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Question 1. Manipulating the Klein-Gordan Lagrangian density.

All of these manipulations can be done purely in the continuum. Let

L =
1

2
∂µϕ∂µϕ− 1

2
ω2ϕ2

be the Lagrangian Density. Consider a spatial region VΣ bounded by the surface Σ and consider the evolution
of ϕ from ϕ0(x) at t = 0 to ϕ1(x) at t = T so that

L =

∫
VΣ

d3xL, and S =

∫ T

0
L dt

a) By considering the variation ϕ(x) = ϕcl(x) + δϕ(x), with δϕ(x, 0) = δϕ(x, T ) = 0 at the endpoints,
show that

δS =

∫ T

0
dt

∫
VΣ

d3x δϕ
(
− (∂0)

2 +∇2 − ω2
)
ϕcl −

∫ T

0
dt

∫
Σ
δϕn̂ ·∇ϕcl dA

where n̂ is the unit normal vector to the surface Σ and dA is the element of area.

b) To deduce the KG equation we need the boundary term to vanish. Suppose Σ is the surface of a sphere
of radius R; assuming that |δϕ| < constant, and that ϕcl ∼ R−η at large R how large does η have to
be in order for the boundary term to vanish as R → ∞ ? In practice for a massive scalar with a delta
function source at the origin ϕcl ∼ R−1 exp(−mR) so there is no problem here. When would there be
a potential problem?

c) Define the canonical momentum field by
π =

∂L
∂ (∂0ϕ)

Find an expression for the Hamiltonian Density which is defined by

H(π, ϕ) = π∂0ϕ− L

(Beware, H can contain ∇ϕ but not ∂0ϕ.)

d) What are the Hamiltonian equations of motion in this case? Show that they lead to the KG equation
for ϕ. Take care: the Hamiltonian equation of motion are just that — they use the Hamiltonian. not
the Hamiltonian density!

Proof. In convention, the greek letters µ, ν, ... ranges from 0 to 3, and the latin letters a, b, ... ranges from 1 to 3.
The signature of the Minkowski spacetime is (+−−−).

a) The variation of the Lagrangian density is given by

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µ(δϕ) = −ω2ϕclδϕ+ ∂µϕcl∂µ(δϕ)

The variation of the action is given by

δS =

∫ T

0
dt

∫
VΣ

d3x δL =

∫ T

0
dt

∫
VΣ

d3x
(
−ω2ϕclδϕ+ ∂µϕcl∂µ(δϕ)

)
=

∫ T

0
dt

∫
VΣ

d3x
(
−ω2ϕclδϕ+ ∂0ϕcl∂0(δϕ)−∇ϕcl ·∇δϕ

)
=

∫ T

0
dt

∫
VΣ

d3x
(
−ω2ϕclδϕ− ∂µ∂

µϕclδϕ
)
−
∫ T

0
dt

∫
Σ
δϕ∇ϕcl · n̂ dA+

∫
VΣ

d3x ∂0ϕδϕ

∣∣∣∣δϕ(x,T )

δϕ(x,0)

=

∫ T

0
dt

∫
VΣ

d3x δϕ
(
−ω2 − ∂2

0 +∇2
)
ϕcl −

∫ T

0
dt

∫
Σ
δϕ∇ϕcl · n̂ dA
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b) Suppose that δϕ is bounded by M . We have∣∣∣∣∫ T

0
dt

∫
Σ
δϕ∇ϕcl · n̂ dA

∣∣∣∣ 6 4πR2TM sup
x∈Σ,t∈[0,T ]

‖∇ϕcl(x, t)‖

If ϕcl ∼ R−η, then ‖∇ϕcl‖ ∼ R−(η+1). The boundary integral∣∣∣∣∫ T

0
dt

∫
Σ
δϕ∇ϕcl · n̂ dA

∣∣∣∣ ∼ R−(η−1)

If the boundary term needs to vanish as R → ∞, we must have η > 1.

c) The canonical momentum
π =

∂L
∂(∂0φ)

= ∂0φ

Therefore the Hamiltonian density

H(π, ϕ) = π∂0ϕ− L = π2 − 1

2

(
π2 − ∂aϕ∂

aϕ− ω2ϕ2
)
=

1

2
(π2 + ‖∇ϕ‖ 2 + ω2ϕ2) (∗)

d) The Hamiltonian is given by

H[π, ϕ] =

∫
R3

H d3x =

∫
R3

1

2
(π2 +∇2ϕ+ ω2ϕ) d3x

We derive the Hamiltonian canonical equations in the general case.

From the Lagrangian formalism, by demanding δS = 0 we obtain the Euler-Lagrange equations:

∂

∂xµ
∂L

∂(∂µϕ)
− ∂L

∂ϕ
= 0

The variation of the Hamiltonian is given by

δH =

∫
R3

d3x (∂0ϕδπ + πδ(∂0ϕ)− δL)

=

∫
R3

d3x

(
(∂0ϕδπ + πδ(∂0ϕ))−

(
∂L
∂ϕ

δϕ+ πδ(∂0ϕ) +
∂L

∂(∂aϕ)
∂a(δϕ)

))
=

∫
R3

d3x

(
∂0ϕδπ +

(
−∂L
∂ϕ

+
∂

∂xa
∂L

∂(∂aϕ)

)
δϕ

)
=

∫
R3

d3x (∂0ϕδπ − ∂0πδϕ) (substituting the Euler-Lagrange equation)

But we also have

δH[π, ϕ] =

∫
R3

d3x

(
∂H
∂π

δπ +
∂H
∂ϕ

δϕ+
∂H

∂(∂aϕ)
∂a(δϕ)

)
=

∫
R3

d3x

(
∂H
∂π

δπ +

(
∂H
∂ϕ

− ∂

∂xa
∂H

∂(∂aϕ)

)
δϕ

)
By comparing the two expressions we obtain the canonical equations:

∂0ϕ =
∂H
∂π

, ∂0π = −∂H
∂ϕ

+
∂

∂xa
∂H

∂(∂aϕ)

We substitute (∗) into the second equation above:

∂0π = −ω2ϕ+ ∂a∂aϕ



3

Since π = ∂0ϕ, we recover the Klein-Gordan equation:

∂2ϕ

∂t2
=
(
∇2 − ω2

)
ϕ

Question 2. Manipulating the quantum scalar field.

Given that

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

(
a†−p + ap

)
eip·x (1)

π(x) = i

∫
d3p

(2π)3

√
Ep

2

(
a†−p − ap

)
eip·x (2)

H =

∫
d3p

(2π)3
Epa

†
pap (3)

P =

∫
d3p

(2π)3
pa†pap (4)

a) Find ap and a†p in terms of ϕ(x) and π(x) by Fourier transforming (1) and (2). By substituting your
results into (3) find H in terms of ϕ(x) and π(x).

b) Again by substituting your results for ap and a†p from part a) into (4) show that

P = −
∫

d3xπ(x)∇ϕ(x)

c) By explicit calculation find the eigenvalues of (H,P ) for the two particle state |p,p′〉 = a†pa
†
p′ |0〉.

d) Find 〈0|ϕ(x)ϕ(y)|p,p′〉.

Proof. a) (Taking the Fourier transform of some operator-valued integral really makes no sense in mathemat-
ics...at least in Fourier analysis. Probably we need something like spectral resolutions. From now on
I just pretend that the operators are just scalars and vectors in R3.)

Recall that the Fourier transform in R3 is defined by

F [f ](p) :=

∫
R3

d3x f(x) e−ip·x, f ∈ L1(R3)

with the inversion given by

F−1[f ](x) :=

∫
R3

d3p

(2π)3
f(p) eip·x, f ∈ L1(R3)

such that F−1 ◦ F = F ◦ F−1 = id over L1(R3). Then we note that

ϕ(x) =

∫
R3

d3p

(2π)3
1√
2Ep

(
a†−p + ap

)
eip·x = F−1

[
1√
2Ep

(
a†−p + ap

)]

π(x) = i

∫
R3

d3p

(2π)3

√
Ep

2

(
a†−p − ap

)
eip·x = F−1

[
i

√
Ep

2

(
a†−p − ap

)]

Therefore

ϕ(p) =
1√
2Ep

(
a†−p + ap

)
π(p) = i

√
Ep

2

(
a†−p − ap

)
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Hence we can solve the creation & annihilation operators:

ap =

√
Ep

2
ϕ(p) +

i√
2Ep

π(p) a†p =

√
Ep

2
ϕ(−p)− i√

2Ep

π(−p)

(We used the energy-momentum relation which implies that Ep = E−p.)

Substituting the results into (3):

H =

∫
R3

d3p

(2π)3
Epa

†
pap

=

∫
R3

d3p

(2π)3
Ep

(√
Ep

2
ϕ(−p)− i√

2Ep

π(−p)

)(√
Ep

2
ϕ(p) +

i√
2Ep

π(p)

)

=

∫
R3

d3p

(2π)3
1

2

(
E2

pϕ(−p)ϕ(p) + π(−p)π(p)− iEp

(
π(−p)ϕ(p)− ϕ(−p)π(p)

))
=

∫
R3

d3p

(2π)3
1

2

(
E2

pϕ(−p)ϕ(p) + π(−p)π(p)− iEp

[
π(−p), ϕ(p)

])
In the last step we swap p with −p. In order to handle the cross terms, we consider the canonical
quantisation given by

[ϕ(x), π(x′)] = iδ(x− x′)

which implies that

[F [ϕ](p),F ′[π](p′)] = F ◦ F ′[iδ(x− x′)] = F [i e−ip′·x] = i(2π)3δ(p+ p′)

Therefore [π(−p), ϕ(p)] = −i(2π)3δ(0). Substitute this back to the expression of Hamiltonian:

H =

∫
R3

d3p

(2π)3
1

2

(
E2

pϕ(−p)ϕ(p) + π(−p)π(p)
)
+

∫
R3

Epδ(0) d
3p

The second term corresponds to an infinitely large zero-point energy, which can be neglected as we
are doing physics. Therefore we have

H =

∫
R3

d3p

(2π)3
1

2

(
E2

pϕ(−p)ϕ(p) + π(−p)π(p)
)

We expand the Fourier transforms:∫
R3

d3p

(2π)3
1

2
E2

pϕ(−p)ϕ(p) =

∫
R3

d3p

(2π)3
1

2
E2

p

∫
R3

d3x

∫
R3

d3x′ ϕ(x)ϕ(x′) eip·x e−ip·x′

=
1

2

∫
R3

d3x

∫
R3

d3x′ ϕ(x)ϕ(x′)

∫
R3

d3p

(2π)3
(ω2 + p2) eip·(x−x′)

=
1

2

∫
R3

d3x

∫
R3

d3x′ ϕ(x)ϕ(x′)F−1
[
(ω2 + p2) e−ip·x′

]
=

1

2

∫
R3

d3x

∫
R3

d3x′ ϕ(x)ϕ(x′)
(
ω2F−1[e−ip·x′

]−∇2F−1[e−ip·x′
]
)

=
1

2

∫
R3

d3x

∫
R3

d3x′ ϕ(x)ϕ(x′)
(
ω2 −∇2

)
δ(x− x′)

=
1

2

∫
R3

d3x

∫
R3

d3x′ ϕ(x)δ(x− x′)
(
ω2 −∇2

)
ϕ(x′)

=

∫
R3

d3x
1

2
ϕ(x)

(
ω2 −∇2

)
ϕ(x)

=

∫
R3

d3x
1

2

(
ω2ϕ(x) + ‖∇ϕ(x)‖ 2

)
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∫
R3

d3p

(2π)3
1

2
π(−p)π(p) =

∫
R3

d3p

(2π)3
1

2

∫
R3

d3x

∫
R3

d3x′ π(x)π(x′) eip·x e−ip·x′

=
1

2

∫
R3

d3x

∫
R3

d3x′ π(x)π(x′)F−1
[
e−ip·x′

]
=

1

2

∫
R3

d3x

∫
R3

d3x′ ϕ(x)ϕ(x′)δ(x− x′)

=

∫
R3

d3x
1

2
π(x)2

In summary, the Hamiltonian is given by

H =

∫
R3

1

2

(
π(x)2 + ω2ϕ(x)2 + ‖∇ϕ(x)‖ 2

)
d3x

b) Similar to the calculation for the Hamiltonian, we have

P =

∫
R3

d3p

(2π)3
pa†pap

=

∫
R3

d3p

(2π)3
p

(√
Ep

2
ϕ(−p)− i√

2Ep

π(−p)

)(√
Ep

2
ϕ(p) +

i√
2Ep

π(p)

)

=

∫
R3

d3p

(2π)3
1

2
p

(
Epϕ(−p)ϕ(p) +

1

Ep
π(−p)π(p)− i

(
π(−p)ϕ(p)− ϕ(−p)π(p)

))
=

∫
R3

d3p

(2π)3
1

2
p

(
Epϕ(−p)ϕ(p) +

1

Ep
π(−p)π(p)− i

{
π(−p), ϕ(p)

})
In the last step, we obtain the anti-commutator

{
π(−p), ϕ(p)

}
when we swap p with −p. Note that∫

R3

d3p

(2π)3
1

2
p
(
Epϕ(−p)ϕ(p)

)
=

∫
R3

d3p

(2π)3
1

2
(−p)

(
E−pϕ(p)ϕ(−p)

)
= −

∫
R3

d3p

(2π)3
1

2
p
(
Epϕ(−p)ϕ(p)

)
So the first term is in fact zero. Similarly the second term is also zero. We obtain

P = − i

2

∫
R3

d3p

(2π)3
p
{
π(−p), ϕ(p)

}
= − i

2

∫
R3

d3p

(2π)3
p
(
−
[
π(−p), ϕ(p)

]
+ 2π(−p)ϕ(p)

)
= −i

∫
R3

d3p

(2π)3
pπ(−p)ϕ(p)− δ(0)

∫
R3

p d3p

But now we can happily claim that the second term is zero (perhaps in the sense of distributions)
because there is an obvious symmetry p 7→ −p.

Expand the Fourier tranform:

P = −i

∫
R3

d3p

(2π)3
p

∫
R3

d3x

∫
R3

d3x′ π(x)ϕ(x′) eip(x−x′)

= −i

∫
R3

d3x

∫
R3

d3x′ π(x)ϕ(x′)F−1[p e−ip·x′
]

= −i

∫
R3

d3x

∫
R3

d3x′ π(x)ϕ(x′)(−i∇δ(x− x′))

= −
∫
R3

d3x

∫
R3

d3x′ π(x)∇ϕ(x′)δ(x− x′)

= −
∫
R3

d3xπ(x)∇ϕ(x)
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c) First we calculate the commutator for the ladder operators.

[ap, a
†
p′ ] =

[√
Ep

2
ϕ(p) +

i√
2Ep

π(p),

√
Ep

2
ϕ(−p′)− i√

2Ep

π(−p′)

]

=
i

2
[π(p), ϕ(−p′)]− i

2
[ϕ(p), π(−p′)]

= (2π)3δ(p− p′)

Next calculate the commutator of H and a†:

[H, a†q] =

∫
R3

d3p

(2π)3
Ep[a

†
pap, a

†
q] =

∫
R3

d3p

(2π)3
Epa

†
p(2π)

3δ(p− q) = Eqa
†
q

Hence

H
∣∣p,p′〉 = Ha†pa

†
p′ |0〉

=
(
a†pHa†p′ + Epa

†
pa

†
p′

)
|0〉

=
(
a†pa

†
p′H + Ep′a†pa

†
p′ + Epa

†
pa

†
p′

)
|0〉

= (Ep + Ep′)
∣∣p,p′〉

Similar calculation for P shows that
[P , a†q] = qa†q

Hence
P
∣∣p,p′〉 = (p+ p′)

∣∣p,p′〉
d) Just calculate:

〈0|ϕ(x)ϕ(y) |p,p′〉

=

∫
R3

d3q

(2π)3
1√
2Eq

∫
R3

d3q′

(2π)3
1√
2Eq′

ei(q·x+q′·y) 〈0| (a†−q + aq)(a
†
−q′ + aq′) |p,p′〉

=

∫
R3

d3q

(2π)3
1√
2Eq

∫
R3

d3q′

(2π)3
1√
2Eq′

ei(q·x+q′·y)√2Ep

√
2Ep′ 〈0| (a†−q + aq)(a

†
−q′ + aq′)a†pa

†
p′ |0〉

=

∫
R3

d3q

(2π)3
1√
2Eq

∫
R3

d3q′

(2π)3
1√
2Eq′

ei(q·x+q′·y)√2Ep

√
2Ep′ 〈0| aqaq′a†pa

†
p′ |0〉

We have

aqaq′a†pa
†
p′ = aq[aq′ , a†p]a

†
p′ + aqa

†
paq′a†p′

= aq[aq′ , a†p]a
†
p′ + aqa

†
p[aq′ , a†p′ ] + aqa

†
pa

†
p′aq′

= [aq′ , a†p][aq, a
†
p′ ] + [aq′ , a†p]a

†
p′aq + [aq, a

†
p][aq′ , a†p′ ] + [aq′ , a†p′ ]a

†
paq + aqa

†
pa

†
p′aq′

Hence

〈0| aqaq′a†pa
†
p′ |0〉 = (2π)6

(
δ(q′ − p)δ(q − p′) + δ(q − p)δ(q′ − p′)

)
Substitute back to the first equation, we have

〈0|ϕ(x)ϕ(y) |p,p′〉 = ei(p·x+p′·y)+ei(p
′·x+p·y)
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Question 3. Calculating the unequal time commutator.

The Green’s functions that we will meet in the lecture course can all be expressed more-or-less explicitly in
terms of well-known special functions. For many purposes it is not necessary to do this but you should know
how to go about it. In this question we will calculate

∆(x) = [ϕ(x), ϕ(0)] =

∫
d3p

(2π)3
1

2Ep

(
e−ip·x − eip·x

)
a) Set xµ = (t,x) and change to polar coordinates for the momentum integral, choosing the polar axis to

be along the direction of x. Integrate out the angular variables to show that

∆(x) =
−i

8π2|x|

∫ ∞

−∞

ρdρ

E(ρ)
Re
(
e−i(E(ρ)t−ρ|x|) − ei(E(ρ)t+ρ|x|)

)
where E(ρ) = +

√
ρ2 +m2.

b) Now change to the rapidity variables: t = s cosh τ, |x| = s sinh τ and ρ = m sinhϕ (these are a very useful
way of expressing kinematic quantities in a wide variety of applications). After some manipulations
show that

∆(x) =
−im

4π2s

∫ ∞

−∞
coshϕ

(
Re eims coshϕ

)
dϕ

What is notable about this result?

c) The remaining integral is related to the Bessel functions - find out exactly what the relationship is. If
you are careful you will discover that we have made a subtle assumption in our manipulations - what
is it?

For information on Bessel Functions use the book Special Functions & Their Applications by N.N. Lebedev
which contains all the information you need. It is available as a pdf on the web.

Proof. a)

b) Using the rapidity variables, we have

E(ρ) =
√
ρ2 +m2 = m

√
1 + sinh2 φ = m coshφ

Then

∆(x) =
−i

8π2s sinh τ

∫
R

m2 sinhφ coshφdφ

m coshφ

Re
(
e−i(ms coshφ cosh τ−ms sinhφ sinh τ)− ei(ms coshφ cosh τ+ms sinhφ sinh τ)

)
=

−im

8π2s sinh τ

∫
R
sinhφRe

(
e−ims cosh(φ−τ)− eims cosh(φ+τ)

)
dφ
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Question 4. The Parity Operator.

Consider the same field operator and Hamiltonian as in Question 2, and define a new operator Q by

Q =

∫
d3p

(2π)3
(ap − a−p)

(
a†p − a†−p

)
a) Show that

[Q, aq + sa−q] = −2(1− s) (aq − a−q)

where s is a constant.

b) Define Cλ = eiλQ where λ is real. For operators A such that [Q,A] = cA where c is a constant show
that A(λ) = CλAC

†
λ satisfies

∂A(λ)

∂λ
= icA(λ)

Solve this differential equation to find A(λ) in terms of λ and A.

c) Using the result of parts a) and b) (hint: you can choose the value s, good choices help!) show that

Cπ
4
ϕ(x)C†

π
4
= ϕ(−x)

and deduce that therefore Cπ
4

can be identified as the parity operator. What is Cπ
4
HC†

π
4
?

Proof. a)

[Q, aq + sa−q] =

∫
R3

d3p

(2π)3
(ap − a−p)

[
a†p − a†−p, aq + sa−q

]
=

∫
R3

d3p

(2π)3
(ap − a−p)

(
[a†p, aq] + [a†p, sa−q]− [a†−p, aq]− [a†−p, sa−q]

)
=

∫
R3

d3p (ap − a−p)(1− s) (δ(p+ q)− δ(p− q))

= −2(1− s) (aq − a−q)

b) From the definition we note that Q is self-adjoint. {Cλ : λ > 0} defines a one-parameter strongly
continuous semi-group of unitary operators.1

Cλ = eiλQ =⇒ dCλ

dλ
= iQ eiλQ = iQCλ

The Hermitian adjoint
dC†

λ

dλ
=

(
dCλ

dλ

)†
= −iQC†

λ

Then

dA(λ)

dλ
=

dCλ

dλ
AC†

λ + CλA
dC†

λ

dλ
= iCλ[Q,A]C†

λ = icCλAC
†
λ = icA(λ)

With A(0) = A, the operator semi-group A(λ) is given by

A(λ) = A eicλ

1By Hille-Yosida Theorem, Q must satisfy that Q is closed and densely defined, and there exists m,ω > 0 such that (ω,+∞)∩σ(Q) =
∅ and ∥(λ id−Q)−n∥ 6 M(λ− ω)−n for any λ > ω and n ∈ Z+.
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c) Take s = 1 in part (a). We have

[Q, ap + a−p] = 0, [Q, a†p + a†−p] = −[Q, ap + a−p]
† = 0

Take s = −1 in part (a). We have

[Q, ap − a−p] = −4(ap − a−p)

Taking the Hermitian adjoint

[Q, a†p − a†−p] = −[Q, ap − a−p]
† = 4(a†p − a†−p)

By part (b) we have

Cλ(ap + a−p)C
†
λ = ap + a−p, Cλ(ap − a−p)C

†
λ = e−4iλ(ap − a−p)

Therefore we have
Cπ/4apC

†
π/4 =

1

2

(
(ap + a−p) + e−iπ(ap − a−p)

)
= a−p

and, taking the Hermitian adjoint

Cπ/4a
†
−pC

†
π/4 =

(
Cπ/4a−pC

†
π/4

)†
= a†p

Put these results into the expression we are looking for:

Cπ/4ϕ(x)C
†
π/4 =

∫
R3

d3p

(2π)3
1√
2Ep

eip·x
(
Cπ/4apC

†
π/4 + Cπ/4a

†
−pC

†
π/4

)
=

∫
R3

d3p

(2π)3
1√
2Ep

eip·x
(
a−p + a†p

)
=

∫
R3

d3p

(2π)3
1√
2Ep

e−ip·x
(
ap + a†−p

)
= ϕ(−x)

Hence Cπ/4 is the parity operator for the free scalar field ϕ(x) in the Heisenberg picture.

For the Hamiltonian, we have

Cπ/4HC†
π/4 =

∫
R3

d3p

(2π)3
EpCπ/4a

†
papC

†
π/4

=

∫
R3

d3p

(2π)3
Ep

(
Cπ/4a

†
pC

†
π/4

)(
Cπ/4apC

†
π/4

)
=

∫
R3

d3p

(2π)3
Epa

†
−pa−p

=

∫
R3

d3p

(2π)3
Epa

†
pap

= H

Therefore the parity operator does not change the Hamiltonian. This is consistent with the spatial
symmetry of reflection in a free scalar field theory.


