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Question 1

The electron in a hydrogen-like ion has a Hamiltionian

H = − ~2

2m
∇2 − Ze2

4πε0

1

r

and eigenstates |n, l,m〉 .

(a) Explain the origin of each term in the Hamiltionian, and the meaning of each of the quantum numbers n, l andm.
On which quantum number does the energy depend? For n = 2, what values may l andm take?

(b) By considering the electric dipole selection rules or otherwise, identifywhich of thematrix elements 〈2, l′,m′|z|2, l,m〉
are non-zero.

(c) A small static electric field of strength E is applied in the z-direction. Write down the perturbation Hamiltonian.
Calculate its non-zero matrix elements for the basis of states with n = 2.

(d) Identity the linear combinations of the n = 2 states that diagnolize the perturbation Hamiltionian and calculate the
energy shifts. Hence sketch the n = 2 energy levels before and after the application of the perturbation. In each
case, label the eigenstates and give the magnitude of any energy differences.

Solution. (a) The classical Hamiltionian of the hydrogen-like system is given by:

H = T + V =
p2

2m
− Ze2

4πε0

1

r

where− Ze2

4πε0

1

r
is the electrostatic potential that describes the Coulomb interaction. The Hamiltionian operator Ĥ

is obtained by taking the canonical quantization r 7→ r̂, p 7→ −i~∇:

Ĥ = T̂ + V̂ = − ~2

2m
∇2 − Ze2

4πε0

1

r

The quantum number n represents the eigenstates of the Hamiltionian Ĥ, l the eigenstates of angular momentum
L̂2, andm the eigenstates of angular momentum L̂z. The energy of the state |n, l,m〉 depends on n. More explicitly,

En = − R
n2
, where R is the Rydberg constant.

For n = 2,

0 6 l 6 n− 1 =⇒ l = 0, 1. − l 6 m 6 l =⇒ m = 1, 0,−1.

The eigenstates are |2, 0, 0〉 , |2, 1, 0〉 , |2, 1, 1〉 , |2, 1,−1〉 .

(b) The wave function of the state |2, l,m〉 is given by ψ(r, θ, ϕ) = R2,l(r)Yl,m(θ, ϕ), where Yl,m(θ, ϕ) ∝ Pml (cos θ) eimϕ.
In spherical coordinates, z = r cos θ. Note that∫ 2π

0

ei(m−m
′)ϕ dϕ = 0 form 6= m′

and that ∫ π

0

cos θ sin θPml (cos θ)Pml′ (cos θ) dθ =

∫ 1

−1
tPml (t)Pml′ (t) dt = 0 for l = l′

by the recurrance formula tPml (t) = (l −m+ 1)Pml+1(t) + (l +m)Pml−1(t) and the orthogonal relations.

Hence

〈2, l′,m′|ẑ|2, l,m〉 =

∫ ∞
0

R2,l(r)R2,l′(r)r
3 dr

∫ π

0

cos θ sin θPml (cos θ)Pm
′

l′ (cos θ) dθ

∫ 2π

0

ei(m−m
′)ϕ dϕ

is non-zero for 〈2, 1, 0|z|2, 0, 0〉 and its complex conjugate.
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(c) The perturbed Hamiltonian Ĥ = Ĥ0 + V̂ , where V̂ = eEz is the electrostatic potential induced by the external field.
We know that

ψ2,0,0(r, θ, ϕ) = 2(2aZ)−3/2
(

1− r

2aZ

)
e−r/2aZ · 1√

4π
ψ2,1,0(r, θ, ϕ) =

1√
3

(2aZ)−3/2
r

aZ
er/2aZ ·

√
3

4π
cos θ

Therefore we have

〈2, 1, 0|V̂ |2, 0, 0〉 = eE
∫∫∫

R3

r cos θψ2,0,0(r)ψ2,1,0(r) dV

= eE 1

2π
(2aZ)−3

∫ ∞
0

r3
r

aZ

(
1− r

2aZ

)
e−r/aZ dr

∫ π

0

cos2 θ sin θ dθ

∫ 2π

0

dϕ

=
eE

16aZ

∫ ∞
0

(
r4

aZ
− r5

2aZ

)
e−r/aZ dr

=
1

12

(
Γ(5)− 1

2
Γ(6)

)
= −3eEaZ

With respect to the basis {|2, 0, 0〉 , |2, 1, 1〉 , |2, 1, 0〉 , |2, 1,−1〉}, the matrix of V̂ is given by
0 0 −3eEaZ 0

0 0 0 0

−3eEaZ 0 0 0

0 0 0 0



(d) By direct observation, we know that V̂ is diagonalizedwith respect to the basis {|+〉 , |−〉 , |2, 1, 1〉 , |2, 1,−1〉}, where
|±〉 :=

1√
2

(|2, 0, 0〉 ∓ |2, 1, 0〉 ): 
3eEaZ 0 0 0

0 −3eEaZ 0 0

0 0 0 0

0 0 0 0


The first order perturbation theory gives the shift of the n = 2 energy levels:

Question 2

State and prove the variational theorem in quantum mechanics.

Use the theorem to prove that in a one-dimensional system an attractive potential always has a bound state, by taking
the following steps. We define an attractive potential V (x) to be one that has finite range a and is negative on average,
meaning that

V (x) = 0 for |x| > a and
∫ a

−a
dx V (x) = −v0
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with v0 > 0. Consider a function f(y) that has its maximum at x = 0, is non-negative, and approaches zero for y → ±∞,
with the properties ∫ +∞

−∞
dy |f(y)|2 = 1 and

∫ +∞

−∞
dy

∣∣∣∣df(y)

dy

∣∣∣∣2 = 1

For the Hamiltonian

Ĥ = − ~2

2m

d2

dx2
+ V (x)

use the (unnormalized) trial wave function ψ(x) = f(x/λ) with variational parameter λ to show that

〈H〉 :=

∫ +∞

−∞
dx ψ∗(x)Ĥψ(x)∫ +∞

−∞
dx |ψ(x)|2

< 0

for sufficiently large λ. How is the situation different for a three-dimensional system?

Solution. We state the Variational Theorem as follows:

Theorem 1. Variational Theorem

Suppose that the Hamiltonian Ĥ has discrete spectrum, with minimum eigenvalue (ground state energy) E0. We

have E0 = inf
|ψ〉∈ℋ

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

. In particular, 〈ψ|Ĥ|ψ〉 > E0 for normalized |ψ〉 .

Proof. Let the functional gH : ℋ → R given by gH(ψ) = 〈ψ|Ĥ|ψ〉. We shall find the extremal of gH under the constraint
||ψ|| = 1. By the method of Lagrange multipliers,

0 = δ(〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉)

= 〈δψ|Ĥ|ψ〉+ 〈ψ|Ĥ|δψ〉 − λ〈δψ|ψ〉 − λ〈ψ|δψ〉

= 〈δψ|(H − λ id)|ψ〉+ 〈ψ|(H − λ id)|δψ〉

Since |δψ〉 is arbitrary, we deduce that (H−λ id) |ψ〉 = 0. That is, λ is an eigenvalue of Ĥ and |ψ〉 is an eigenstate
of Ĥ. It follows that fH(ψ) = λ > E0. Moreover, E0 is in the image of fH . The claim is hence proved.

We shall first show that the function f satisfying all the given conditions exists. Consider fσ(x) = (2πσ)−1/4 exp

(
− x2

4σ2

)
.

Then f2σ(x) =
1√
2πσ

exp

(
− x2

2σ2

)
. We recognize that f2σ is the p.d.f. of the normal distribution withmean 0 and variance

σ2. Hence
∫
R
f2σ = 1. We compute the derivative:

f ′σ(x) = − x

2σ2
fσ(x) =⇒

∫
R
|f ′σ|2 =

∫
R

x2

4σ4
f2σ(x) dx =

1

4σ4
· σ2 =

1

4σ2

Therefore by taking σ =
1

2
we find the desired function f .

Let ψλ(x) = f(x/λ). The expectation of Ĥ is the state ψλ is given by:

〈Ĥ〉 : =

∫ +∞

−∞
dx ψ∗(x)Ĥψ(x)∫ +∞

−∞
dx |ψ(x)|2
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=

∫
R

(
− ~2

2mλ2
f ′′
(x
λ

)
f
(x
λ

)
+ V (x)f

(x
λ

)2)
dx∫

R
f
(x
λ

)2
dx

= − ~2

2mλ2

∫
R
f ′′(t)f(t) dt+

∫
R
V (λt)f(t)2 dt

(∫
R
f(t)2 dt = 1

)
= − ~2

2mλ2
f(t)f ′(t)

∣∣∣∣t=+∞

t=−∞
+

~2

2mλ2

∫
R
f ′(t)2 dt+

∫
R
V (λt)f(t)2 dt

=
~2

2mλ2
+

∫ a/λ

−a/λ
V (λt)f(t)2 dt

(∫
R
f ′(t)2 dt = 1, suppV ⊆ [−a, a]

)

Since
∫
R
V (x) dx = −v0 and f is continuous,

∫ a/λ

−a/λ
V (λt)f(t)2 dt→ − 1

λ
v0f(0)2 as λ→∞ bymean value theorem. Hence

for sufficiently large λ we have

〈Ĥ〉 ≈ ~2

2mλ2
− 1

λ
v0f(0)2 < 0

Finally, by variational theorem, the ground state energy E0 6 〈Ĥ〉 < 0. We conclude that the bound states exist.

The theorem is false in the higher dimension case. An example is given in the Wikipedia: https://en.wikipedia.org/
wiki/Finite_potential_well.

Question 3

In the β decayH3 → (He3)+, the emitted electron has a kinetic energy of 16 keV.Wewill consider the effects on themotion
of the atomic electron, i.e. the one orbiting the nucleus, which we assume is initially in the ground state of H3.

Show by a brief justification that the perturbation is sudden, by considering the location of the emitted electron at a time
around τ = 5× 10−17 s after emission. How does τ compare with the time-scale on which the wave function changes?

Show that the probability for the electron to be left in the ground state of (He3)+ is 23(2/3)6 ≈ 0.7.

Proof. The static energy of the electron is 510 keV� 16 keV, so we neglect any relativistic effects. The speed of the emitted

electron is v =

√
2T

me
= 0.25c. After time τ , the electron travels a distance of τc = 3.75 nm, which is much larger

than the radius of an atom. In comparison, the phase factor in the ground state wave function is ei
E0
~ t. The period is

2π~
E0

= 3.04× 10−16 s, which is larger than τ . Therefore the perturbation is considered to be sudden.

The ground state wave function of a hydrogen-like atom is given by

ψ0(x) =
1√
πa3Z

e−r/aZ , aZ =
a0
Z

The original and perturbed ground state are given respectively by

ψ0(x) =
1√
πa30

e−r/a0 , φ0(x) =

√
23

πa30
e−r/2a0

The probability of staying in the ground state is given by

P = |〈ψ0|φ0〉|2 =

(∫∫∫
R3

1√
πa30

e−r/a0 ·

√
23

πa30
e−r/2a0 dV

)2

=

(
23/2

(
2

3

)3 ∫∫∫
R3

ψ0(x)2 dV

)
= 23

(
2

3

)6

≈ 0.7

https://en.wikipedia.org/wiki/Finite_potential_well
https://en.wikipedia.org/wiki/Finite_potential_well
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Question 4

At early times (t ∼ −∞) a harmonic oscillator of massm and natural angular frequency ω is in its ground state. A pertur-
bation δH = Ex e−t

2/τ2

is then applied, where E and τ are constants.

What is the probability according to first-order theory that by late times the oscillator transitions to its second excited
state, |2〉?

Show that to first order in δH the probability that the oscillator transitions to the first excited state, |1〉 , is

P =
πE2τ2

2m~ω
e−ω

2τ2/2

Plot P as a function of τ and comment on its behaviour as ωτ → 0 and ωτ →∞.

Solution. Let Ĥ(t) = Ĥ0 + δĤ(t), where Ĥ0 = − ~2

2m

d2

dx2
+

1

2
mω2x2. Suppose that {|n〉 : n ∈ N} is the set eigenstates of Ĥ0.

The state of the system is given by

|ψ(t)〉 =
∑
n cn(t) e−

iEn
~ t |n〉

Substitute into the time-independent Schrödinger’s equation:∑
n e−

iEn
~ t

(
i~
∂cn
∂t

(t) + Encn(t)

)
|n〉 =

∑
n e−

iEn
~ t cn(t)(En + δĤ(t)) |n〉

Acting
1

i~
e

iEm
~ t〈m| on both sides:

∂cm
∂t

=
1

i~
∑
n ei(Em−En)t/~ cn(t)〈m|δĤ(t)|n〉

The system is in the ground state |0〉 at t = −∞. In the zeroth approximation of δĤ(t), we have cn(t) = 〈n|0〉 = δn,0.
Substitute it into the expression above to obtain the first order approximation:

∂cm
∂t

=
1

i~
ei(Em−E0)t/~〈m|δĤ(t)|0〉

First we compute the matrix element 〈m|δĤ(t)|0〉 form = 2:

〈2|δĤ(t)|0〉 = E e−t
2/τ2〈2|x̂|0〉 = E e−t

2/τ2〈2|x̂|0〉 = E e−t
2/τ2

√
~

2mω
〈2|â+ â†|0〉 = 0

Hence
∂c2
∂t

= 0. As c2 = 0 at t = −∞. We deduce that c2 is identically zero. Hence the probability of transition to second
excited state is zero.

Next we compute the matrix element 〈m|δĤ(t)|0〉 form = 1:

〈1|δĤ(t)|0〉 = E e−t
2/τ2

√
~

2mω
〈1|â+ â†|0〉 = E

√
~

2mω
e−t

2/τ2

We integrate c1 over time:

c1(t) =
1

i~
E
√

~
2mω

∫ t

−∞
exp

(
− t
′2

τ2
+ iωt′

)
dt′

At t� τ , approximately we have

c1 =
1

i~
E
√

~
2mω

∫ +∞

−∞
exp

(
− t

2

τ2
+ iωt

)
dt

=
1

i~
E
√

~
2mω

e−ω
2τ2/4

∫ +∞

−∞
exp

(
− 1

τ2

(
t− iωτ2

2

)2
)

dt

=
1

i~
E
√

~
2mω

τ
√
π e−ω

2τ2/4
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Hence the probability of transition to first excited state is

P = |c1|2 =
πE2τ2

2m~ω
e−ω

2τ2/2

We observe that P → πE2τ2

2m~ω
as ωτ → 0 and P → 0 as ωτ →∞. The plot of P against τ :

Question 5

Write down the selection rules for radiative transitions in the electric dipole approximation. Draw an energy level diagram
for hydrogen (use the vertical direction for energy, and separate the states horizontally by angular momentum `). Show
how the selection rules apply to hydrogen by marking allowed transitions on your diagram.

Solution. The selection rules say that the radiative transitions from state |n, l,m〉 to state |n′, l′,m′〉 only if |l − l′| = 1 and
|m−m′| 6 1. Here is a diagram.

Question 6

With |n, l,m〉 a stationary state of hydrogen, which of these matrix elements is non-zero?

〈1, 0, 0|z|2, 0, 0〉 〈1, 0, 0|z|2, 1, 0〉 〈1, 0, 0|z|2, 1, 1〉
〈1, 0, 0|z|3, 0, 0〉 〈1, 0, 0|z|3, 1, 0〉 〈1, 0, 0|z|3, 2, 0〉
〈1, 0, 0|x|2, 0, 0〉 〈1, 0, 0|x|2, 1, 0〉 〈1, 0, 0|x|2, 1, 1〉

Solution. In Question 1 we argue that 〈n, l,m|ẑ|n′, l′,m′〉 = 0 unlessm = m′ and |l − l′| = 1. We immediately obtain that

〈1, 0, 0|z|2, 0, 0〉 = 0 〈1, 0, 0|z|2, 1, 1〉 = 0 〈1, 0, 0|z|3, 0, 0〉 = 0 〈1, 0, 0|z|3, 2, 0〉 = 0

For 〈1, 0, 0|z|2, 1, 0〉 and 〈1, 0, 0|z|3, 1, 0〉, we need to compute the integral over the radial component. From Binney’s book
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we know that the radial solutions to the TISE are

R1,0(r) ∝ a−3/20 e−r/a0 R2,1(r) ∝ a−3/20

r

a0
e−r/2a0 R3,1(r) ∝ a−3/20

r

a0

(
1− r

6a0

)
e−r/3a0

Clearly
∫ ∞
0

r3R1,0(r)R2,1(r) dr > 0. Therefore 〈1, 0, 0|z|2, 1, 0〉 6= 0. For 〈1, 0, 0|z|3, 1, 0〉,

∫ ∞
0

r3R1,0(r)R3,1(r) dr ∝ a−30

∫ ∞
0

r3
r

a0

(
1− r

6a0

)
e−4r/3a0 dr =

∫ ∞
0

(
34

44

(
4r

3a0

)4

− 35

6 · 45

(
4r

3a0

)5
)

e−4r/3a0 dr

=

(
35

45
4!− 36

6 · 46
5!

)
a0 6= 0

Therefore 〈1, 0, 0|z|3, 1, 0〉 6= 0.

In spherical coordinates, x = r sin θ cosϕ. For the integral over ϕ component:∫ 2π

0

cosϕ ei(m−m
′)ϕ dϕ =

∫ 2π

0

cosϕ cos(m−m′)ϕ dϕ = 0 for |m−m′| 6= 1

by the orthogonal relations. Therefore we have 〈1, 0, 0|x|2, 0, 0〉 = 0 and 〈1, 0, 0|x|2, 1, 0〉 = 0.

For 〈1, 0, 0|x|2, 1, 1〉, the integral over ϕ is non-zero. As shown previously the integral over radial component is non-zero.
For the integral over θ, ∫ π

0

sin2 θP 0
0 (cos θ)P 1

1 (cos θ) dθ =

∫ π

0

sin3 θ dθ 6= 0

Hence 〈1, 0, 0|x|2, 1, 1〉 6= 0.

In conclusion, the non-zero matrix elements are 〈1, 0, 0|z|2, 1, 0〉, 〈1, 0, 0|z|3, 1, 0〉 and 〈1, 0, 0|x|2, 1, 1〉.

Question 7

With |n, l,m〉 a stationary state of hydrogen, and given that

Y1,0(θ, φ) =

√
6

8π
cos θ Y1,1(θ, φ) = −

√
3

8π
sin θ eiφ Y1,−1(θ, φ) =

√
3

8π
sin θ e−iφ

show that

〈1, 0, 0|x− iy|2, 1, 1〉 = −
√

2〈1, 0, 0|z|2, 1, 0〉

〈1, 0, 0|x− iy|2, 1,−1〉 = 0

Write down the values of 〈1, 0, 0|x+ iy|2, 1,−1〉 and 〈1, 0, 0|x+ iy|2, 1, 1〉 and hence show that with

|ψ〉 :=
1√
2

(|2, 1, 1〉 − |2, 1,−1〉 ) ,

〈1, 0, 0|x|ψ〉 = −〈1, 0, 0|z|2, 1, 0〉, Explain the physical significance of this result.

Proof. In spherical coordinates, x ± iy = r sin θ(cosϕ ± sinϕ) = r sin θ e±iϕ and z = r cos θ It suffices to compute the integral
over the angular coordinates.

∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0

sin θ e−iϕ Y0,0(θ, ϕ)Y1,1(θ, ϕ) sin θ dϕdθ =
1√
4π
·

(
−
√

3

8π

)∫ 2π

0

dϕ

∫ π

0

sin3 θ dθ = −
√

3

4
√

2π
· 2π · 4

3
= −
√

6

3
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∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0

sin θ e−iϕ Y0,0(θ, ϕ)Y1,−1(θ, ϕ) sin θ dϕdθ = 0 bacause
∫ 2π

0

e−2iϕ dϕ = 0∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0

cos θY0,0(θ, ϕ)Y1,0(θ, ϕ) sin θ dϕdθ =

√
3

2

∫ π

0

cosθ sin θ dθ =

√
3

3

Hence we have 〈1, 0, 0|x− iy|2, 1, 1〉 = −
√

2〈1, 0, 0|z|2, 1, 0〉 and 〈1, 0, 0|x− iy|2, 1,−1〉 = 0.

Similarly we also have 〈1, 0, 0|x + iy|2, 1,−1〉 =
√

2〈1, 0, 0|z|2, 1, 0〉 and 〈1, 0, 0|x + iy|2, 1, 1〉 = 0. Since x =
1

2
((x + iy) +

(x− iy))

〈1, 0, 0|x|ψ〉 =
1√
2

(〈1, 0, 0|x|2, 1, 1〉 − 〈1, 0, 0|x|2, 1,−1〉)

=
1

2
√

2
(〈1, 0, 0|x− iy|2, 1, 1〉+ 〈1, 0, 0|x+ iy|2, 1, 1〉 − 〈1, 0, 0|x+ iy|2, 1,−1〉 − 〈1, 0, 0|x− iy|2, 1,−1〉)

=
1

2
√

2
(−
√

2〈1, 0, 0|z|2, 1, 0〉 −
√

2〈1, 0, 0|z|2, 1, 0〉)

= −〈1, 0, 0|z|2, 1, 0〉

Question 8

Derive the selection rules

〈n′, l′,m′|x+|n, l,m〉 = 0 unless m′ = m+ 1

〈n′, l′,m′|x−|n, l,m〉 = 0 unless m′ = m− 1

where x± = x ± iy. From this selection rule one infers that when the atom sits in a magnetic field along the z-axis and
the spectrometer looks along the z-axis, the detected photons will be circularly polarized. Show that linearly polarized
photons can be detected from an atom that is in a magnetic field.

From the above rules it might be argued that photons emitted along the z-axis will be circularly polarized even in the
absence of a magnetic field. Why is this argument bogus?

Solution. In spherical coordinates, x± = x± iy = r sin θ e±iϕ. For 〈n′, l′,m′|x±|n, l,m〉, the integral over the ϕ component is∫ 2π

0

e±iϕ · ei(m−m
′)ϕ dϕ = 0 unlessm−m′ ± 1 = 0

which gives the selection rules form andm′.

The linearly polarized can be detected from the perpendicular direction of the magnetic field.


