Overall Grade: Alpha Perfect solutions. See class for question 5.

Peize Liu St. Peter's College University of Oxford

Problem Sheet 3

B8.1: Probability, Measure & Martingales Remark.

Section 1

Question 1 Grade: Alpha

(a) Roll a fair die until we get a six. Let Y be the total number of rolls and X the number of 1's. Show that

$$\mathbb{E}[X \mid \sigma(Y)] = \frac{1}{5}(Y - 1)$$
 and $\mathbb{E}[X^2 \mid \sigma(Y)] = \frac{1}{25}(Y^2 + 2Y - 3)$

(b) Consider two independent Poisson processes $N^{(1)}(t)$, $t \ge 0$ and $N^{(2)}(t)$, $t \ge 0$. Let $T = \inf\{t: N_t^{(1)} > 0\}$ be the time of the first point of the first process. Let $X = N^{(2)}(T)$ be the number of points of the second process which occur before the first point of the first process. What are $\mathbb{E}[X \mid \sigma(T)]$ and $\mathbb{E}[X^2 \mid \sigma(T)]$? (It is OK to argue a bit informally here.)

Proof. (a) Let X_k be indicator function on the event that the k-th roll yields 1 conditioning on Y = n. Then $X_1, X_2, ..., X_{n-1}$ are independent and Bernoulli distributed with

$$\mathbb{P}(X_k = 1) = \frac{1}{5}, \qquad \mathbb{P}(X_k = 0) = \frac{4}{5}$$

Then we know that $\mathbb{E}[X_k] = \frac{1}{5}$ and $\text{Var}(X_k) = \frac{4}{25}$.

In addition, the σ -algebras $\sigma(\{Y=n\})$, $\sigma(X_1)$,..., $\sigma(X_{n-1})$ are independent. (*This is intuitively correct but is very hard to argue formally...*)

We observe that

$$X\mathbf{1}_{\{Y=n\}} = \sum_{k=1}^{n-1} X_k \mathbf{1}_{\{Y=n\}}$$

Then

$$\mathbb{E}[X\mathbf{1}_{\{Y=n\}}] = \sum_{k=1}^{n-1} \mathbb{E}[X_k] \mathbb{E}[\mathbf{1}_{\{Y=n\}}] = \frac{1}{5}(n-1) \mathbb{P}(Y=n) = \mathbb{E}\left[\frac{1}{5}(Y-1)\mathbf{1}_{\{Y=n\}}\right]$$

and

$$\mathbb{E}[X^{2}\mathbf{1}_{\{Y=n\}}] = \sum_{k=1}^{n-1} \mathbb{E}[X_{k}^{2}\mathbf{1}_{\{Y=n\}}] + \sum_{i=1}^{n-1} \sum_{j \neq i} \mathbb{E}[X_{i}]\mathbb{E}[X_{j}]\mathbb{E}[\mathbf{1}_{\{Y=n\}}]$$

$$= \mathbb{P}(Y=n) \left(\frac{1}{25}(n-1)^{2} + \frac{4}{25}(n+1)\right) = \frac{1}{25}(n^{2} + 2n - 3)\mathbb{P}(Y=n)$$

$$= \mathbb{E}\left[\frac{1}{25}(Y^{2} + 2Y - 3)\mathbf{1}_{\{Y=n\}}\right]$$

Since $\sigma(Y) = \sigma(\{Y^{-1}(\{n\}) : n \in \mathbb{Z}_+\})$, we deduce that $\mathbb{E}[X \mid \sigma(Y)] = \frac{1}{5}(Y-1)$ and $\mathbb{E}[X^2 \mid \sigma(Y)] = \frac{1}{25}(Y^2 + 2Y - 3)$.

(b) Suppose that $N^{(1)}(t)$ and $N^{(2)}(t)$ has parameters λ_1 and λ_2 respectively.

Suppose that $\mathbb{E}[X \mid \sigma(T)] = G(T)$ for some function $G : \mathbb{R} \to \mathbb{R}$. Then by definition

$$\mathbb{E}[N^{(2)}(T)\mathbf{1}_{\{T\in(0,t]\}}] = \mathbb{E}[G(T)\mathbf{1}_{\{T\in(0,t]\}}] = \int_0^t G(x)f_T(x) \,\mathrm{d}x$$

where f_T is the probability density function of T. Let

$$F(t) := \mathbb{E} \big[N^{(2)}(T) \mathbf{1}_{\{T \in (0,t]\}} \big]$$

Then informally we have

$$F(t+h) - F(t) = \mathbb{E}\left[N^{(2)}(T)\mathbf{1}_{\{T \in (t,t+h)\}}\right] = \mathbb{E}\left[N^{(2)}(t)\right]\mathbb{P}(t < T \le t+h) + o(h) = \mathbb{E}\left[N^{(2)}(t)\right]f_T(t)h + o(h)$$

as $h \to 0$. Therefore $F'(t) = \mathbb{E}[N^{(2)}(t)]f_T(t)$. Hence

$$\mathbb{E}[N^{(2)}(t)]f_T(t) = F'(t) = \frac{d}{dt} \int_0^t G(x)f_T(x) dx = G(t)f_T(t) \implies G(t) = \mathbb{E}[N^{(2)}(t)]$$

From Part Probability we know that $X_t = N^{(2)}(t) \sim \text{Po}(\lambda_2 t)$. So $\mathbb{E}[N^{(2)}(t)] = \lambda_2 t$. We deduce that $\mathbb{E}[X \mid \sigma(T)] = \lambda_2 T$.

Similarly, suppose that $\mathbb{E}[X^2 \mid \sigma(T)] = H(T)$. Then

$$H(t) = \mathbb{E}[X_t^2] = \mathbb{E}[X_t]^2 + \operatorname{Var}(X_t) = \lambda_2^2 t^2 + \lambda_2 t$$

Hence $\mathbb{E}[X^2 \mid \sigma(T)] = \lambda_2^2 T^2 + \lambda_2 T$.

Question 2

Let X and Y be bounded random variables on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ whose joint density is some measurable function f(x, y). (That is, for measurable $A \subseteq \mathbb{R}^2$, $\mathbb{P}[(X, Y) \in A] = \int_A f(x, y) dx dy$.) Apply Fubini's Theorem (Theorem 4.20 in the notes) to show that

$$\mathbb{E}[X \mid \sigma(Y)] = \frac{\int x f(x, Y) dx}{\int f(x, Y) dx}$$

In other words, $\mathbb{E}[X \mid \sigma(Y)] = g(Y)$, where $g : \mathbb{R} \to \mathbb{R}$ is the function

$$g(y) = \frac{\int x f(x, y) dx}{\int f(x, y) dx}$$

Proof. To prove $\mathbb{E}[X \mid \sigma(Y)] = g(Y)$, by definition we need to prove that

$$\int_{\{Y \in B\}} X \, \mathrm{d}\mathbb{P} = \int_{\{Y \in B\}} g(Y) \, \mathrm{d}\mathbb{P}$$

for all Borel sets $B \subseteq \mathbb{R}$. This is because $\sigma(Y) = \sigma(\{Y^{-1}(B) : B \in \mathcal{B}(\mathbb{R})\})$.

Note that the push-forward measure on \mathbb{R}^2 induced by (X, Y) is given by

$$\mu_{X,Y}(A) = \mathbb{P}((X,Y) \in A) = \iint_A f(x,y) \, \mathrm{d}(x \otimes y)$$

The Fubini Theorem applies to g(y) f(x, y) and x f(x, y) because they are bounded and Borel measurable:

$$\int_{\{Y \in B\}} g(Y) \, d\mathbb{P} = \iint_{\mathbb{R} \times B} g(y) f(x, y) \, d(x \otimes y)$$

$$= \int_{B} g(y) \left(\int_{\mathbb{R}} f(x, y) \, dx \right) \, dy$$

$$= \int_{B} \left(\int_{\mathbb{R}} x f(x, y) \, dx \right) \, dy$$

$$= \iint_{\mathbb{R} \times B} x f(x, y) \, d(x \otimes y)$$

$$= \int_{\{Y \in B\}} X \, d\mathbb{P}$$
(Fubini's Theorem)
$$= \int_{\{Y \in B\}} X \, d\mathbb{P}$$

which concludes the proof.

Question 3

Let X and Y be bounded random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Show that each of the following statements implies the next: (i) X and Y are independent; (ii) $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$ a.s.; (iii) $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. Provide counterexamples to show the reverse implications all fail.

Proof. (i) \Longrightarrow (ii): For any $A \in \sigma(Y)$, since X and Y are independent, $\sigma(X)$ and $\sigma(A)$ are independent. By Proposition 3.10 we have

$$\mathbb{E}[X\mathbf{1}_A] = \mathbb{E}[X]\mathbb{E}[\mathbf{1}_A] = \mathbb{E}[\mathbb{E}[X]\mathbf{1}_A]$$

Hence $\mathbb{E}[X \mid \sigma(Y)] = \mathbb{E}[X]$ almost surely.

(ii) \Longrightarrow (iii): Since $\mathbb{E}[X \mid \sigma(Y)] = \mathbb{E}[X]$ almost surely, we have $\mathbb{E}[X\mathbf{1}_A] = \mathbb{E}[X]\mathbb{E}[\mathbf{1}_A]$ for any $A \in \sigma(Y)$. Extending this linearly we have $\mathbb{E}[X\varphi] = \mathbb{E}[X]\mathbb{E}[\varphi]$ for any $\sigma(Y)$ -simple function $\varphi : \Omega \to \mathbb{R}$. For any non-negative $\sigma(Y)$ -measurable function $\psi : \Omega \to \mathbb{R}$, by Lemma 1.26 there exists a sequence of $\sigma(Y)$ -simple functions $\{\varphi_n\}$ such that $\varphi_n \uparrow \psi$ as $n \to \infty$. Then $X\varphi_n \uparrow X\psi$. By Monotone Convergence Theorem we have

$$\mathbb{E}[X\psi] = \mathbb{E}\Big[\lim_{n \to \infty} X\varphi_n\Big] = \lim_{n \to \infty} \mathbb{E}[X\varphi_n] = \lim_{n \to \infty} \mathbb{E}[X]\mathbb{E}[\varphi_n] = \mathbb{E}[X]\mathbb{E}[\psi] \qquad \checkmark$$

Finally we have $Y = Y^+ + Y^- = \max\{Y, 0\} - |\min\{Y, 0\}|$, where Y^+ and Y^- are $\sigma(Y)$ -measurable. We deduce that $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ as required.

 \neg (ii) \Longrightarrow (i): Consider the discrete random variables with joint mass function $p_{X,Y}$ given by

$$\begin{array}{c|ccccc} p_{X,Y} & X = -1 & X = 0 & X = 1 \\ \hline Y = 0 & 0 & 1/3 & 0 \\ Y = 1 & 1/3 & 0 & 1/3 \end{array}$$

We find that $\mathbb{E}[XY] = 0$ and $\mathbb{E}[X] = 0$. So $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Note that $\mathbb{E}[X\mathbf{1}_{\{Y=0\}}] = 0 \cdot \frac{1}{3} = 0 = \mathbb{E}[X]$ and $\mathbb{E}[X\mathbf{1}_{\{Y=1\}}] = -1 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = 0 = \mathbb{E}[X]$. We deduce that $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$. However,

$$\mathbb{P}(X = -1)\mathbb{P}(Y = 0) = \frac{1}{3} \cdot \frac{1}{3} \neq 0 = \mathbb{P}(X = -1, Y = 0)$$

Therefore *X* and *Y* are not independent.

 \neg (iii) \Longrightarrow (ii): Swap X and Y in the previous example. We still have $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. But

$$\mathbb{E}[X\mathbf{1}_{Y=-1}] = \frac{1}{3} \neq \frac{2}{3} = \mathbb{E}[X]$$

which implies that $\mathbb{E}[X] \neq \mathbb{E}[X \mid Y]$ with a non-zero probability.

Grade: Alpha Excellent work

Recall that for two random variables X, Y, we write $\mathbb{E}[X \mid Y]$ for $\mathbb{E}[X \mid \sigma(Y)]$. Now suppose X, Y are independent and identically distributed, and integrable. Calculate:

• $\mathbb{E}[X \mid X, Y], \mathbb{E}[X \mid Y];$

Question 4

- $\mathbb{E}[X \mid X + Y]$, $\mathbb{E}[Y \mid X + Y]$; (Hint: recall Theorem 1.27 in the notes or Question G on Sheet 1)
- $\mathbb{E}[h(X,Y) \mid X+Y,X-Y]$ for a bounded Borel $h:\mathbb{R}^2 \to \mathbb{R}$.

Proof. • X is $\sigma(X,Y)$ -measurable. By Proposition 6.4(iii), we have $\mathbb{E}[X \mid X,Y] = X$ almost surely. Since X, Y are independent, $\sigma(X)$ and $\sigma(Y)$ are independent. By Proposition 6.4(vi) or Question 3, we have $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$ almost surely. ✓

• (I found this brilliant proof on https://math.stackexchange.com/questions/3019307.)

Note that X + Y is $\sigma(X + Y)$ -measurable. We have

$$\mathbb{E}[X \mid X + Y] + \mathbb{E}[Y \mid X + Y] = \mathbb{E}[X + Y \mid X + Y] = X + Y$$

Since X, Y are identically distributed, we have $\mathbb{E}[X \mid X + Y] = \mathbb{E}[Y \mid X + Y]$. Hence

$$\mathbb{E}[X \mid X+Y] = \mathbb{E}[Y \mid X+Y] = \frac{1}{2}(X+Y)$$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the change of variables T(x,y) = (x+y,x-y). Let $\widetilde{h} := h \circ T^{-1}$ so that $h(x,y) = \widetilde{h}(x+y,x-y)$. Since h is Borel measurable and T is continuous, \tilde{h} is also Borel measurable. Hence $\tilde{h}(X+Y,X-Y)$ is $\sigma(X+Y,X-Y)$ -measurable. We have

$$\mathbb{E}[h(X,Y) \mid X+Y,X-Y] = \mathbb{E}\big[\widetilde{h}(X+Y,X-Y) \mid X,Y\big] = \widetilde{h}(X+Y,X-Y) = h(X,Y)$$

Grade: Alpha-

Ouestion 5

- (a) Suppose X, Y, XY are all integrable random variables and Y is also \mathcal{G} -measurable. Show that $\mathbb{E}[Y(X \mathbb{E}(X \mid \mathcal{G}))] = 0$. How do we interpret this for $X, Y \in \mathcal{L}^2$?
- (b) Suppose $\mathcal{H} \subseteq \mathcal{G}$ are σ -algebras and X is a random variable with $\mathbb{E}(X^2) < \infty$. Show that

$$\mathbb{E}\left[\left\{X - \mathbb{E}(X \mid \mathcal{G})\right\}^2\right] + \mathbb{E}\left[\left\{\mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(X \mid \mathcal{H})\right\}^2\right] = \mathbb{E}\left[\left\{X - \mathbb{E}(X \mid \mathcal{H})\right\}^2\right]$$

Proof. (a)

$$\begin{split} \mathbb{E}[Y(X - \mathbb{E}[X \mid \mathcal{G}])] &= \mathbb{E}[XY - Y\mathbb{E}[X \mid \mathcal{G}]] \\ &= \mathbb{E}[XY - \mathbb{E}[XY \mid \mathcal{G}]] \\ &= \mathbb{E}[XY] - \mathbb{E}[\mathbb{E}[XY \mid \mathcal{G}]] \\ &= \mathbb{E}[XY] - \mathbb{E}[XY] \end{split} \qquad \text{(Proposition 6.5.(i))} \\ &= 0 \end{split}$$

For $X, Y \in \mathcal{L}^2$, the equation implies that Y is orthogonal to $X - \mathbb{E}[X \mid \mathcal{G}]$. So $\mathbb{E}[X \mid \mathcal{G}]$ is the projection of X onto the subspace of all \mathcal{G} -measurable functions.

(b) $\mathbb{E}[X \mid \mathcal{G}]$ is \mathcal{G} -measurable. $\mathbb{E}[X \mid \mathcal{H}]$ is \mathcal{H} -measurable. Since $\mathcal{H} \subseteq \mathcal{G}$, it is also \mathcal{G} -measurable. Hence $\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[X \mid \mathcal{H}]$ is \mathscr{G} -measurable. By (a), we know that $X - \mathbb{E}[X \mid \mathscr{G}]$ is orthogonal to $\mathbb{E}[X \mid \mathscr{G}] - \mathbb{E}[X \mid \mathscr{H}]$. Now the equation

$$\mathbb{E}\left[\left\{X - \mathbb{E}(X \mid \mathcal{G})\right\}^{2}\right] + \mathbb{E}\left[\left\{\mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(X \mid \mathcal{H})\right\}^{2}\right] = \mathbb{E}\left[\left\{X - \mathbb{E}(X \mid \mathcal{H})\right\}^{2}\right]$$

Pythaoras Theorem is not really well-defined unless you follows from the Pythagoras' Theorem: rigorously prove that these spaces are Hilbert spaces. $\|X - \mathbb{E}[X \mid \mathcal{G}]\|_2^2 + \|\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[X \mid \mathcal{H}]\|_2^2 = \|X - \mathbb{E}[X \mid \mathcal{H}]\|_2^2$

$$\|X - \mathbb{E}[X \mid \mathcal{G}]\|_2^2 + \|\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[X \mid \mathcal{H}]\|_2^2 = \|X - \mathbb{E}[X \mid \mathcal{H}]\|_2^2$$

Question 6 Grade: Alpha

On $(\Omega, \mathscr{F}, \mathbb{P})$ consider three σ -algebras $\mathscr{G}_i \subseteq \mathscr{F}, i = 1, 2, 3$. Assume that $\sigma(\mathscr{G}_1, \mathscr{G}_3)$ and \mathscr{G}_2 are independent. Show that for any bounded \mathcal{G}_3 -measurable random variable X we have

$$\mathbb{E}\left[X\,|\,\sigma(\mathcal{G}_1,\mathcal{G}_2)\right] = \mathbb{E}\left[X\,|\,\mathcal{G}_1\right]$$

Consider now two independent random variables ξ , η with exponential distribution with parameter 1. Let $X_1 = \xi$, $X_2 = \xi/(\xi + \eta)$ and $X_3 = \xi + \eta$. Show that X_2 and X_3 are independent (*Hint: recall problem sheet 2 from Part A Probability*) but that

$$\mathbb{E}[X_3 \mid \sigma(X_1, X_2)] \neq \mathbb{E}[X_3 \mid \sigma(X_1)]$$

by computing both sides. Comment how this relates to the first part of the question.

Proof. Suppose that $Y = \mathbb{E}[X \mid \mathcal{G}_1]$. Then Y is \mathcal{G}_1 -measurable and $\mathbb{E}[X\mathbf{1}_{G_1}] = \mathbb{E}[Y\mathbf{1}_{G_1}]$ for any $G_1 \in \mathcal{G}_1$. We need to show that $Y = \mathbb{E}[X \mid \mathcal{G}_1]$ $\mathbb{E}[X \mid \sigma(\mathcal{G}_1 \cup \mathcal{G}_2)]$, which is equivalent to $\mathbb{E}[X \mathbf{1}_A] = \mathbb{E}[Y \mathbf{1}_A]$ for any $A \in \sigma(\mathcal{G}_1 \cup \mathcal{G}_2)$.

Let $\mathcal{H}_{12} := \{G_1 \cap G_2 : G_1 \in \mathcal{G}_1, G_2 \in \mathcal{G}_2\}$. Then \mathcal{H}_{12} is a π -system with $\sigma(\mathcal{H}_{12}) = \sigma(\mathcal{G}_1 \cup \mathcal{G}_2)$. Note that $\{A \subseteq \Omega : \mathbb{E}[X\mathbf{1}_A] = \mathbb{E}[Y\mathbf{1}_A]\}$ is a λ -system by Monotone Convergence Theorem. By π - λ systems lemma, it suffices to prove that $\mathbb{E}[X\mathbf{1}_A] = \mathbb{E}[Y\mathbf{1}_A]$ for any $A = G_1 \cap G_2 \in \mathcal{H}_{12}$.

$$\mathbb{E}[X\mathbf{1}_A] = \mathbb{E}[X\mathbf{1}_{G_1 \cap G_2}] = \mathbb{E}[X\mathbf{1}_{G_1}\mathbf{1}_{G_2}]$$

Since *X* is \mathcal{G}_3 -measurable, $X1_{G_1}$ is $\sigma(\mathcal{G}_1 \cup \mathcal{G}_3)$ -measurable. Since $\sigma(\mathcal{G}_1 \cup \mathcal{G}_3)$ and \mathcal{G}_2 are independent, we have

$$\mathbb{E}[X\mathbf{1}_{G_1}\mathbf{1}_{G_2}] = \mathbb{E}[X\mathbf{1}_{G_1}]\mathbb{E}[\mathbf{1}_{G_2}] = \mathbb{E}[Y\mathbf{1}_{G_1}]\mathbb{E}[\mathbf{1}_{G_2}] = \mathbb{E}[Y\mathbf{1}_{G_1}\mathbf{1}_{G_2}] = \mathbb{E}[Y\mathbf{1}_{A}] \checkmark$$

We deduce that $Y = \mathbb{E}[X \mid \sigma(\mathcal{G}_1, \mathcal{G}_2)] = \mathbb{E}[X \mid \mathcal{G}_1].$

We want the joint density function of X_2 and X_3 . Note that η and ξ has joint density function $f_{\xi,\eta}(x,y) = e^{-(x+y)}$. Change of variable:

$$(u, v) = \left(x + y, \frac{x}{x + y}\right) = T(x, y)$$

Then x = uv and y = u - uv. The Jacobian:

$$\left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \left| \det \begin{pmatrix} v & u \\ 1 - v & -u \end{pmatrix} \right| = |u|$$

Then the joint density function of X_3 and X_2 is given by

$$f_{X_3,X_2}(u,v) = f_{\xi,\eta}(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = |u| e^{-u} = u e^{-u}$$

In particular, f_{X_3,X_2} has no dependence on X_2 . Hence X_2 and X_3 are independent.

$$\mathbb{E}[X_3 \mid X_1] = \mathbb{E}[X_1 + \eta \mid X_1] = X_1 + \mathbb{E}[\eta] = X_1 + 1, \qquad \mathbb{E}[X_3 \mid X_1, X_2] = \mathbb{E}\left[\frac{X_1}{X_2} \mid X_1, X_2\right] = \frac{X_1}{X_2}$$

Hence $\mathbb{E}[X_3 | X_1] \neq \mathbb{E}[X_3 | X_1, X_2]$.

In this part, we only have $\sigma(X_2)$ and $\sigma(X_3)$ are independent. In fact $\sigma(X_1, X_3)$ is not independent of $\sigma(X_2)$.

Question 7. Proposition 7.5

Grade: Alpha Amazing Work!

Suppose τ , ρ are stopping times on some $(\Omega, \mathscr{F}, (\mathscr{F}_n)_{n \ge 0}, \mathbb{P})$. Show that $\tau + \rho, \tau \wedge \rho$ and $\tau \vee \rho$ are also stopping times. Suppose that $\tau \le \rho$, is $\rho - \tau$ a stopping time?

Proof. The stopping times τ and ρ take value in $\omega \cup \{\omega\} = \omega^+$ (I use the convention in set theory to simply the notations.)

1. Note that for any $n \in \omega^+$,

$$\{\tau + \rho = n\} = \bigcup_{m \le n} \left(\{\tau = m\} \cap \{\rho = n - m\} \right)$$

For $m \le n$, $\{\tau = m\}$ is \mathscr{F}_m -measurable, $\{\rho = n - m\}$ is \mathscr{F}_{n-m} -measurable, and \mathscr{F}_m , $\mathscr{F}_{n-m} \in \mathscr{F}_n$. The union is at most countable. So $\{\tau + \rho = n\}$ is \mathscr{F}_n -measurable. Hence $\tau + \rho$ is a stopping time.

2. We shall show that $\{\tau \lor \rho \le n\}$ is \mathscr{F}_n -measurable for any $n \in \omega^+$. We have

$$\{\tau \lor \rho \leqslant n\} = \{\tau \leqslant n\} \cap \{\rho \leqslant n\} = \bigcup_{k \leqslant n} \bigcup_{m \leqslant n} \left(\{\tau = k\} \cap \{\rho = m\}\right)$$

For $k, m \le n$, $\{\tau = n\}$ and $\{\rho = m\}$ are \mathscr{F}_n -measurable. The union is at most countable. Hence $\{\tau \lor \rho \le n\}$ is \mathscr{F}_n -measurable. Then for $n \in \omega^+$,

$$\{\tau \lor \rho = n\} = \{\tau \lor \rho \leqslant n\} \setminus \bigcup_{m \in n} \{\tau \lor \rho \leqslant m\}$$

where $\{\tau \lor \rho \le m\}$ is $\mathscr{F}_m \subseteq \mathscr{F}_n$ -measurable. Hence $\{\tau \lor \rho = n\}$ is \mathscr{F}_n -measurable. $\tau \lor \rho$ is a stopping time.

3. The proof that $\tau \wedge \rho$ is a stopping time is essentially similar. Just notice that

$$\{\tau \land \rho \leq n\} = \{\tau \leq n\} \cup \{\rho \leq n\} = \bigcup_{k \leq n} \bigcup_{m \leq n} \left(\{\tau = k\} \cup \{\rho = m\}\right)$$

So $\{\tau \land \rho \le n\}$ is \mathcal{F}_n -measurable. Next, we have

$$\{\tau \land \rho = n\} = \{\tau \land \rho \le n\} \setminus \bigcup_{m \in n} \{\tau \land \rho \le m\}$$

So $\{\tau \land \rho = n\}$ is \mathscr{F}_n -measurable. $\tau \land \rho$ is a stopping time.

4. $\rho - \tau$ is not a stopping time. Let $\rho = \tau$ and $\mathscr{F}_0 = \{\varnothing, \Omega\}$. And $\mathscr{F}_1 \supseteq \mathscr{F}_0$. Then

$$\{\tau=1\}\subseteq\{\rho-\tau=0\}$$

where $\{\tau = 1\}$ is \mathscr{F}_1 -measurable and $\{\rho - \tau = 0\}$ is \mathscr{F}_0 -measurable. Contradiction. Hence $\rho - \tau$ is not a stopping time. \square

Grade: Alpha

Question 8. Proposition 7.8

Let τ be a stopping time on $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \ge 0}, \mathbb{P})$. Recall that

$$\mathcal{F}_{\tau} = \{A \in \mathcal{F}_{\infty} : A \cap \{\tau = n\} \in \mathcal{F}_n \, \forall \, n \geq 0\}$$

Show that \mathscr{F}_{τ} is a σ -algebra and that if τ , ρ are two stopping times with $\tau \leq \rho$ then $\mathscr{F}_{\tau} \subseteq \mathscr{F}_{\rho}$.

Proof. Showing that \mathcal{F}_{τ} is a σ -algebra is a routine:

- For $n \in \mathbb{N}$, $\emptyset \cap \{\tau = n\} = \emptyset \in \mathcal{F}_n$. Hence $\emptyset \in \mathcal{F}_{\tau}$.
- Let $A \in \mathscr{F}_{\tau}$. For $n \in \mathbb{N}$,

$$A \cap \{\tau = n\} \in \mathcal{F}_n \implies \Omega \setminus A \cap \{\tau = n\} = \{\tau = n\} \setminus (A \cap \{\tau = n\}) \in \mathcal{F}_n$$

Thus $\Omega \setminus A \in \mathscr{F}_{\tau}$.

• Let $\{A_k : k \in \mathbb{N}\} \subseteq \mathcal{F}_{\tau}$. For $n \in \mathbb{N}$,

$$\forall \ k \in \mathbb{N} \colon A_k \cap \{\tau = n\} \in \mathcal{F}_n \implies \bigcup_{k \in \mathbb{N}} A_k \cap \{\tau = n\} = \bigcup_{k \in \mathbb{N}} (A_k \cap \{\tau = n\}) \in \mathcal{F}_n$$

Thus $\bigcup \{A_k : k \in \mathbb{N}\} \in \mathscr{F}_{\tau}$.

Suppose that $\tau \leq \rho$. Let $A \in \mathscr{F}_{\tau}$. For $n \in \mathbb{N}$ and $k \leq n$, $A \cup \{\tau \leq k\}$ $in\mathscr{F}_n$. Then

$$A \cap \{\rho = n\} = A \cap \{\tau \le \rho\} \cap \{\rho = n\} = A \cap \{\rho = n\} \cap \bigcup_{k=1}^{n} \left(\{\rho \ge k\} \cap \{\tau < k\}\right)$$

$$= \{\rho = n\} \cap \bigcup_{k=1}^{n} \left(\{\rho \ge k\} \cap A \cap \{\tau < k\}\right)$$

where $A \cap \{\tau < k\} \in \mathscr{F}_{k-1} \subseteq \mathscr{F}_n$, $\{\rho = n\} \in \mathscr{F}_n$, and $\{\rho \ge k\} = \{\rho < k\}^c \in \mathscr{F}_{k-1} \subseteq \mathscr{F}_n$. We deduce that $A \cap \{\rho = n\} \in \mathscr{F}_n$. Hence $A \in \mathscr{F}_\rho$. Hence $\mathscr{F}_\tau \subseteq \mathscr{F}_\rho$.

Question 9

Suppose that τ is a stopping time such that for some $K \ge 1$ and some $\varepsilon > 0$, we have, for every $n \ge 0$

$$\mathbb{P}\left[\tau \leq n + K \mid \mathscr{F}_n\right] \geq \varepsilon \text{ a.s.}$$

Prove by induction that, for all $m \in \mathbb{N}$

$$\mathbb{P}[\tau > mK] \le (1 - \varepsilon)^m$$

Deduce that $\mathbb{E}[\tau] < \infty$.

Proof. For all $n \in \mathbb{N}$, from

$$\mathbb{P}\left[\tau \leq n + K \,|\, \mathcal{F}_n\right] \geq \varepsilon \text{ a.s.}$$

where $\mathbb{P}(\tau \leq n + K \mid \mathscr{F}_n) := \mathbb{E}[\mathbf{1}_{\{\tau \leq n + K\}} \mid \mathscr{F}_n]$, we have

$$\mathbb{E}\big[\mathbf{1}_{\{\tau \leq n+K\}}\mathbf{1}_A\big] = \mathbb{E}\big[\mathbf{1}_{\{\tau \leq n+K\}\cap A}\big] \geqslant \mathbb{E}[\varepsilon\mathbf{1}_A] \implies \mathbb{P}(\{\tau \leq n+K\}\cap A) \geqslant \varepsilon\mathbb{P}(A) \implies \mathbb{P}(\{\tau > n+K\}\cap A) < (1-\varepsilon)\mathbb{P}(A)$$

for any $A \in \mathcal{F}_n$.

We use induction on m to prove that $\mathbb{P}(\tau > mK) \le (1 - \varepsilon)^m$. Base case: for m = 0, $\mathbb{P}(\tau > 0) \le 1$ holds trivially. Induction case: Let n = mK in the above inequality. We have

$$\mathbb{P}(\{\tau > mK + K\} \cap A) > (1 - \varepsilon)\mathbb{P}(A)$$

for any $A \in \mathscr{F}_{mK}$. Since τ is a stopping time, $\{\tau > mK\} \in \mathscr{F}_{mK}$. Let $A = \{\tau > mK\}$. Then

$$\mathbb{P}(\{\tau > mK + K\} \cap \{\tau > mK\}) = \mathbb{P}(\{\tau > (m+1)K\}) > (1-\varepsilon)\mathbb{P}(\{\tau > mK\}) \ge (1-\varepsilon)(1-\varepsilon)^m = (1-\varepsilon)^{m+1}$$

where $\mathbb{P}(\{\tau > mK\}) > (1 - \varepsilon)^m$ is the induction hypothesis. Hence we deduce that $\mathbb{P}(\{\tau > mK\}) > (1 - \varepsilon)^m$ for any $m \in \mathbb{N}$.

Let

$$\alpha:=\sum_{m=0}^{\infty}(m+1)K\mathbf{1}_{\{mK<\tau\leqslant (m+1)K\}}$$

Then $\alpha \ge \tau$ pointwise. Hence

$$\begin{split} \mathbb{E}[\tau] &\leq \mathbb{E}[\alpha] = \sum_{m=0}^{\infty} (m+1)K\mathbb{P}(mK < \tau \leq (m+1)K) \\ &\leq K \sum_{m=0}^{\infty} (m+1)\mathbb{P}(\tau > mK) \leq K \sum_{m=0}^{\infty} (m+1)(1-\varepsilon)^m \\ &= \frac{1}{\varepsilon^2} < \infty \quad \checkmark \end{split}$$

Question 10. Exercise 8.14

On $(\Omega, \mathcal{F}, \mathbb{P})$, let $X_1, X_2, ...$ be independent random variables with $\mathbb{E}X_i = 0$ for each i, and $\text{Var}(X_i) = \sigma_i^2 < \infty$. Let $S_n = \sum_{i=1}^n X_i$ and let $s_n^2 = \sum_{i=1}^n \sigma_i^2$. Show that $S_n^2 - s_n^2$ is a martingale with respect to the filtration $\mathcal{F}_n = \sigma(X_1, ..., X_n)$.

Proof. Note that

$$S_{n+1}^2 - S_{n+1}^2 = S_n^2 - S_n^2 + X_{n+1}^2 + 2X_{n+1} \sum_{i=1}^n X_i + \sigma_{n+1}^2$$

where $S_n^2 - s_n^2$ is \mathcal{F}_n -measurable. Then

$$\mathbb{E}[S_{n+1}^{2} - s_{n+1}^{2} \mid \mathscr{F}_{n}] = \mathbb{E}[S_{n}^{2} - s_{n}^{2} \mid \mathscr{F}_{n}] + \mathbb{E}\left[X_{n+1}^{2} + 2X_{n+1} \sum_{i=1}^{n} X_{i} - \sigma_{n+1}^{2} \mid \mathscr{F}_{n}\right]$$

$$= S_{n}^{2} - s_{n}^{2} + \mathbb{E}[X_{n+1}^{2} \mid \mathscr{F}_{n}] + 2\sum_{i=1}^{n} X_{i}\mathbb{E}[X_{n+1} \mid \mathscr{F}_{n}] - \sigma_{n+1}^{2} \qquad \text{(Proposition 6.5 \& Lemma 6.7)}$$

$$= S_{n}^{2} - s_{n}^{2} + \mathbb{E}[X_{n+1}^{2}] + 2\sum_{i=1}^{n} X_{i}\mathbb{E}[X_{n+1}] - \sigma_{n+1}^{2} \qquad \text{(Independence of } \sigma(X_{n+1}) \text{ and } \sigma(X_{1}, ..., X_{n}))$$

Since $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_{n+1}^2] = \sigma_{n+1}^2$. Hence

$$\mathbb{E}[S_{n+1}^2 - s_{n+1}^2 \mid \mathscr{F}_n] = S_n^2 - s_n^2$$

We conclude that $S_n^2 - s_n^2$ is a martingale with respect to $\{\mathcal{F}_n\}$.

Question 11

Suppose that $(X_n)_{n\geqslant 0}$ is a submartingale on $(\Omega, \mathscr{F}, (\mathscr{F}_n)_{n\geqslant 0}, \mathbb{P})$ and f is a convex and increasing function on \mathbb{R} . Show that if $f(X_n)$ is integrable for each $n\geqslant 0$, then $(f(X_n))_{n\geqslant 0}$ is a submartingale. Deduce that if \mathbf{X} is a supermartingale then $(X_n^-)_{n\geqslant 0}$ is a submartingale.

Proof. Since $\{X_n\}$ is a submartingale, we have $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \ge X_n$. We have the almost everywhere inequality:

$$\mathbb{E}\big[f(X_{n+1})\,|\,\mathscr{F}_n\big]\geqslant f\left(\mathbb{E}[X_{n+1}\,|\,\mathscr{F}_n]\right)\,\checkmark \qquad \qquad \text{(conditional Jensen's inequality)}$$

$$\geqslant f(X_n) \qquad \qquad (f \text{ is increasing})$$

Hence $\{f(X_n)\}$ is also a submartingale.

Since $\{X_n\}$ is a supermartingale, $\{-X_n\}$ is a submartingale. Let $X_n^- = f(-X_n) = \max\{-X_n, 0\}$. The function $f(x) = \max\{x, 0\}$ is clearly convex and increasing. BY the previous result we deduce that $(X_n^-)_{n \ge 0}$ is a submartingale.