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Section A: Introductory

Question 1

Prove that for A,B ∈Z-Mod, ∀ i > 1, Exti
Z

(A,B) = 0 = TorZi (A,B).

Proof. The one-line answer is that Z is a PID so that it has Krull’s dimension 1.

Let π : Z⊕A → A be the projection epimorphism. Then we have a short exact sequence

0 kerπ Z⊕A A 0π

Since Z is a PID, by Question 6 of Sheet 2, every submodule of the free module Z⊕A is free. Hence kerπ is free.

The sequence above is a free resolution of A.

We note that Tori (A,B) = Hi (A•⊗Z B) where A0 = Z⊕A , A1 = kerπ, and Ai = 0 for i > 1. Hence TorZi (A,B) = 0 for

i > 1/

Similarly, Exti
Z

(A,B) = H i (HomZ(A•,B)). We have Exti
Z

(A,B) = 0 for i > 1.

Section B: Core

Before going into Question 2 and 3, we purpose the following lemma about the Hom functor, which will be useful

later;

Lemma 1

1. For a Ê b,c Ê 0, HomZ/2a (Z/2b ,Z/2c ) ∼=Z/2min{b,c}.

2. For n Ê 2, HomZ(Z/n,Z) = 0.

Proof. 1. Let ϕ ∈ HomZ/2a (Z/2b ,Z/2c ). ϕ is uniquely determined by ϕ(1) ∈ Z/2c . If b Ê c, then ϕ(1) could be any

element in c. Hence HomZ/2a (Z/2b ,Z/2c ) is bijective to Z/2c . It is easy to check that this is in fact a Z/2a-

module isomorphism. On the other hand, if b É c, then 2bϕ(1) =ϕ(2b) ∈Z/2c . Henceϕ(1) lies in the unique

subgroup ofZ/2c which is isomorphic toZ/2b . It is easy to check that we have aZ/2a-module isomorphism

HomZ/2a (Z/2b ,Z/2c ) ∼=Z/2b .

2. Let ϕ ∈ HomZ(Z/n,Z). Then nϕ(1) =ϕ(n) =ϕ(0) = 0. Since Z is torsion-free, ϕ(1) = 0 and hence ϕ= 0. We

have HomZ(Z/n,Z) = 0.

Question 2

Compute the following Ext, Tor groups:

(a) Tork[x]
∗

(
k[x]

x −a
,
k[x]

x −b

)
for a,b ∈ k a field.

(b) TorZ∗
(
Z

a
,
Z

b

)
for a,b ∈Z.

(c) Ext∗
Z/4

(
Z

2
,
Z

2

)
.

(d) Ext∗
Z/2a

(
Z

2b
,
Z

2c

)
for a Ê b Ê c.

(e) Ext∗
k[x,y]/(x2,x y,y2)(k,k).

Proof. (a) We first find a free resolution P• → A for A := k[x]/〈x −a〉. This is easy:

Do you mean "propose"?

β+
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0 k[x] k[x]
k[x]

〈x −a〉 0
·(x −a)

By tensoring B := k[x]/〈x −b〉 to the free resolution, we obtain the chain complex:

0
k[x]

〈x −b〉
k[x]

〈x −b〉 0
∂1

Therefore

Tork[x]
n (A,B) =


coker∂1, n = 0

ker∂1, n = 1

0, n > 1

• If a = b, then the map ∂1 :
k[x]

〈x −b〉 →
k[x]

〈x −b〉 is zero. We have

Tork[x]
n (A,B) =


k[x]

〈x −a〉 , n = 0,1

0, n > 1

• If a 6= b, then 〈x −a〉 and 〈x −b〉 are coprime ideals of k[x]. Hence ∂1 is bijective. We have

Tork[x]
n (A,B) = 0, n ∈N

(b) A :=Z/a has a free resolution:

0 Z Z Z/a 0·a

Tensoring B :=Z/b:

0 Z/b Z/b 0
∂1

Let d = gcd(a,b), a = pd and b = qd . Then

ker∂1 =
{
n : b | an

}= {
n : q | n

}= qZ/bZ∼=Z/dZ

and

coker∂1 = Z/bZ

im∂1
= Z/bZ

(aZ+bZ)/bZ
∼= Z

aZ+bZ
=Z/dZ

Hence

TorZn (Z/a,Z/b) =
Z/gcd(a,b)Z, n = 0,1

0, n > 1

In particular, if a and b are coprime, then TorZn (Z/a,Z/b) = 0 for all n ∈N.

(c) We take a free resolution of Z/2:

0 Z/4 Z/4 Z/2 0·2

Applying the contravariant functor HomZ/4(−,Z/2) to the free resolution:

0 HomZ/4(Z/4,Z/2) HomZ/4(Z/4,Z/2) 0−◦2

Note that HomZ/4(Z/4,Z/2) ∼=Z/2. So it is equivalent to

0 Z/2 Z/2 00

this map isn't injective, so this isn't a resolution.
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Hence

Extn
Z/4(Z/2,Z/2) =

Z/2, n = 0,1

0, n > 1

(d) We take a free resolution of Z/2b :

0 Z/2a Z/2a Z/2b 0·2b

Applying the contravariant functor HomZ/2a (−,Z/2c ):

0 HomZ/2a (Z/2a ,Z/2c ) HomZ/2a (Z/2a ,Z/2c ) 0−◦2b

Note that HomZ/2a (Z/2a ,Z/2c ) ∼=Z/2c . So it is equivalent to

0 Z/2c Z/2c 00

Hence

Extn
Z/2a (Z/2b ,Z/2c ) =

Z/2cZ, n = 0,1

0, n > 1

(e) Let R := k[x, y]〈
x2, x y, y2

〉 for simplicity. First we note that k has a unique R-module structure given by x ·1 = y ·1 =
0. This is because 0 = x2 ·1 = (x ·1)2 in k and k is a domain implies that x ·1 = 0. Similarly y ·1 = 0.

We construct a free resolution for k as follows. Consider the projection π : R → k given by x, y 7→ 0. We have

kerπ = 〈
x, y

〉
/R. Next, choose ϕ : R2 → R given by (1,0) 7→ x, (0,1) 7→ y . Then imϕ = 〈

x, y
〉 = kerπ. Note

that

ϕ((a +bx + c y,d +ex + f y)) = ax +bx2 + cx y +d y +ex y + f y2 = ax +d y

Hence kerϕ= 〈
x, y

〉⊕〈
x, y

〉= kerπ⊕kerπ. Inductively we can construct an infinite sequence:

· · · R4 R2 R k 0
(ϕ,ϕ) ϕ π

Apply the functor HomR (−,k):

0 HomR (k,k) HomR (R,k) HomR (R2,k) HomR (R4,k) · · ·−◦π −◦ϕ −◦ (ϕ,ϕ)

It is clear that HomR (Rn ,k) ∼= kn , Also, HomR (k,k) ∼= k, because ψ ∈ HomR (k,k) is uniquely determined by

ψ(1) ∈ k. Then we look at the induced maps.

Since π|k = idk, π : R → k induces the identity map on k.

Consider the induced map −◦ϕ : HomR (R,k) → HomR (R,k2) of ϕ : R2 → R. For ψ ∈ HomR (R,k),

ψ◦ϕ(a +bx + c y,d +ex + f y) =ψ(ax +d y) = 0

Hence −◦ϕ= 0. We have the (augmented) chain complex:

0 k k k2 k4 · · ·id 0 0

Taking the cohomology, we obtain the Ext modules:

Extn
R (k,k) = k2n

, n ∈N

Question 3

Compute all terms and maps in the following long exact sequences:

again, this isn't injective.

Very nice!

γ+
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i) · · · Exti
Z

(Z/2,Z) Exti
Z

(Z/4,Z) Exti
Z

(Z/2,Z) Exti+1
Z

(Z/2,Z) · · ·
ii) · · · Exti

Z
(Z,Z/2) Exti

Z
(Z,Z/4) Exti

Z
(Z,Z/2) Exti+1

Z
(Z,Z/2) · · ·

associated with the short exact sequence 0 Z/2 Z/4 Z/2 0
f g

in Z-Mod.

iii) · · · Exti
Z/8(Z/2,Z/4) Exti

Z/8(Z/4,Z/4) Exti
Z/8(Z/2,Z/4) Exti+1

Z/8(Z/2,Z/4) · · ·

associated with the short exact sequence 0 Z/2 Z/4 Z/2 0
f g

in Z/8-Mod.

iv) · · · Exti
Z/2a (Z/2,Z/2b) Exti

Z/2a (Z/4,Z/2b) Exti
Z/2a (Z/2,Z/2b) Exti+1

Z/2a (Z/2,Z/2b) · · ·

associated with the short exact sequence 0 Z/2 Z/4 Z/2 0
f g

in Z/2a-Mod where a > b Ê
2.

Proof. i) First we write down a free resolution forZ/2. By Horseshoe Lemma, we obtain the split short exact sequence

of resolutions.

0

0 Z Z Z/2 0

Z/4

0 Z Z Z/2 0

0

g

f

·2

·2

=⇒

0 0 0

0 Z Z Z/2 0

0 Z2 Z2 Z/4 0

0 Z Z Z/2 0

0 0 0

g

f

·2

·2

We apply the dual functor (−)∨ := HomZ(−,Z) to the diagram. We have (Zn)∨ =Zn and (Z/n)∨ = 0. Therefore

we have a short exact sequence of the (row) complexes

0 0 0

0 0 Z Z 0

0 0 Z2 Z2 0

0 0 Z Z 0

0 0 0

·2

·2

(·2, ·2)

For simplicity we let f :Z→Z be the multiplication by 2. The Snake Lemma gives a long exact sequence

0 ker f ker( f , f ) ker f

coker f coker( f , f ) coker f 0

which is the long exact sequence of the Ext groups:

n = 0 0 0 0

n = 1 Z/2 Z/2⊕Z/2 Z/2

n = 2 0 0 · · ·

(1
0

) (0 1)

ii) We write down the an injective resolution for Z/2.

soren
Notat
This is not the correct map. It should be the dual of the kernel of the map f: Z^2--> Z/4 from the previous diagram, which must necessarily kill one of the Z-factors.

This leads to a wrong result.
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0 Z/2 Q/Z Q/Z 01 7→ 1/2 ·2

By Horseshoe Lemma, we obtain the split short exact sequence of resolutions.

0 0 0

0 Z/2 Q/Z Q/Z 0

0 Z/4 Q/Z⊕Q/Z Q/Z⊕Q/Z 0

0 Z/2 Q/Z Q/Z 0

0 0 0

·21 7→ 1/2

1 7→ 1/2 ·2

f

g

(·2, ·2)

To get the Ext groups we apply the functor HomZ(Z,−). But HomZ(Z,−) is naturally isomorphic to the

identity functor onZ-Mod. So we are left with the same diagram. In particular, the row complexes are exact.

Therefore the Ext groups are zero for all n ∈N.

iv) We write down a projective resolution for Z/2.

0 Z/2a Z/2a Z/2 0·2

Apply the Horseshoe Lemma:

0 0 0

0 Z/2a Z/2a Z/2 0

0 (Z/2a)2 (Z/2a)2 Z/4 0

0 Z/2a Z/2a Z/2 0

0 0 0

·2

·2

f
(·2, ·2)

g

Apply the functor HomZ/2a (−,Z/2b). Since a Ê b Ê 2, we have HomZ/2a (Z/2,Z/2b) ∼=Z/2, HomZ/2a (Z/4,Z/2b) ∼=
Z/4, HomZ/2a (Z/2a ,Z/2b) ∼=Z/2b , and HomZ/2a ((Z/2a)2,Z/2b) ∼= (Z/2b)2.

0 0 0

0 Z/2 Z/2b Z/2b 0

0 Z/4 (Z/2b)2 Z/2b 0

0 Z/2 Z/2b Z/2b 0

0 0 0

·2
g

f

(·2, ·2)

·2

Let f : Z/2b → Z/2b be the multiplication by 2. We have ker f = Z/2b−1 and coker f = Z/2b−1. The Snake

Lemma gives a long sequence

0 ker f ker( f , f ) ker f

coker f coker( f , f ) coker f 0
δ

this map isn't injective, so this isn't a resolution.

soren
Notat
I agree that 0 is not a natural number, but what happens for n = 0?

soren
Notat
You are forgetting that a resolution of a module M should have M as either the kernel of the first map (or cokernel of the last). Therefore M will appear as the zeroth (co)homology.

soren
Notat
Yes, and Hom = Ext^0. 
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This is exactly the long exact sequence of the Ext modules:

n = 0 Z/2b−1 Z/2b−1 ⊕Z/2b−1 Z/2b−1

n = 1 Z/2b−1 Z/2b−1 ⊕Z/2b−1 Z/2b−1

n = 2 0 0 · · ·

(1
0

)
(0 1)

δ

(1
0

) (0 1)

It remains to compute the connecting map δ : Z/2b−1 → Z/2b−1. But the exactness at Ext0
Z/2a (Z/2,Z/2b) ∼=

Z/2b−1 forces δ= 0.

iii) Take a = 3 and b = 2 in (iv). We obtain that

n = 0 Z/2 Z/2⊕Z/2 Z/2

n = 1 Z/2 Z/2⊕Z/2 Z/2

n = 2 0 0 · · ·

(1
0

)
(0 1)

0

(1
0

) (0 1)

Question 4

Is
∏

I : R-Mod→ R-Mod left exact or right exact? What is the derived functor?

Proof. First we have to make sense that
∏

I is a functor. It is clear that the source of
∏

I is not R-Mod. We make the

following claim:

Let I be a discrete category such that Obj(I) = I . Let (R-Mod)I be the functor category, whose objects are functors

I→ R-Mod, and whose morphisms are natural transformations.

• (R-Mod)I is an Abelian category.

The objects of (R-Mod)I are indexed families of R-modules {Ai }i∈I . The morphisms of (R-Mod)I are R-

module homomorphisms of the indexed famillies {Ai → Bi }i∈I . (R-Mod)I has a zero object {0i }i∈I . The

biproduct in (R-Mod)I is the direct sum of families of R-module {Ai ⊕Bi : i ∈ I }. Let { fi }i∈I be a morphism

in (R-Mod)I . It is easy to see that {ker fi }i∈I can be exihibited as the kernel of { fi }i∈I , and {coker fi }i∈I can

be exihibited as the cokernel of { fi }i∈I . The kernels and the kernels of cokernels and the cokernels and the

cokernels of kernels. We then conclude that (R-Mod)I is an Abelian category.

In addition, we note that the short exact sequences in (R-Mod)I are of the form {0 → Ai → Bi →Ci → 0}i∈I ,

where 0 → Ai → Bi →Ci → 0 is a short exact sequence of R-modules for each i ∈ I .

•
∏∏∏

I is a functor from (R-Mod)I to R-Mod.

For {Mi }i∈I ∈ Obj((R-Mod)I ),
∏

I maps {Mi }i∈I to the product R-module
∏

i∈I Ri . In fact,
∏

I maps an object

in (R-Mod)I to its projective limit. By the universal property it is easy to check the functoriality.

We claim that
∏

I is an exact functor. The proof of left exactness is relatively easy.

Fix M to be an R-module. Since Hom(M ,−) is the right adjoint to −⊗R M , it preserves projective limits. In

particular,

HomR

(
M ,

∏
i∈I

Ai

)
∼=

∏
i∈I

HomR (M , Ai )

α

Is that clear? Isn't it M \mapsto \Pi_I(M)?
i.e. the I-fold product of M with itself?
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Let D : R-Mod→ (R-Mod)I be the diagonal functor. That is D(A) = {Ai }i∈I , where Ai = A for all i ∈ I . Then

Hom(R-Mod)I (D(M), {Ai }i∈I ) =∏
i∈I

HomR (M , Ai ) ∼= HomR

(
M ,

∏
I

{Ai }i∈I

)

Hence
∏

I is the right adjoint to D . Therefore
∏

I is left exact.

Since R-Mod has enough injectives, so is (R-Mod)I . Then the left exactness of
∏

I implies that it has right derived

functors. For {Ai }i∈I in (R-Mod)I , we take an injective resolution {M•
i }i∈I . Then the n-th right derived functor of

{Ai }i∈I is the cohomology

Rn
∏

I
{Ai }i∈I := H n

(∏
i∈I

M•
i

)
But cohomology commutes with products (why?) in R-Mod. So we have

Rn
∏

I
{Ai }i∈I := H n

(∏
i∈I

M•
i

)
=∏

i∈I
H n(M•

i ) = 0, n Ê 1

as M•
i is exact at M n

i for n Ê 1. Hence we have

Rn
∏

I
=


∏

I , n = 0

0, n Ê 1

Finally, the right exactness of
∏

I can be deduced from that R1 ∏
I = 0. To see this, consider a short exact sequence

in (R-Mod)I :

0 Ai Bi Ci 0, i ∈ I

It induces a long exact sequence in R-Mod:

0
∏
i∈I

Ai
∏
i∈I

Bi
∏
i∈I

Ci

R1
∏
i∈I

Ai R1
∏
i∈I

Bi R1
∏
i∈I

Ci · · ·

Since R1
∏
i∈I

Ai = 0, it breaks into a short exact sequence

0
∏
i∈I

Ai
∏
i∈I

Bi
∏
i∈I

Ci 0

Hence
∏

I is an exact functor.

Section C: Optional

Question 5

Let k be a field, R = k[x, y], M := R/
〈

x, y
〉2 ∼= k ⊕kx ⊕k y as a k-module.

Consider the following R-Mod short exact sequences and compute the associated Tor long exact sequences.

0 k ⊕k M k 0

i) Long exact sequence from M ⊗R −.

0 k Homk (M ,k) k ⊕k 0

ii) Long exact sequence from M ⊗R −.

soren
Notat
simple exercise


soren
Notat
This works! But there are easier ways
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iii) Long exact sequence from k ⊗R −.

0 k⊕3 M ⊕M〈
(y,−x)

〉 k ⊕k 0

iv) Long exact sequence from k ⊗R −.




