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Remark.

Section 1

Question 1 Grade: Alpha

(a) Roll a fair die until we get a six. Let Y be the total number of rolls and X the number of 1’s. Show that

ElX|o(Y)]= %(Y— 1) and E[X?|o(V)]= % (Y?+2Y -3)

(b) Consider two independent Poisson processes NV (¢),£=0and N® (¢),t=>0. Let T = inf{ t:NY > 0} be the time of the

Proof.

first point of the first process. Let X = N?(T) be the number of points of the second process which occur before the
first point of the first process. What are E[X | 0(T)] and E [X2 | U(T)] ? (It is OK to argue a bit informally here.)

(@)

(b)

Let X be indicator function on the event that the k-th roll yields 1 conditioning on Y = n. Then X, X», ..., X;,—1 are
independent and Bernoulli distributed with

IP’(X—I)—1 P(X —0)_4
k=b=z k=0=2

4

1 4
Then we know that E[X;] = — and Var(X;) = —.
5 25/

In addition, the o-algebras c({Y = n}), 0(X}),..., 0(X,—1) are independent. (This is intuitively correct but is very hard to
argue formally...)

We observe that
n-1

Xlyem =Y Xpliy—
{(Y=nj k; Y=n \/

Then
n-1 1 1
E[Xliy=p] =Y EIX)]E[liy=p] = S(n-DPY =n)= [E[E(Y— 1)1{y:n,J/
k=1
and
) n-1 ) n-1
E[X"1iy=m] = ) E[X(Liy=m]+ 2 2 EIXAE[X;|E[Liy=p]
k=1 i=1j#i

—P(Y—n)(i(n—1)2+i(n+l)) —i(n2+2n—3)u1>(y—n)
B I PY 25 T 25 B
1

Since o(Y) =o({Y ' ({n}) : n € Z,}), we deduce that E[X | o(Y)] = é(y -DandE[X?|o(Y)] = > (Y2+2Y -3).

V4

1
=E|—(Y?+2Y -3)1y-
[25( Miy=n

Suppose that NV (¢) and N (¢) has parameters 1; and 1, respectively.

Suppose that E[X | o(T)] = G(T) for some function G : R — R. Then by definition

t
[E[N(z)(T)l{Te(o,t]}] = [E[G(T)I{TE(OJ]}] :j(; G(x) fr(x)dx

where f7 is the probability density function of T'. Let

F(t) := [E[N(z)(T)l{Te(O,t]}]

v

F(t+h) - F() =E[N® (D) 1ireremy] =E[NP@0]P(t< T < t+h) +o(h) =E[N® ()] fr()h+o(h)

Then informally we have



as h — 0. Therefore F'(1) = E[N®(1)] fr(¢). Hence \/
d t
E[N® 0] fr(=F (1) = Efo G fr()dx =G fr(t) = G(1) =E[N? (1] v/
From Part Probability we know that X; = N (1) ~ Po(A21). So E[N® (1)] = A»t. We deduce that E[X | o(T)] = 1, T.
Similarly, suppose that E[X? | o(T)] = H(T). Then \/
H(t) = E[X?] = E[X,)? + Var (X,) = A5t + Aot

Hence E[X? |o(T)] = A5T? + A, T. \/

Question 2

Let X and Y be bounded random variables on a probability space (Q, %, P) whose joint density is some measurable function
f(x,3). (That is, for measurable A<R?,P[(X,Y)€ Al = [ ", f(x,y)dx dy.) Apply Fubini’s Theorem (Theorem 4.20 in the notes)
to show that

)d
E[MUW)F%

In other words, E[X | o(Y)] = g(Y), where g: R — R is the function

_ Jxf(x,y)dx

80 = T ydx

Proof. To prove E[X | o(Y)] = g(Y), by definition we need to prove that

f XdP = f g(Y)dP
{YeB} {YeB}

for all Borel sets B < R. This is because o(Y) =0 ({Y "1 (B): B€ BR)}).

Note that the push-forward measure on R? induced by (X, Y) is given by

px,y(A)=P(X,Y)€eA) = ffAf(x,y)d(xoby)

The Fubini Theorem applies to g(y) f(x, y) and x f (x, y) because they are bounded and Borel measurable:

rade: alph
f g(Y)dP=ff g fxydxey / Grade: alpha
{YeB} RxB
= f gy ( f flx, y)dx) dy \/ (Fubini’s Theorem)
B R
= ,y)dx|d
fB(fof(xy) x) AV
= f f xf(x,y)dxey) (Fubini’s Theorem)
RxB \/

:f XdP \/
{YeB)

which concludes the proof.

Question 3

Let X and Y be bounded random variables on (Q, &, [P). Show that each of the following statements implies the next: (i) X and
Y are independent; (ii) E[X | Y] = E[X] a.s.; (iii) E[XY] = E[X]E[Y]. Provide counterexamples to show the reverse implications
all fail.



Proof.

(i) = (ii): For any A€ 0(Y), since X and Y are independent, (X) and o (A) are independent. By Proposition 3.10 we have
E[X14] = E[X]E[1 4] = E[E[X]1 4]

Hence E[X | 0(Y)] = E[X] almost surely.

(if) = (iii): Since E[X | 0(Y)] = E[X] almost surely, we have E[X1 4] = E[X]E[1 4] for any A € o(Y). Extending this linearly we
have E[X¢] = E[X]E[¢] for any o (Y)-simple function ¢ : Q — R. For any non-negative o (Y)-measurable function ¢ : Q — R,
by Lemma 1.26 there exists a sequence of o(Y)-simple functions {¢,} such that ¢, { ¥ as n — co. Then X¢, | Xy. By
Monotone Convergence Theorem we have

E[Xy] =E| lim Xg,

= lim E[Xg,] = lim EXIE[g,] =EXE[y]  \/
Finally we have Y = Y* + Y~ = max{Y,0} — |min{Y,0}|, where Y* and Y~ are o(Y)-measurable. We deduce that E[XY] =
E[X]E[Y] as required.
=1(ii) = (i): Consider the discrete random variables with joint mass function px,y given by

pxy | X=-1 X=0 X=1

Y= 1

Y= (IJ 1(/)3 (/)3 1(/)3 \/
We find that E[XY] =0 and E[X] =0. So E[X Y] =E[X]E[Y].

1 1 1
Note that E[ X1y=g] =0- 3 =O0=EIX] and E[X1y-y]=-1- 3 +1-3=0=EX]. We deduce that E[X | Y] = E[X]. However,

P(X=-1)P(Y=0)=

£0=P(X=-1,Y=0)

W~
W~

v

Therefore X and Y are not independent.

—(iii)) = (ii): Swap X and Y in the previous example. We still have E[X Y] = E[X]E[Y]. But

E[X1 ]—l;éz—[E[X]
=T RT e
which implies that E[X] # E[X | Y] with a non-zero probability. \/ O
Grade: Alpha
Question 4 Excellent work

Recall that for two random variables X, Y, we write E[X | Y] for E[X | o(Y)]. Now suppose X, Y are independent and identically
distributed, and integrable. Calculate:

Proof.

e E[X|X,YLEX|Y];
e E[X| X+ YLE[Y | X+ Y]; (Hint: recall Theorem 1.27 in the notes or Question G on Sheet 1)

e E[h(X,Y)| X+Y,X - Y] for abounded Borel k: R* — R.

e Xiso(X,Y)-measurable. By Proposition 6.4(iii), we have E[X | X, Y] = X almost surely. \/

Since X,Y are independent, 0(X) and o(Y) are independent. By Proposition 6.4(vi) or Question 3, we have E[X | Y] =
E[X] almost surely.

¢ (I found this brilliant proof on https://math.stackexchange.com/questions/3019307.)

Note that X + Y is (X + Y)-measurable. We have
EX|X+Y]+EY|X+Y]=EX+Y|X+Y]=X+Y \/

Since X, Y are identically distributed, we have E[X | X + Y] =E[Y | X + Y]. Hence

[E[X|X+Y]=[E[Y|X+Y]=%(X+Y) \/


https://math.stackexchange.com/questions/3019307

e Let T:R? — R? be the change of variables T'(x, y) = (x+y,x—y). Let h:= hoT ! sothat h(x,y) = ﬁ(x+ ¥, x—y). Since his
Borel measurable and T is continuous, / is also Borel measurable. Hence h(X+Y,X-Y)iso(X+Y, X-Y)-measurable.

We have
v

E[A(X,Y) | X+Y, X~ Y] =E[A(X+Y,X-Y) | X,Y] = h(X+Y, X~ Y) = h(X,Y) O

Grade: Alpha-

Question 5

(a) Suppose X,Y,XY are all integrable random variables and Y is also ¢-measurable. Show that E[Y (X —E(X | ¢4))] = 0.
How do we interpret this for X, Y € £2?2

(b) Suppose A ¥ are o-algebras and X is a random variable with E (X?) < co. Show that

E[{X -EX |9} +E[{E(X |9) —EX | )] =E[{X - E(X | #)}?]

Proof. (a)

E[Y(X-E[X|¥9D]=E[XY - YE[X|¥4]]

=E[XY -E[XY |¥]] (Lemma 6.7)
=EXY]-E[E[XY |¥4]]

=E[XY]-E[XY] (Proposition 6.5.(i))
=0

For X,Y € %2, the equation implies that Y is orthogonal to X —E[X | €]. So E[X | €] is the projection of X onto the
subspace of all &-measurable functions.

(b) E[X | ¥€]is €-measurable. E[X | #] is # -measurable. Since # < €, it is also ¥-measurable. Hence E[X | €] —E[X | Z]
is ¥-measurable. By (a), we know that X —E[X | &] is orthogonal to E[X | €] —E[X | #]. Now the equation

E[{X -EX 9] +E[{EX |9) - EX | )] = E[{X —E(X | #)}?] \/
follows from the Pythagoras’ Theorem: Pythaoras Theorem is not really well-defined unless you
rigorously prove that these spaces are Hilbert spaces.
IX —EIX | €15+ IELX | €1 -E[X | Z1115 = | X —E(X | 713 O
Question 6 Grade: Alpha

On (Q, #,P) consider three g-algebras ¢¥; < &,i = 1,2,3. Assume that 0 (%;,%3) and %, are independent. Show that for any
bounded ¥;-measurable random variable X we have

E[X |0 (¢4, %) =E[X|4]

Consider now two independent random variables ¢, with exponential distribution with parameter 1. Let X; =&, Xo =¢/(E+n)
and X3 = ¢ +n. Show that X, and X3 are independent (Hint: recall problem sheet 2 from Part A Probability) but that

E[X3 |0 (X1, X2)] #E[X3 |0 (X1)]

by computing both sides. Comment how this relates to the first part of the question.

Proof. Suppose that Y = E[X | &1]. Then Y is & -measurable and E[X1¢,| = E[Y1g, ]| for any G; € &;. We need to show that Y =
E[X | 0(%) U )], which is equivalent to E[X1 4] =E[Y14] for any A € 0 (%) U &»):

Let 712 . ={Gi1nNG2:G1 € &1,Go e\?zl. Then 7, is a m-system with o (#12) = 0 (&1 U £»). Note that {AS Q:E[X14] =E[Y14]}
erg

is a A-system by Monotone Convetgence Theorem. By 7-1 systems lemma, it suffies to prove that E[X14] =E[Y'14] for ar}/

AZGIHGQE%Q.

EIX14] =E[X1,nc, | =E[X1G, 16, ]

4



Since X is ¥3-measurable, X1, is 0 (¥ U%3)-measurable. Since o (¥ U%3) and &, are independent, we have
E[X16,16,] =E[X1g, |E[16,] =E[Y1g, |E[16,] =E[Y1g,16,] =E[Y14] \/

We deducethat Y =E[X |0 (%1,%2)] =E[X | 41].

We want the joint density function of X» and X3. Note that n and ¢ has joint density function f; ,(x, y) = e~ **Y), Change of
variable:

(u,v) = (x+y, %y) =T(x,y) \/

Then x = uv and y = u — uv. The Jacobian:

a(x,
o(u,v) 1-v -u
Then the joint density function of X3 and X> is given by
0(x, ) - -
Jx3. (W, v) = fen(x(u,v), y(u, V))‘m =lule™ =ue™

In particular, fx, x, has no dependence on X». Hence X, and X3 are independent.

X X
ElXs | X1l =E[X1+n1X1] =X +E[n] = X1 +1, E[X3 | X1, X2] =E < X1, X =X
> 2

Hence E[X3 | X7] #E[X3 | X1, X5].

In this part, we only have o (X2) and o(X3) are independent. In fact o (X, X3) is not independsy of 0(X3). O
Grade: Alpha
Question 7. Proposition 7.5 Amazing Work!

Suppose 7, p are stopping times on some (Q, #, (%) 450, P). Show that 7+ p,7 A p and T V p are also stopping times. Suppose
that 7 < p, is p — 7 a stopping time?

Proof. The stopping times 7 and p take value in w U {w} = w* (I use the convention in set theory to simply the notations.)

1. Note that for any n € 0™,
ft+p=nt= (r=minfp=n-m})

msn

For m < n, {t = m} is &,-measurable, {p = n— m} is &,_,,-measurable, and %,,, #,_, € &,. The union is at most
countable. So {t + p = n} is &, -measurable. Hence 7 + p is a stopping time.

2. We shall show that {t v p < n} is &, -measurable for any n € w*. We have

ftvpsni=fr<nnfpsni=J U (r=knfp=m}) \/

ksnmsn

For k,m < n, {t = n} and {p = m} are &,-measurable. The union is at most countable. Hence {7tV p < n} is &%,-
measurable. Then for n € w™, \/

ftvp=ni=frvpsm\ Jrvp<m
men

where {1V p < m} is &, € &, -measurable. Hence {1 vV p = n} is &%,-measurable. 7 V p is a stopping time.

3. The proof that 7 A p is a stopping time is essentially similar. Just notice that

Tapsni=fr<sniuipsni=J U ({Tzk}u{p\7m})

ksnmsn

So {1 A p < n} is &#,,-measurable. Next, we have

TAp=ni={TAp<n}\ U{%psm}

men

So {1t A p = n} is &,,-measurable. T A p is a stopping time.



4. p—r7isnota stopping time. Let p = 7 and %y = {J,Q}. And & 2 F. Then
ft=1}c{p-7=0}

where {17 = 1} is &} -measurable and {p — 7 = 0} is %p-measurable. Contradiction. Hence p —7 is not a stopping time. O

Grade: Alpha

Question 8. Proposition 7.8

Let 7 be a stopping time on (Q, %, (%) 150, P). Recall that
GFr={A€eF: AN{T=nle F,Vn=0}

Show that &; is a o-algebra and that if 7, p are two stopping times with 7 < p then &; € %,.

Proof. Showing that &; is a o-algebra is a routine:
e ForneN, dn{r=n}=3€F,. Hence & € F;.

e Let Ae ;. For neN, v
Anft=nleZF, = Q\An{t=nl={t=nl\(An{t=nhH) e %,

Thus Q\ A€ F,. \/

o Let{Ar:keN} S F;.ForneN,

VkeN: Aknfr=nleF, = |J Axnlr=n=JAn{t=n)eF,

keN keN \/

Thus U{Ay: ke N} € F;.

Suppose that 7 < p. Let Ae ;. ForneNand k < n, Au{tr < k}in%,. Then

n
Anfp=nl=An{t<pinfp=ni=Anfp=nin{J (fp=kin{r <k}
k=1

n
={p=ninJ (lp=kinAn{r <k}) \/
k=1

where AnN{t<kle Fr_1SF,, lp=nteF,,and {p=kl ={p =k} ={p <k} € Fr_1 < F,. We deduce that An{p = n} € F,,.
Hence A € &,. Hence &; € ). \/ O

Question 9

Suppose that 7 is a stopping time such that for some K = 1 and some € > 0, we have, for every n =0
Pltr<sn+K|%,]l=z€a.s.
Prove by induction that, for all m e N
Plr>mK]<(1-¢)™

Deduce that E[7] < co.

Proof. Forall neN, from
Pltr<n+K| %, =zc¢ca.s.

where P(1 < n+K | %) :=E[liz<n+ky | |, we have \/
E[lg<n+xila) =E[lg<nikina] 2Elela] = Pt <n+KinA) = eP(A) = P{r>n+K}nA) < (1-¢)P(A)

forany Ae %,. \/



We use induction on m to prove that P(r > mK) < (1 —¢)"". Base case: for m = 0, P(1r > 0) < 1 holds trivially. Induction case:
Let n = mK in the above inequality. We have

for any A € &,,,k. Since 7 is a stopping time, {t > mK} € ¥,x. Let A= {1 > mK}. Then

Pt >mK+KinA)>1-¢)P(A)

P{r>mK+Kin{t>mK}) =P{r>m+1DK)>A-e)P((r>mK)=1-e)1-¢)" = (1 -g)™!

where P({t > mK}) > (1 — €)™ is the induction hypothesis. Hence we deduce that P({ > mK}) > (1 — &) for any m € N.

Let

8
M8

(m+ 1K1 gmg<r<(m+1)K}

° 4

3
I

Then a = 7 pointwise. Hence

Elr] <Ela] = )_ (m+1)KP(mK <7,< (m+1)K)
m=0 \/

<K ) m+1)P@>mK)<K ) (m+D(1-¢)"

m=0 m=0

1
—£—2<oo\/

O
Question 10. Exercise 8.14
On (Q,%,P), let X1, X, ... be independent random variables with EX; = 0 for each i, and Var (X;) = 0? <oo. Let S, = Z?zl X;
and let sfl = Z?zl Ulz.. Show that Sfl - s?l is a martingale with respect to the filtration &%, = 0 (X1, ..., Xp).
Proof. Note that
S =2 =88 =S+ X2, +2X Z X;+0?
i=1 \/
where S2 - 52 is #,-measurable. Then
E[S5.1 = $oiy | Fn] =E[S5 — 57 | F] +E| X, +1+2Xn+IZXl oo | Fn
i=1 \/
=82 — s +E[ X2, | Fn] +2 Z XiE(Xp+1 | Fnl—0%,,  (Proposition 6.5 & Lemma 6.7)
i=1
=82 —s +[E[ +1] +22X,[E[Xn+1] \/ (Independence of (X, 1) and o (X, ..., X5))
i=1
Since E[X;] =0, E[X?2,,] = 02,,. Hence
2 2
[Sn+1 n+1 |g ] Sn_sn
We conclude that S — s2 is a martingale with respect to {F,}. O

4

Question 11

Suppose that (Xj) ;>0 is a submartingale on (Q F,(Fn) =0, ) and f is a convex and increasing function on R. Show that if
f (Xp) is integrable for each n > 0, then (f (X,)),,5, is a submartingale. Deduce that if X is a supermartingale then (X},),. is
a submartingale.

Proof. Since {X},} is a submartingale, we have E[X},; | %,] = X,,. We have the almost everywhere inequality:

E[f (Xn+1) | Fn] = f ElXps1 | Fal) \/ (conditional Jensen'’s inequality)
= f(X,) (f is increasing)



Hence {f(X},)} is also a submartingale.

Since {X,} is a supermartingale, {—X},} is a submartingale. Let X,, = f(-X},) = max{—Xj,0}. The function f(x) = max{x,0} is
clearly convex and increasing. BY the previous result we deduce that (X},), ., is a submartingale. O

4





