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Remark.

Section 1

Question 1

(a) Roll a fair die until we get a six. Let Y be the total number of rolls and X the number of 1’s. Show that

E[X |σ(Y )] = 1

5
(Y −1) and E

[
X 2 |σ(Y )

]= 1

25

(
Y 2 +2Y −3

)
(b) Consider two independent Poisson processes N (1)(t ), t Ê 0 and N (2)(t ), t Ê 0. Let T = inf

{
t : N (1)

t > 0
}

be the time of the

first point of the first process. Let X = N (2)(T ) be the number of points of the second process which occur before the
first point of the first process. What are E[X |σ(T )] and E

[
X 2 |σ(T )

]
? (It is OK to argue a bit informally here.)

Proof. (a) Let Xk be indicator function on the event that the k-th roll yields 1 conditioning on Y = n. Then X1, X2, ..., Xn−1 are
independent and Bernoulli distributed with

P(Xk = 1) = 1

5
, P(Xk = 0) = 4

5

Then we know that E[Xk ] = 1

5
and Var(Xk ) = 4

25
.

In addition, the σ-algebras σ({Y = n}), σ(X1),..., σ(Xn−1) are independent. (This is intuitively correct but is very hard to
argue formally...)

We observe that

X 1{Y =n} =
n−1∑
k=1

Xk 1{Y =n}

Then

E
[

X 1{Y =n}
]= n−1∑

k=1
E[Xk ]E

[
1{Y =n}

]= 1

5
(n −1)P(Y = n) = E

[
1

5
(Y −1)1{Y =n}

]
and

E
[

X 21{Y =n}
]= n−1∑

k=1
E
[

X 2
k 1{Y =n}

]+n−1∑
i=1

∑
j 6=i
E[Xi ]E

[
X j

]
E
[
1{Y =n}

]
=P(Y = n)

(
1

25
(n −1)2 + 4

25
(n +1)

)
= 1

25
(n2 +2n −3)P(Y = n)

= E
[

1

25
(Y 2 +2Y −3)1{Y =n}

]

Since σ(Y ) =σ({Y −1({n}) : n ∈Z+}), we deduce that E[X |σ(Y )] = 1

5
(Y −1) and E

[
X 2 |σ(Y )

]= 1

25

(
Y 2 +2Y −3

)
.

(b) Suppose that N (1)(t ) and N (2)(t ) has parameters λ1 and λ2 respectively.

Suppose that E[X |σ(T )] =G(T ) for some function G :R→R. Then by definition

E
[
N (2)(T )1{T∈(0,t ]}

]= E[G(T )1{T∈(0,t ]}
]= ∫ t

0
G(x) fT (x)dx

where fT is the probability density function of T . Let

F (t ) := E[N (2)(T )1{T∈(0,t ]}
]

Then informally we have

F (t +h)−F (t ) = E[N (2)(T )1{T∈(t ,t+h]}
]= E[N (2)(t )

]
P(t < T É t +h)+o(h) = E[N (2)(t )

]
fT (t )h +o(h)
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as h → 0. Therefore F ′(t ) = E[N (2)(t )
]

fT (t ). Hence

E
[
N (2)(t )

]
fT (t ) = F ′(t ) = d

dt

∫ t

0
G(x) fT (x)dx =G(t ) fT (t ) =⇒ G(t ) = E[N (2)(t )

]
From Part Probability we know that X t = N (2)(t ) ∼ Po(λ2t ). So E

[
N (2)(t )

]=λ2t . We deduce that E[X |σ(T )] =λ2T .

Similarly, suppose that E
[

X 2 |σ(T )
]= H(T ). Then

H(t ) = E[X 2
t

]= E[X t ]2 +Var(X t ) =λ2
2t 2 +λ2t

Hence E
[

X 2 |σ(T )
]=λ2

2T 2 +λ2T .

Question 2

Let X and Y be bounded random variables on a probability space (Ω,F ,P) whose joint density is some measurable function
f (x, y). (That is, for measurable A ⊆R2,P[(X ,Y ) ∈ A] = ∫

A f (x, y)dx dy.
)

Apply Fubini’s Theorem (Theorem 4.20 in the notes)
to show that

E[X |σ(Y )] =
∫

x f (x,Y )dx∫
f (x,Y )dx

In other words, E[X |σ(Y )] = g (Y ), where g :R→R is the function

g (y) =
∫

x f (x, y)dx∫
f (x, y)dx

Proof. To prove E[X |σ(Y )] = g (Y ), by definition we need to prove that∫
{Y ∈B}

X dP=
∫

{Y ∈B}
g (Y )dP

for all Borel sets B ⊆R. This is because σ(Y ) =σ(
{Y −1(B) : B ∈B(R)}

)
.

Note that the push-forward measure on R2 induced by (X ,Y ) is given by

µX ,Y (A) =P((X ,Y ) ∈ A) =
Ï

A
f (x, y)d(x ⊗ y)

The Fubini Theorem applies to g (y) f (x, y) and x f (x, y) because they are bounded and Borel measurable:∫
{Y ∈B}

g (Y )dP=
Ï
R×B

g (y) f (x, y)d(x ⊗ y)

=
∫

B
g (y)

(∫
R

f (x, y)dx

)
dy (Fubini’s Theorem)

=
∫

B

(∫
R

x f (x, y)dx

)
dy

=
Ï
R×B

x f (x, y)d(x ⊗ y) (Fubini’s Theorem)

=
∫

{Y ∈B}
X dP

which concludes the proof.

Question 3

Let X and Y be bounded random variables on (Ω,F ,P). Show that each of the following statements implies the next: (i) X and
Y are independent; (ii) E[X | Y ] = E[X ] a.s.; (iii) E[X Y ] = E[X ]E[Y ]. Provide counterexamples to show the reverse implications
all fail.
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Proof. (i) =⇒ (ii): For any A ∈σ(Y ), since X and Y are independent, σ(X ) and σ(A) are independent. By Proposition 3.10 we have

E[X 1A] = E[X ]E[1A] = E[E[X ]1A]

Hence E[X |σ(Y )] = E[X ] almost surely.

(ii) =⇒ (iii): Since E[X |σ(Y )] = E[X ] almost surely, we have E[X 1A] = E[X ]E[1A] for any A ∈σ(Y ). Extending this linearly we
have E

[
Xϕ

]= E[X ]E
[
ϕ

]
for any σ(Y )-simple function ϕ :Ω→R. For any non-negative σ(Y )-measurable function ψ :Ω→R,

by Lemma 1.26 there exists a sequence of σ(Y )-simple functions {ϕn} such that ϕn ↑ ψ as n → ∞. Then Xϕn ↑ Xψ. By
Monotone Convergence Theorem we have

E
[

Xψ
]= E[ lim

n→∞Xϕn

]
= lim

n→∞E
[

Xϕn
]= lim

n→∞E[X ]E
[
ϕn

]= E[X ]E
[
ψ

]
Finally we have Y = Y + +Y − = max{Y ,0}− |min{Y ,0}|, where Y + and Y − are σ(Y )-measurable. We deduce that E[X Y ] =
E[X ]E[Y ] as required.

¬(ii) =⇒ (i): Consider the discrete random variables with joint mass function pX ,Y given by

pX ,Y X =−1 X = 0 X = 1

Y = 0 0 1/3 0
Y = 1 1/3 0 1/3

We find that E[X Y ] = 0 and E[X ] = 0. So E[X Y ] = E[X ]E[Y ].

Note that E
[

X 1{Y =0}
]= 0 · 1

3
= 0 = E[X ] and E

[
X 1{Y =1}

]=−1 · 1

3
+1 · 1

3
= 0 = E[X ]. We deduce that E[X | Y ] = E[X ]. However,

P(X =−1)P(Y = 0) = 1

3
· 1

3
6= 0 =P(X =−1,Y = 0)

Therefore X and Y are not independent.

¬(iii) =⇒ (ii): Swap X and Y in the previous example. We still have E[X Y ] = E[X ]E[Y ]. But

E[X 1Y =−1] = 1

3
6= 2

3
= E[X ]

which implies that E[X ] 6= E[X | Y ] with a non-zero probability.

Question 4

Recall that for two random variables X ,Y , we write E[X | Y ] for E[X |σ(Y )]. Now suppose X ,Y are independent and identically
distributed, and integrable. Calculate:

• E[X | X ,Y ],E[X | Y ];

• E[X | X +Y ],E[Y | X +Y ]; (Hint: recall Theorem 1.27 in the notes or Question G on Sheet 1)

• E[h(X ,Y ) | X +Y , X −Y ] for a bounded Borel h :R2 →R.

Proof. • X is σ(X ,Y )-measurable. By Proposition 6.4(iii), we have E[X | X ,Y ] = X almost surely.

Since X ,Y are independent, σ(X ) and σ(Y ) are independent. By Proposition 6.4(vi) or Question 3, we have E[X | Y ] =
E[X ] almost surely.

• (I found this brilliant proof on https://math.stackexchange.com/questions/3019307.)

Note that X +Y is σ(X +Y )-measurable. We have

E[X | X +Y ]+E[Y | X +Y ] = E[X +Y | X +Y ] = X +Y

Since X ,Y are identically distributed, we have E[X | X +Y ] = E[Y | X +Y ]. Hence

E[X | X +Y ] = E[Y | X +Y ] = 1

2
(X +Y )

Grade: Alpha
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• Let T :R2 →R2 be the change of variables T (x, y) = (x+y, x−y). Let h̃ := h◦T −1 so that h(x, y) = h̃(x+y, x−y). Since h is
Borel measurable and T is continuous, h̃ is also Borel measurable. Hence h̃(X +Y , X −Y ) isσ(X +Y , X −Y )-measurable.
We have

E[h(X ,Y ) | X +Y , X −Y ] = E[h̃(X +Y , X −Y ) | X ,Y
]= h̃(X +Y , X −Y ) = h(X ,Y )

Question 5

(a) Suppose X ,Y , X Y are all integrable random variables and Y is also G -measurable. Show that E[Y (X −E(X | G ))] = 0.
How do we interpret this for X ,Y ∈L 2?

(b) Suppose H ⊆G are σ-algebras and X is a random variable with E
(
X 2

)<∞. Show that

E
[
{X −E(X |G )}2]+E[

{E(X |G )−E(X |H )}2]= E[
{X −E(X |H )}2]

Proof. (a)

E[Y (X −E[X |G ])] = E[X Y −Y E[X |G ]]

= E[X Y −E[X Y |G ]] (Lemma 6.7)

= E[X Y ]−E[E[X Y |G ]]

= E[X Y ]−E[X Y ] (Proposition 6.5.(i))

= 0

For X ,Y ∈ L 2, the equation implies that Y is orthogonal to X −E[X |G ]. So E[X |G ] is the projection of X onto the
subspace of all G -measurable functions.

(b) E[X |G ] is G -measurable. E[X |ℋ ] is ℋ -measurable. Since ℋ ⊆G , it is also G -measurable. Hence E[X |G ]−E[X |ℋ ]
is G -measurable. By (a), we know that X −E[X |G ] is orthogonal to E[X |G ]−E[X |ℋ ]. Now the equation

E
[
{X −E(X |G )}2]+E[

{E(X |G )−E(X |H )}2]= E[
{X −E(X |H )}2]

follows from the Pythagoras’ Theorem:

‖X −E[X |G ]‖2
2 +‖E[X |G ]−E[X |ℋ ]‖2

2 = ‖X −E[X |ℋ ]‖2
2

Question 6

On (Ω,F ,P) consider three σ-algebras Gi ⊆ F , i = 1,2,3. Assume that σ (G1,G3) and G2 are independent. Show that for any
bounded G3-measurable random variable X we have

E [X |σ (G1,G2)] = E [X |G1]

Consider now two independent random variables ξ,ηwith exponential distribution with parameter 1. Let X1 = ξ, X2 = ξ/(ξ+η)
and X3 = ξ+η. Show that X2 and X3 are independent (Hint: recall problem sheet 2 from Part A Probability) but that

E [X3 |σ (X1, X2)] 6= E [X3 |σ (X1)]

by computing both sides. Comment how this relates to the first part of the question.

Proof. Suppose that Y = E[X |G1]. Then Y is G1-measurable and E
[

X 1G1

] = E[Y 1G1

]
for any G1 ∈ G1. We need to show that Y =

E[X |σ(G1 ∪G2)], which is equivalent to E[X 1A] = E[Y 1A] for any A ∈σ(G1 ∪G2).

Let ℋ12 := {G1 ∩G2 : G1 ∈G1,G2 ∈G2}. Then ℋ12 is a π-system with σ(ℋ12) =σ(G1 ∪G2). Note that {A ⊆Ω : E[X 1A] = E[Y 1A]}
is a λ-system by Monotone Convergence Theorem. By π-λ systems lemma, it suffices to prove that E[X 1A] = E[Y 1A] for any
A =G1 ∩G2 ∈ℋ12.

E[X 1A] = E[X 1G1∩G2

]= E[X 1G1 1G2

]

Pythaoras Theorem is not really well-defined unless you
 rigorously prove that these spaces are Hilbert spaces.

Grade: Alpha-
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Since X is G3-measurable, X 1G1 is σ (G1 ∪G3)-measurable. Since σ (G1 ∪G3) and G2 are independent, we have

E
[

X 1G1 1G2

]= E[X 1G1

]
E
[
1G2

]= E[Y 1G1

]
E
[
1G2

]= E[Y 1G1 1G2

]= E[Y 1A]

We deduce that Y = E [X |σ (G1,G2)] = E [X |G1].

We want the joint density function of X2 and X3. Note that η and ξ has joint density function fξ,η(x, y) = e−(x+y). Change of
variable:

(u, v) =
(

x + y,
x

x + y

)
= T (x, y)

Then x = uv and y = u −uv . The Jacobian: ∣∣∣∣ ∂(x, y)

∂(u, v)

∣∣∣∣= ∣∣∣∣det

(
v u

1− v −u

)∣∣∣∣= |u|

Then the joint density function of X3 and X2 is given by

fX3,X2 (u, v) = fξ,η(x(u, v), y(u, v))

∣∣∣∣ ∂(x, y)

∂(u, v)

∣∣∣∣= |u|e−u = u e−u

In particular, fX3,X2 has no dependence on X2. Hence X2 and X3 are independent.

E[X3 | X1] = E[X1 +η | X1
]= X1 +E

[
η
]= X1 +1, E[X3 | X1, X2] = E

[
X1

X2

∣∣∣∣ X1, X2

]
= X1

X2

Hence E[X3 | X1] 6= E[X3 | X1, X2].

In this part, we only have σ(X2) and σ(X3) are independent. In fact σ(X1, X3) is not independent of σ(X2).

Question 7. Proposition 7.5

Suppose τ,ρ are stopping times on some
(
Ω,F , (Fn)nÊ0 ,P

)
. Show that τ+ρ,τ∧ρ and τ∨ρ are also stopping times. Suppose

that τÉ ρ, is ρ−τ a stopping time?

Proof. The stopping times τ and ρ take value in ω∪ {ω} =ω+ (I use the convention in set theory to simply the notations.)

1. Note that for any n ∈ω+,
{τ+ρ = n} = ⋃

mÉn

(
{τ= m}∩ {ρ = n −m}

)
For m É n, {τ = m} is Fm-measurable, {ρ = n −m} is Fn−m-measurable, and Fm ,Fn−m ∈ Fn . The union is at most
countable. So {τ+ρ = n} is Fn-measurable. Hence τ+ρ is a stopping time.

2. We shall show that {τ∨ρ É n} is Fn-measurable for any n ∈ω+. We have

{τ∨ρ É n} = {τÉ n}∩ {ρ É n} = ⋃
kÉn

⋃
mÉn

(
{τ= k}∩ {ρ = m}

)
For k,m É n, {τ = n} and {ρ = m} are Fn-measurable. The union is at most countable. Hence {τ∨ ρ É n} is Fn-
measurable. Then for n ∈ω+,

{τ∨ρ = n} = {τ∨ρ É n} \
⋃

m∈n
{τ∨ρ É m}

where {τ∨ρ É m} is Fm ⊆Fn-measurable. Hence {τ∨ρ = n} is Fn-measurable. τ∨ρ is a stopping time.

3. The proof that τ∧ρ is a stopping time is essentially similar. Just notice that

{τ∧ρ É n} = {τÉ n}∪ {ρ É n} = ⋃
kÉn

⋃
mÉn

(
{τ= k}∪ {ρ = m}

)
So {τ∧ρ É n} is Fn-measurable. Next, we have

{τ∧ρ = n} = {τ∧ρ É n} \
⋃

m∈n
{τ∧ρ É m}

So {τ∧ρ = n} is Fn-measurable. τ∧ρ is a stopping time.

Grade: Alpha
Amazing Work!
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4. ρ−τ is not a stopping time. Let ρ = τ and F0 = {∅,Ω}. And F1 )F0. Then

{τ= 1} ⊆ {ρ−τ= 0}

where {τ= 1} is F1-measurable and {ρ−τ= 0} is F0-measurable. Contradiction. Hence ρ−τ is not a stopping time.

Question 8. Proposition 7.8

Let τ be a stopping time on
(
Ω,F , (Fn)nÊ0 ,P

)
. Recall that

Fτ = {A ∈F∞ : A∩ {τ= n} ∈Fn∀n Ê 0}

Show that Fτ is a σ-algebra and that if τ,ρ are two stopping times with τÉ ρ then Fτ ⊆Fρ .

Proof. Showing that Fτ is a σ-algebra is a routine:

• For n ∈N, ∅∩ {τ= n} =∅ ∈Fn . Hence ∅ ∈Fτ.

• Let A ∈Fτ. For n ∈N,
A∩ {τ= n} ∈Fn =⇒ Ω\ A∩ {τ= n} = {τ= n} \ (A∩ {τ= n}) ∈Fn

ThusΩ\ A ∈Fτ.

• Let {Ak : k ∈N} ⊆ℱτ. For n ∈N,

∀k ∈N : Ak ∩ {τ= n} ∈Fn =⇒ ⋃
k∈N

Ak ∩ {τ= n} = ⋃
k∈N

(Ak ∩ {τ= n}) ∈Fn

Thus
⋃

{Ak : k ∈N} ∈Fτ.

Suppose that τÉ ρ. Let A ∈Fτ. For n ∈N and k É n, A∪ {τÉ k}i nFn . Then

A∩ {ρ = n} = A∩ {τÉ ρ}∩ {ρ = n} = A∩ {ρ = n}∩
n⋃

k=1

(
{ρ Ê k}∩ {τ< k}

)
= {ρ = n}∩

n⋃
k=1

(
{ρ Ê k}∩ A∩ {τ< k}

)
where A ∩ {τ< k} ∈Fk−1 ⊆Fn , {ρ = n} ∈Fn , and {ρ Ê k} = {ρ Ê k} = {ρ < k}c ∈Fk−1 ⊆Fn . We deduce that A ∩ {ρ = n} ∈Fn .
Hence A ∈Fρ . Hence Fτ ⊆Fρ .

Question 9

Suppose that τ is a stopping time such that for some K Ê 1 and some ε> 0, we have, for every n Ê 0

P [τÉ n +K |Fn] Ê ε a.s.

Prove by induction that, for all m ∈N

P[τ> mK ] É (1−ε)m

Deduce that E[τ] <∞.

Proof. For all n ∈N, from
P [τÉ n +K |Fn] Ê ε a.s.

where P(τÉ n +K |Fn) := E[1{τÉn+K } |Fn
]
, we have

E
[
1{τÉn+K }1A

]= E[1{τÉn+K }∩A
]Ê E[ε1A] =⇒ P({τÉ n +K }∩ A) Ê εP(A) =⇒ P({τ> n +K }∩ A) < (1−ε)P(A)

for any A ∈Fn .

Grade: Alpha



7

We use induction on m to prove that P(τ> mK ) É (1−ε)m . Base case: for m = 0, P(τ> 0) É 1 holds trivially. Induction case:
Let n = mK in the above inequality. We have

P({τ> mK +K }∩ A) > (1−ε)P(A)

for any A ∈FmK . Since τ is a stopping time, {τ> mK } ∈FmK . Let A = {τ> mK }. Then

P({τ> mK +K }∩ {τ> mK }) =P({τ> (m +1)K }) > (1−ε)P({τ> mK }) Ê (1−ε)(1−ε)m = (1−ε)m+1

where P({τ> mK }) > (1−ε)m is the induction hypothesis. Hence we deduce that P({τ> mK }) > (1−ε)m for any m ∈N.

Let

α :=
∞∑

m=0
(m +1)K 1{mK<τÉ(m+1)K }

Then αÊ τ pointwise. Hence

E[τ] É E[α] =
∞∑

m=0
(m +1)KP(mK < τÉ (m +1)K )

É K
∞∑

m=0
(m +1)P(τ> mK ) É K

∞∑
m=0

(m +1)(1−ε)m

= 1

ε2 <∞

Question 10. Exercise 8.14

On (Ω,F ,P), let X1, X2, . . . be independent random variables with EXi = 0 for each i , and Var(Xi ) = σ2
i <∞. Let Sn = ∑n

i=1 Xi

and let s2
n =∑n

i=1σ
2
i . Show that S2

n − s2
n is a martingale with respect to the filtration Fn =σ (X1, . . . , Xn).

Proof. Note that

S2
n+1 − s2

n+1 = S2
n − s2

n +X 2
n+1 +2Xn+1

n∑
i=1

Xi +σ2
n+1

where S2
n − s2

n is Fn-measurable. Then

E
[
S2

n+1 − s2
n+1 |Fn

]= E[S2
n − s2

n |Fn
]+E[X 2

n+1 +2Xn+1

n∑
i=1

Xi −σ2
n+1 |Fn

]

= S2
n − s2

n +E[X 2
n+1 |Fn

]+2
n∑

i=1
XiE[Xn+1 |Fn]−σ2

n+1 (Proposition 6.5 & Lemma 6.7)

= S2
n − s2

n +E[X 2
n+1

]+2
n∑

i=1
XiE[Xn+1]−σ2

n+1 (Independence of σ(Xn+1) and σ(X1, ..., Xn))

Since E[Xi ] = 0, E
[

X 2
n+1

]=σ2
n+1. Hence

E
[
S2

n+1 − s2
n+1 |Fn

]= S2
n − s2

n

We conclude that S2
n − s2

n is a martingale with respect to {Fn}.

Question 11

Suppose that (Xn)nÊ0 is a submartingale on
(
Ω,F , (Fn)nÊ0 ,P

)
and f is a convex and increasing function on R. Show that if

f (Xn) is integrable for each n Ê 0, then
(

f (Xn)
)

nÊ0 is a submartingale. Deduce that if X is a supermartingale then
(
X −

n

)
nÊ0 is

a submartingale.

Proof. Since {Xn} is a submartingale, we have E[Xn+1 |Fn] Ê Xn . We have the almost everywhere inequality:

E
[

f (Xn+1) |Fn
]Ê f (E[Xn+1 |Fn]) (conditional Jensen’s inequality)

Ê f (Xn) ( f is increasing)
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Hence { f (Xn)} is also a submartingale.

Since {Xn} is a supermartingale, {−Xn} is a submartingale. Let X −
n = f (−Xn) = max{−Xn ,0}. The function f (x) = max{x,0} is

clearly convex and increasing. BY the previous result we deduce that
(
X −

n

)
nÊ0 is a submartingale.




