connecting map 6 : Z/2b=1 — 7/2b-1 But the exactness at Ext%/za(Z/Z, Z/Zb) =
71251 forces 6 = 0.

iii) Take a =3 and b =2 in (iv). We obtain that

n=0 212 =% 7120272 28 772
0
X 01
n=1 Z12 5= 7/262/2 z/2

S
Il
[\
o
~
o
~

Question 4

a Is [1;: R-Mod — R-Mod left exact or right exact? What is the derived functor?

Proof. First we have to make sense that []; is a functor. It is clear that the source of [1; is not R-Mod. We make the

following claim: Is that clear? Isn't it M \mapsto \Pi_I(M)?

i.e. the I-fold product of M with itself?
Let | be a discrete category such that Obj(l) = I. Let (R-Mod)! be the functor category, whose objects are functors

| = R-Mod, and whose morphisms are natural transformations.
e (R-Mod)! is an Abelian category.

The objects of (R-Mod)! are indexed families of R-modules {A;};e;. The morphisms of (R-Mod)! are R-
module homomorphisms of the indexed famillies {A; — Bij}je;. (R-Mod)! has a zero object {0;};c;. The
biproduct in (R-Mod)! is the direct sum of families of R-module {A;®B;:i€l}. Let {fi};c; be a morphism
in (R-Mod)?. It is easy to see that {ker f;};c; can be exihibited as the kernel of {f;};c;, and {coker f;};c; can
be exihibited as the cokernel of {f;};c;. The kernels and the kernels of cokernels and the cokernels and the
cokernels of kernels. We then conclude that (R-Mod) is an Abelian category.

In addition, we note that the short exact sequences in (R-Mod)! are of the form {0 — A;j — Bi — C; — O}ieq,
where 0 — A; — B; — C; — 0 is a short exact sequence of R-modules for each i € I.

e [1; is a functor from (R-Mod)’ to R-Mod.

For {M;}cs € Obj((R-Mod)’), [1; maps {M;};c; to the product R-module [];¢; R;. In fact, []; maps an object
in (R-Mod)! to its projective limit. By the universal property it is easy to check the functoriality.

We claim that []; is an exact functor. The proof of left exactness is relatively easy.

Fix M to be an R-module. Since Hom(M, —) is the right adjoint to — ®z M, it preserves projective limits. In
particular,

= [[Homg(M, Ay)

iel

Homp (M, [T4:

iel




Let D: R-Mod — (R-Mod)! be the diagonal functor. That is D(A) = {A;};e;, where A; = Aforall i € I. Then

Hom g mogyr (D(M), {A;}ier) = [ [Homg (M, A;) = Homp

iel

M, [[{Aibier

I

Hence []; is the right adjoint to D. Therefore []; is left exact.

Since R-Mod has enough injectives, so is (R-Mod)’. Then the left exactness of []; implies that it has right derived
functors. For {A;};e7 in (R-Mod)!, we take an injective resolution {Ml?},-E 1- Then the n-th right derived functor of
{A;}ies is the cohomology

R [[{Aitier:= Hn(l_[ M,)

iel
But cohomology commutes with products (wriy?) in R-Mod. So we have
R [[{Aibier:= H”(H M;) =[[H'"M))=0, n>1
1 iel iel

as M; is exact at M l” for n = 1. Hence we have

Rnnz{nb n=0

0, n=1

Finally, the right exactness of [[; can be deduced from that R 1 = 0. To see this, consider a short exact sequence
in (R-Mod)’:

0 > Aj > B; > C; > 0, iel

It induces a long exact sequence in R-Mod:

0 > [ 1A » [1Bi —— TG

iel iel iel

R[4 — R'[[Bi — R'[[C; — -

iel iel iel

Since R! H A; =0, it breaks into a short exact sequence

iel
0 — [[4 — [[Bi — [ICi —> 0
iel iel iel
Hence []; is an exact functor. O
Section C: Optional

Question 5
Let k be afield, R = k[x,y], M:= R/ <x,y)2 = ke kxeokyasak-module.
Consider the following R-Mod short exact sequences and compute the associated Tor long exact sequences.

0 —> kek > M > k > 0

i) Long exact sequence from M ®p —.

0 —> k — Hom(M, k) s kok —> 0

ii) Long exact sequence from M ®p —.


soren
Notat
simple exercise


soren
Notat
This works! But there are easier ways


iii) Long exact sequence from k®pg —.

Me M
0 > k®3 5 s kek —> 0

" {,-0)

iv) Long exact sequence from k®p —.





