Peize Liu St. Peter's College University of Oxford

Problem Sheet 3 C2.2: Homological Algebra

Overall mark: β+

Section A: Introductory

Question 1

Prove that for $A, B \in \mathbb{Z}$ -Mod, $\forall i > 1$, $\operatorname{Ext}_{\mathbb{Z}}^{i}(A, B) = 0 = \operatorname{Tor}_{i}^{\mathbb{Z}}(A, B)$.

Proof. The one-line answer is that \mathbb{Z} is a PID so that it has Krull's dimension 1.

Let $\pi: \mathbb{Z}^{\oplus A} \to A$ be the projection epimorphism. Then we have a short exact sequence

$$0 \longrightarrow \ker \pi \longrightarrow \mathbb{Z}^{\oplus A} \xrightarrow{\pi} A \longrightarrow 0$$

Since \mathbb{Z} is a PID, by Question 6 of Sheet 2, every submodule of the free module $\mathbb{Z}^{\oplus A}$ is free. Hence $\ker \pi$ is free. The sequence above is a free resolution of A.

We note that $\operatorname{Tor}_i(A, B) = H_i(A_{\bullet} \otimes_{\mathbb{Z}} B)$ where $A_0 = \mathbb{Z}^{\oplus A}$, $A_1 = \ker \pi$, and $A_i = 0$ for i > 1. Hence $\operatorname{Tor}_i^{\mathbb{Z}}(A, B) = 0$ for i > 1/2

Similarly, $\operatorname{Ext}_{\mathbb{Z}}^{i}(A,B)=H^{i}(\operatorname{Hom}_{\mathbb{Z}}(A_{\bullet},B)).$ We have $\operatorname{Ext}_{\mathbb{Z}}^{i}(A,B)=0$ for i>1.

Section B: Core

Before going into Question 2 and 3, we purpose he following lemma about the Hom functor, which will be useful later;

Do you mean "propose"?

Lemma 1

- 1. For $a \ge b, c \ge 0$, $\operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/2^b, \mathbb{Z}/2^c) \cong \mathbb{Z}/2^{\min\{b,c\}}$.
- 2. For $n \ge 2$, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Z}) = 0$.

Proof. 1.

- 1. Let $\varphi \in \operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/2^b, \mathbb{Z}/2^c)$. φ is uniquely determined by $\varphi(1) \in \mathbb{Z}/2^c$. If $b \ge c$, then $\varphi(1)$ could be any element in c. Hence $\operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/2^b, \mathbb{Z}/2^c)$ is bijective to $\mathbb{Z}/2^c$. It is easy to check that this is in fact a $\mathbb{Z}/2^a$ -module isomorphism. On the other hand, if $b \le c$, then $2^b \varphi(1) = \varphi(2^b) \in \mathbb{Z}/2^c$. Hence $\varphi(1)$ lies in the unique subgroup of $\mathbb{Z}/2^c$ which is isomorphic to $\mathbb{Z}/2^b$. It is easy to check that we have a $\mathbb{Z}/2^a$ -module isomorphism $\operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/2^b, \mathbb{Z}/2^c) \cong \mathbb{Z}/2^b$.
- 2. Let $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Z})$. Then $n\varphi(1) = \varphi(n) = \varphi(0) = 0$. Since \mathbb{Z} is torsion-free, $\varphi(1) = 0$ and hence $\varphi = 0$. We have $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Z}) = 0$.

Question 2

Compute the following Ext, Tor groups:

- (a) $\operatorname{Tor}_{*}^{\mathsf{k}[x]}\left(\frac{\mathsf{k}[x]}{x-a}, \frac{\mathsf{k}[x]}{x-b}\right)$ for $a, b \in \mathsf{k}$ a field.
- (b) $\operatorname{Tor}_*^{\mathbb{Z}}\left(\frac{\mathbb{Z}}{a}, \frac{\mathbb{Z}}{b}\right)$ for $a, b \in \mathbb{Z}$.
- (c) $\operatorname{Ext}_{\mathbb{Z}/4}^* \left(\frac{\mathbb{Z}}{2}, \frac{\mathbb{Z}}{2} \right)$.
- (d) $\operatorname{Ext}_{\mathbb{Z}/2^a}^*\left(\frac{\mathbb{Z}}{2^b}, \frac{\mathbb{Z}}{2^c}\right)$ for $a \ge b \ge c$.
- (e) $\operatorname{Ext}_{k[x,y]/(x^2,xy,y^2)}^*(k,k)$.

Proof. (a) We first find a free resolution $P_{\bullet} \to A$ for $A := k[x]/\langle x - a \rangle$. This is easy:

$$0 \longrightarrow \mathsf{k}[x] \xrightarrow{\cdot (x-a)} \mathsf{k}[x] \longrightarrow \frac{\mathsf{k}[x]}{\langle x-a \rangle} \longrightarrow 0$$

By tensoring $B := k[x]/\langle x - b \rangle$ to the free resolution, we obtain the chain complex:

$$0 \longrightarrow \frac{\mathsf{k}[x]}{\langle x - b \rangle} \xrightarrow{\partial_1} \frac{\mathsf{k}[x]}{\langle x - b \rangle} \longrightarrow 0$$

Therefore

$$\operatorname{Tor}_{n}^{\mathsf{k}[x]}(A,B) = \begin{cases} \operatorname{coker} \partial_{1}, & n = 0\\ \operatorname{ker} \partial_{1}, & n = 1\\ 0, & n > 1 \end{cases}$$

• If a = b, then the map $\partial_1 : \frac{\mathsf{k}[x]}{\langle x - b \rangle} \to \frac{\mathsf{k}[x]}{\langle x - b \rangle}$ is zero. We have

$$\operatorname{Tor}_{n}^{\mathsf{k}[x]}(A,B) = \begin{cases} \frac{\mathsf{k}[x]}{\langle x - a \rangle}, & n = 0, 1\\ 0, & n > 1 \end{cases}$$

• If $a \neq b$, then $\langle x - a \rangle$ and $\langle x - b \rangle$ are coprime ideals of k[x]. Hence ∂_1 is bijective. We have

$$\operatorname{Tor}_n^{\mathsf{k}[x]}(A,B) = 0, \quad n \in \mathbb{N}$$

(b) $A := \mathbb{Z}/a$ has a free resolution:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot a} \mathbb{Z} \longrightarrow \mathbb{Z}/a \longrightarrow 0$$

Tensoring $B := \mathbb{Z}/b$:

$$0 \longrightarrow \mathbb{Z}/b \stackrel{\partial_1}{\longrightarrow} \mathbb{Z}/b \longrightarrow 0$$

Let $d = \gcd(a, b)$, a = pd and b = qd. Then

$$\ker \partial_1 = \{ \overline{n} : b \mid an \} = \{ \overline{n} : q \mid n \} = q \mathbb{Z} / b \mathbb{Z} \cong \mathbb{Z} / d \mathbb{Z}$$

and

$$\operatorname{coker} \partial_1 = \frac{\mathbb{Z}/b\mathbb{Z}}{\operatorname{im} \partial_1} = \frac{\mathbb{Z}/b\mathbb{Z}}{(a\mathbb{Z} + b\mathbb{Z})/b\mathbb{Z}} \cong \frac{\mathbb{Z}}{a\mathbb{Z} + b\mathbb{Z}} = \mathbb{Z}/d\mathbb{Z}$$

Hence

$$\operatorname{Tor}_{n}^{\mathbb{Z}}(\mathbb{Z}/a,\mathbb{Z}/b) = \begin{cases} \mathbb{Z}/\gcd(a,b)\mathbb{Z}, & n = 0,1\\ 0, & n > 1 \end{cases}$$

In particular, if *a* and *b* are coprime, then $\operatorname{Tor}_n^{\mathbb{Z}}(\mathbb{Z}/a,\mathbb{Z}/b) = 0$ for all $n \in \mathbb{N}$.

(c) We take a free resolution of $\mathbb{Z}/2$: this map isn't injective, so this isn't a resolution.

Applying the contravariant functor $\text{Hom}_{\mathbb{Z}/4}(-,\mathbb{Z}/2)$ to the free resolution:

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}/4}(\mathbb{Z}/4,\mathbb{Z}/2) \xrightarrow{-\circ 2} \operatorname{Hom}_{\mathbb{Z}/4}(\mathbb{Z}/4,\mathbb{Z}/2) \longrightarrow 0$$

Note that $\operatorname{Hom}_{\mathbb{Z}/4}(\mathbb{Z}/4,\mathbb{Z}/2) \cong \mathbb{Z}/2$. So it is equivalent to

$$0 \longrightarrow \mathbb{Z}/2 \stackrel{0}{\longrightarrow} \mathbb{Z}/2 \longrightarrow 0$$

Hence

$$\operatorname{Ext}_{\mathbb{Z}/4}^{n}(\mathbb{Z}/2,\mathbb{Z}/2) = \begin{cases} \mathbb{Z}/2, & n = 0,1\\ 0, & n > 1 \end{cases} \times$$

(d) We take a free resolution of $\mathbb{Z}/2^b$:

again, this isn't injective.

$$0 \longrightarrow \mathbb{Z}/2^a \xrightarrow{2b} \mathbb{Z}/2^a \longrightarrow \mathbb{Z}/2^b \longrightarrow 0$$

Applying the contravariant functor $\operatorname{Hom}_{\mathbb{Z}/2^a}(-,\mathbb{Z}/2^c)$:

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/2^a, \mathbb{Z}/2^c) \xrightarrow{-\circ 2^b} \operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/2^a, \mathbb{Z}/2^c) \longrightarrow 0$$

Note that $\operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/2^a,\mathbb{Z}/2^c) \cong \mathbb{Z}/2^c$. So it is equivalent to

$$0 \longrightarrow \mathbb{Z}/2^c \stackrel{0}{\longrightarrow} \mathbb{Z}/2^c \longrightarrow 0$$

Hence

$$\operatorname{Ext}^n_{\mathbb{Z}/2^a}(\mathbb{Z}/2^b,\mathbb{Z}/2^c) = \begin{cases} \mathbb{Z}/2^c\mathbb{Z}, & n = 0,1\\ 0, & n > 1 \end{cases}$$

(e) Let $R := \frac{k[x, y]}{\langle x^2, xy, y^2 \rangle}$ for simplicity. First we note that k has a unique R-module structure given by $x \cdot 1 = y \cdot 1 = 0$. This is because $0 = x^2 \cdot 1 = (x \cdot 1)^2$ in k and k is a domain implies that $x \cdot 1 = 0$. Similarly $y \cdot 1 = 0$.

We construct a free resolution for k as follows. Consider the projection $\pi: R \to k$ given by $x, y \mapsto 0$. We have $\ker \pi = \langle x, y \rangle \triangleleft R$. Next, choose $\varphi: R^2 \to R$ given by $(1,0) \mapsto x$, $(0,1) \mapsto y$. Then $\operatorname{im} \varphi = \langle x, y \rangle = \ker \pi$. Note that

$$\varphi((a+bx+cy, d+ex+fy)) = ax + bx^2 + cxy + dy + exy + fy^2 = ax + dy$$

Hence $\ker \varphi = \langle x, y \rangle \oplus \langle x, y \rangle = \ker \pi \oplus \ker \pi$. Inductively we can construct an infinite sequence:

$$\cdots \longrightarrow R^4 \xrightarrow{(\varphi, \varphi)} R^2 \xrightarrow{\varphi} R \xrightarrow{\pi} \mathsf{k} \longrightarrow 0$$

Apply the functor $\operatorname{Hom}_R(-,k)$:

$$0 \longrightarrow \operatorname{Hom}_{R}(\mathsf{k},\mathsf{k}) \xrightarrow{-\circ \pi} \operatorname{Hom}_{R}(R,\mathsf{k}) \xrightarrow{-\circ \varphi} \operatorname{Hom}_{R}(R^{2},\mathsf{k}) \xrightarrow{-\circ (\varphi,\varphi)} \operatorname{Hom}_{R}(R^{4},\mathsf{k}) \longrightarrow \cdots$$

It is clear that $\operatorname{Hom}_R(R^n, \mathsf{k}) \cong \mathsf{k}^n$, Also, $\operatorname{Hom}_R(\mathsf{k}, \mathsf{k}) \cong \mathsf{k}$, because $\psi \in \operatorname{Hom}_R(\mathsf{k}, \mathsf{k})$ is uniquely determined by $\psi(1) \in \mathsf{k}$. Then we look at the induced maps.

Since $\pi|_{k} = id_{k}$, $\pi : R \to k$ induces the identity map on k.

Consider the induced map $-\circ \varphi: \operatorname{Hom}_R(R, \mathsf{k}) \to \operatorname{Hom}_R(R, \mathsf{k}^2)$ of $\varphi: R^2 \to R$. For $\psi \in \operatorname{Hom}_R(R, \mathsf{k})$,

$$\psi \circ \varphi(a+bx+cy,d+ex+fy) = \psi(ax+dy) = 0$$

Hence $-\circ \varphi = 0$. We have the (augmented) chain complex:

$$0 \longrightarrow k \stackrel{\mathrm{id}}{\longrightarrow} k \stackrel{0}{\longrightarrow} k^2 \stackrel{0}{\longrightarrow} k^4 \longrightarrow \cdots$$

Taking the cohomology, we obtain the Ext modules:

t modules:
$$\operatorname{Ext}_{R}^{n}(\mathsf{k},\mathsf{k}) = \mathsf{k}^{2^{n}}, \quad n \in \mathbb{N} \qquad \text{Very nice!}$$

2.

i)
$$\cdots \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Z}/2,\mathbb{Z}) \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Z}/4,\mathbb{Z}) \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Z}/2,\mathbb{Z}) \longrightarrow \operatorname{Ext}^{i+1}_{\mathbb{Z}}(\mathbb{Z}/2,\mathbb{Z}) \longrightarrow \cdots$$
ii) $\cdots \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}/2) \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}/4) \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}/2) \longrightarrow \operatorname{Ext}^{i+1}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}/2) \longrightarrow \cdots$
associated with the short exact sequence $0 \longrightarrow \mathbb{Z}/2 \xrightarrow{f} \mathbb{Z}/4 \xrightarrow{g} \mathbb{Z}/2 \longrightarrow 0$ in \mathbb{Z} -Mod.

iii) $\cdots \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}/8}(\mathbb{Z}/2,\mathbb{Z}/4) \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}/8}(\mathbb{Z}/4,\mathbb{Z}/4) \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}/8}(\mathbb{Z}/2,\mathbb{Z}/4) \longrightarrow \operatorname{Ext}^{i+1}_{\mathbb{Z}/8}(\mathbb{Z}/2,\mathbb{Z}/4) \longrightarrow \cdots$
associated with the short exact sequence $0 \longrightarrow \mathbb{Z}/2 \xrightarrow{f} \mathbb{Z}/4 \xrightarrow{g} \mathbb{Z}/2 \longrightarrow 0$ in $\mathbb{Z}/8$ -Mod.

iv) $\cdots \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}/2^a}(\mathbb{Z}/2,\mathbb{Z}/2^b) \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}/2^a}(\mathbb{Z}/4,\mathbb{Z}/2^b) \longrightarrow \operatorname{Ext}^i_{\mathbb{Z}/2^a}(\mathbb{Z}/2,\mathbb{Z}/2^b) \longrightarrow \operatorname{Ext}^{i+1}_{\mathbb{Z}/2^a}(\mathbb{Z}/2,\mathbb{Z}/2^b) \longrightarrow \cdots$
associated with the short exact sequence $0 \longrightarrow \mathbb{Z}/2 \xrightarrow{f} \mathbb{Z}/4 \xrightarrow{g} \mathbb{Z}/2 \longrightarrow 0$ in $\mathbb{Z}/2^a$ -Mod where $a > b > 0$

Proof. i) First we write down a free resolution for $\mathbb{Z}/2$. By Horseshoe Lemma, we obtain the split short exact sequence of resolutions.

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z}/2 \longrightarrow 0 \qquad 0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

$$\downarrow f \qquad \downarrow \qquad \downarrow \qquad \downarrow f$$

$$\mathbb{Z}/4 \qquad \Rightarrow 0 \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{Z}/4 \longrightarrow 0$$

$$\downarrow g \qquad \downarrow \qquad \downarrow \qquad \downarrow g$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow g \qquad \qquad \downarrow \qquad \downarrow g$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow g$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

We apply the dual functor $(-)^{\vee} := \operatorname{Hom}_{\mathbb{Z}}(-,\mathbb{Z})$ to the diagram. We have $(\mathbb{Z}^n)^{\vee} = \mathbb{Z}^n$ and $(\mathbb{Z}/n)^{\vee} = 0$. Therefore we have a short exact sequence of the (row) complexes



For simplicity we let $f: \mathbb{Z} \to \mathbb{Z}$ be the multiplication by 2. The Snake Lemma gives a long exact sequence

$$0 \longrightarrow \ker f \longrightarrow \ker(f, f) \longrightarrow \ker f$$
$$\operatorname{coker} f \longrightarrow \operatorname{coker} (f, f) \longrightarrow \operatorname{coker} f \longrightarrow 0$$

which is the long exact sequence of the Ext groups:

$$n = 0 \qquad 0 \longrightarrow 0 \longrightarrow 0$$

$$\times \qquad n = 1 \qquad \mathbb{Z}/2 \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} \mathbb{Z}/2 \oplus \mathbb{Z}/2 \xrightarrow{(0 \ 1)} \mathbb{Z}/2$$

$$n = 2 \qquad 0 \longleftrightarrow 0 \longrightarrow \cdots$$

ii) We write down the an injective resolution for $\mathbb{Z}/2$.

$$0 \longrightarrow \mathbb{Z}/2 \xrightarrow{1 \mapsto 1/2} \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

By Horseshoe Lemma, we obtain the split short exact sequence of resolutions.

$$0 \longrightarrow \mathbb{Z}/2 \xrightarrow{1 \mapsto 1/2} \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z}/2 \xrightarrow{1 \mapsto 1/2} \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z}/4 \longrightarrow \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Q}/\mathbb{Z} \xrightarrow{(\cdot 2, \cdot 2)} \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z}/2 \xrightarrow{1 \mapsto 1/2} \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0 \qquad 0 \qquad \qquad 0$$

To get the Ext groups we apply the functor $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},-)$. But $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},-)$ is naturally isomorphic to the identity functor on \mathbb{Z} -Mod. So we are left with the same diagram. In particular, the row complexes are exact. Therefore the Ext groups are zero for all $n \in \mathbb{N}$.

iv) We write down a projective resolution for $\mathbb{Z}/2$. this map isn't injective, so this isn't a resolution.

$$0 \longrightarrow \mathbb{Z}/2^a \xrightarrow{\mathbf{C}} \mathbb{Z}/2^a \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

Apply the Horseshoe Lemma:

$$0 \longrightarrow \mathbb{Z}/2^{a} \xrightarrow{\cdot 2} \mathbb{Z}/2^{a} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow f$$

$$0 \longrightarrow (\mathbb{Z}/2^{a})^{2} \xrightarrow{(\cdot 2, \cdot 2)} (\mathbb{Z}/2^{a})^{2} \longrightarrow \mathbb{Z}/4 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow g$$

$$0 \longrightarrow \mathbb{Z}/2^{a} \xrightarrow{\cdot 2} \mathbb{Z}/2^{a} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow g$$

$$0 \longrightarrow \mathbb{Z}/2^{a} \xrightarrow{\cdot 2} \mathbb{Z}/2^{a} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

Apply the functor $\operatorname{Hom}_{\mathbb{Z}/2^a}(-,\mathbb{Z}/2^b)$. Since $a \ge b \ge 2$, we have $\operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/2,\mathbb{Z}/2^b) \cong \mathbb{Z}/2$, $\operatorname{Hom}_{\mathbb{Z}/2^a}(\mathbb{Z}/4,\mathbb{Z}/2^b) \cong \mathbb{Z}/2$, and $\operatorname{Hom}_{\mathbb{Z}/2^a}((\mathbb{Z}/2^a)^2,\mathbb{Z}/2^b) \cong (\mathbb{Z}/2^b)^2$.

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow \mathbb{Z}/2^{b} \xrightarrow{\cdot 2} \mathbb{Z}/2^{b} \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z}/4 \longrightarrow (\mathbb{Z}/2^{b})^{2} \xrightarrow{(\cdot 2, \cdot 2)} \mathbb{Z}/2^{b} \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z}/4 \longrightarrow \mathbb{Z}/2^{b} \xrightarrow{\cdot 2} \mathbb{Z}/2^{b} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow \mathbb{Z}/2^{b} \xrightarrow{\cdot 2} \mathbb{Z}/2^{b} \longrightarrow 0$$

Let $f: \mathbb{Z}/2^b \to \mathbb{Z}/2^b$ be the multiplication by 2. We have $\ker f = \mathbb{Z}/2^{b-1}$ and $\operatorname{coker} f = \mathbb{Z}/2^{b-1}$. The Snake Lemma gives a long sequence

$$0 \longrightarrow \ker f \longrightarrow \ker(f, f) \longrightarrow \ker f$$

$$\operatorname{coker} f \longrightarrow \operatorname{coker} (f, f) \longrightarrow \operatorname{coker} f \longrightarrow 0$$

This is exactly the long exact sequence of the Ext modules:

$$n = 0 \qquad \mathbb{Z}/2^{b-1} \xrightarrow{\binom{1}{0}} \mathbb{Z}/2^{b-1} \oplus \mathbb{Z}/2^{b-1} \xrightarrow{(0\ 1)} \mathbb{Z}/2^{b-1}$$

$$n = 1 \qquad \mathbb{Z}/2^{b-1} \xrightarrow{\binom{1}{0}} \mathbb{Z}/2^{b-1} \oplus \mathbb{Z}/2^{b-1} \xrightarrow{(0\ 1)} \mathbb{Z}/2^{b-1}$$

$$n = 2 \qquad 0 \xrightarrow{} 0 \xrightarrow{} \cdots$$

It remains to compute the connecting map $\delta: \mathbb{Z}/2^{b-1} \to \mathbb{Z}/2^{b-1}$. But the exactness at $\operatorname{Ext}^0_{\mathbb{Z}/2^a}(\mathbb{Z}/2,\mathbb{Z}/2^b) \cong \mathbb{Z}/2^{b-1}$ forces $\delta = 0$.

iii) Take a = 3 and b = 2 in (iv). We obtain that

$$n = 0 \qquad \mathbb{Z}/2 \xrightarrow{\binom{1}{0}} \mathbb{Z}/2 \oplus \mathbb{Z}/2 \xrightarrow{(0 \ 1)} \mathbb{Z}/2$$

$$n = 1 \qquad \mathbb{Z}/2 \xrightarrow{\binom{1}{0}} \mathbb{Z}/2 \oplus \mathbb{Z}/2 \xrightarrow{(0 \ 1)} \mathbb{Z}/2$$

$$n = 2 \qquad 0 \xrightarrow{} 0 \xrightarrow{} \cdots$$

Question 4

Is $\prod_I : R\text{-Mod} \to R\text{-Mod}$ left exact or right exact? What is the derived functor?

Proof. First we have to make sense that \prod_I is a functor. It is clear that *the source of* \prod_I *is not* R-Mod. We make the following claim:

Is that clear? Isn't it M \mapsto \Pi_I(M)?

i.e. the I-fold product of M with itself?

Let I be a discrete category such that Obj(I) = I. Let $(R-\dot{M}od)^I$ be the functor category, whose objects are functors $I \to R$ -Mod, and whose morphisms are natural transformations.

• $(R-Mod)^I$ is an Abelian category.

The objects of $(R\operatorname{-Mod})^I$ are indexed families of $R\operatorname{-modules}\ \{A_i\}_{i\in I}$. The morphisms of $(R\operatorname{-Mod})^I$ are $R\operatorname{-module}\ homomorphisms$ of the indexed families $\{A_i\to B_i\}_{i\in I}$. $(R\operatorname{-Mod})^I$ has a zero object $\{0_i\}_{i\in I}$. The biproduct in $(R\operatorname{-Mod})^I$ is the direct sum of families of $R\operatorname{-module}\ \{A_i\oplus B_i\colon i\in I\}$. Let $\{f_i\}_{i\in I}$ be a morphism in $(R\operatorname{-Mod})^I$. It is easy to see that $\{\ker f_i\}_{i\in I}$ can be exihibited as the kernel of $\{f_i\}_{i\in I}$, and $\{\operatorname{coker}\ f_i\}_{i\in I}$ can be exihibited as the cokernel of $\{f_i\}_{i\in I}$. The kernels and the kernels of cokernels and the cokernels and the cokernels. We then conclude that $(R\operatorname{-Mod})^I$ is an Abelian category.

In addition, we note that the short exact sequences in $(R\text{-Mod})^I$ are of the form $\{0 \to A_i \to B_i \to C_i \to 0\}_{i \in I}$, where $0 \to A_i \to B_i \to C_i \to 0$ is a short exact sequence of R-modules for each $i \in I$.

• \prod_I is a functor from $(R\text{-Mod})^I$ to R-Mod.

For $\{M_i\}_{i\in I}\in \operatorname{Obj}((R\operatorname{\mathsf{-Mod}})^I)$, \prod_I maps $\{M_i\}_{i\in I}$ to the product $R\operatorname{\mathsf{-module}}\prod_{i\in I}R_i$. In fact, \prod_I maps an object in $(R\operatorname{\mathsf{-Mod}})^I$ to its projective limit. By the universal property it is easy to check the functoriality.

We claim that \prod_I is an exact functor. The proof of left exactness is relatively easy.

Fix M to be an R-module. Since Hom(M,-) is the right adjoint to $-\otimes_R M$, it preserves projective limits. In particular,

$$\operatorname{Hom}_R\left(M,\prod_{i\in I}A_i\right)\cong\prod_{i\in I}\operatorname{Hom}_R(M,A_i)$$

Let $D: R\text{-Mod} \to (R\text{-Mod})^I$ be the diagonal functor. That is $D(A) = \{A_i\}_{i \in I}$, where $A_i = A$ for all $i \in I$. Then

$$\operatorname{Hom}_{(R\operatorname{\mathsf{-Mod}})^I}(D(M),\{A_i\}_{i\in I}) = \prod_{i\in I}\operatorname{Hom}_R(M,A_i) \cong \operatorname{Hom}_R\left(M,\prod_I\{A_i\}_{i\in I}\right)$$

Hence \prod_I is the right adjoint to D. Therefore \prod_I is left exact.

Since R-Mod has enough injectives, so is (R-Mod) I . Then the left exactness of \prod_I implies that it has right derived functors. For $\{A_i\}_{i\in I}$ in (R-Mod) I , we take an injective resolution $\{M_i^{\bullet}\}_{i\in I}$. Then the n-th right derived functor of $\{A_i\}_{i\in I}$ is the cohomology

$$\mathsf{R}^n \prod \{A_i\}_{i \in I} := H^n \left(\prod_{i \in I} M_i^{\bullet}\right)$$

But cohomology commutes with products (wny?) in *R*-Mod. So we have

$$\mathsf{R}^n \prod_I \{A_i\}_{i \in I} := H^n \left(\prod_{i \in I} M_i^{\bullet}\right) = \prod_{i \in I} H^n(M_i^{\bullet}) = 0, \quad n \geqslant 1$$

as M_i^{\bullet} is exact at M_i^n for $n \ge 1$. Hence we have

$$\mathsf{R}^n \prod_I = \begin{cases} \prod_I, & n = 0 \\ 0, & n \ge 1 \end{cases}$$

Finally, the right exactness of \prod_I can be deduced from that $\mathsf{R}^1\prod_I=0$. To see this, consider a short exact sequence in $(R\operatorname{\mathsf{-Mod}})^I$:

$$0 \longrightarrow A_i \longrightarrow B_i \longrightarrow C_i \longrightarrow 0, \qquad i \in I$$

It induces a long exact sequence in *R*-Mod:

$$0 \longrightarrow \prod_{i \in I} A_i \longrightarrow \prod_{i \in I} B_i \longrightarrow \prod_{i \in I} C_i$$

$$R^1 \prod_{i \in I} A_i \longrightarrow R^1 \prod_{i \in I} B_i \longrightarrow R^1 \prod_{i \in I} C_i \longrightarrow \cdots$$

Since $R^1 \prod_{i \in I} A_i = 0$, it breaks into a short exact sequence

$$0 \longrightarrow \prod_{i \in I} A_i \longrightarrow \prod_{i \in I} B_i \longrightarrow \prod_{i \in I} C_i \longrightarrow 0$$

Hence \prod_{I} is an exact functor.

Section C: Optional

Question 5

Let k be a field, $R = k[x, y], M := R/\langle x, y \rangle^2 \cong k \oplus kx \oplus ky$ as a k-module.

Consider the following *R*-Mod short exact sequences and compute the associated Tor long exact sequences.

$$0 \longrightarrow k \oplus k \longrightarrow M \longrightarrow k \longrightarrow 0$$

i) Long exact sequence from $M \otimes_R -$.

$$0 \longrightarrow k \longrightarrow \operatorname{Hom}_k(M,k) \longrightarrow k \oplus k \longrightarrow 0$$

ii) Long exact sequence from $M \otimes_R -$.

iii) Long exact sequence from $k \otimes_R -$.

$$0 \longrightarrow k^{\oplus 3} \longrightarrow \frac{M \oplus M}{\left\langle (y, -x) \right\rangle} \longrightarrow k \oplus k \longrightarrow 0$$

iv) Long exact sequence from $k \otimes_R -$.