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Question 1. Manipulating the Klein-Gordan Lagrangian density.

All of these manipulations can be done purely in the continuum. Let
1 1
L= 58%8@ — §w2¢2

be the Lagrangian Density. Consider a spatial region Vy bounded by the surface 3 and consider the evolution
of ¢ from ¢o(x) at t = 0 to ¢1(x) at t = T so that

T
L:/ dx L, and S:/ Ldt
Vs 0

a) By considering the variation ¢(x) = ¢e(z) + dp(x), with dé(x,0) = dp(x,T) = 0 at the endpoints,
show that

55:/OTdt/VEd?’a;aqﬁ(—(ao)MV?—w2) ¢C1—/0Tdt/z(5¢ﬁ-V¢ddA

where 7 is the unit normal vector to the surface ¥ and dA is the element of area.

b) To deduce the KG equation we need the boundary term to vanish. Suppose ¥ is the surface of a sphere
of radius R; assuming that [d¢| < constant, and that ¢ ~ R™" at large R how large does n have to
be in order for the boundary term to vanish as R — oo 7 In practice for a massive scalar with a delta
function source at the origin ¢ ~ R~'exp(—mR) so there is no problem here. When would there be
a potential problem?

¢) Define the canonical momentum field by

o
~ 9(09)

Find an expression for the Hamiltonian Density which is defined by

™

H(m, ¢) =m0 — L

(Beware, H can contain V¢ but not dy¢.)

d) What are the Hamiltonian equations of motion in this case? Show that they lead to the KG equation
for ¢. Take care: the Hamiltonian equation of motion are just that — they use the Hamiltonian. not
the Hamiltonian density!

Proof. In convention, the greek letters u, v, ... ranges from 0 to 3, and the latin letters a, b, ... ranges from 1 to 3.
The signature of the Minkowski spacetime is (+ — ——).

a) The variation of the Lagrangian density is given by
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The variation of the action is given by
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b) Suppose that d¢ is bounded by M. We have

T
dt / 6¢V¢d~ﬁdA‘ <ATR’TM  sup  ||Véa(z, )]
0 = xeX,te[0,T)

If ¢ ~ R7", then ||V¢q|| ~ R~ The boundary integral

T
de / 6¢V¢d-ﬁdA‘ ~ R~
0 b

If the boundary term needs to vanish as R — co, we must have n > 1.

c¢) The canonical momentum

T oL _ 0
Aavp) 7
Therefore the Hamiltonian density
1 1
H(m,¢) = m0od — L= 77 — o (n° = 02600 — w?¢?) = o (n° + || V9| * +w’¢?) (%)

d) The Hamiltonian is given by
1
Hin, ¢l = | Hdz= / ~(r* + V¢ +w?e) d’z
R3 R3 2

We derive the Hamiltonian canonical equations in the general case.
From the Lagrangian formalism, by demanding 6.5 = 0 we obtain the Euler-Lagrange equations:

0 oL oL

907 0(0,0) 06 "

The variation of the Hamiltonian is given by

0H = d3x (9ypdm + 16(9gd) — 6.L)
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= / d3x (gpdm — ymd ) (substituting the Euler-Lagrange equation)
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But we also have
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By comparing the two expressions we obtain the canonical equations:
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We substitute (x) into the second equation above:

Ao = —w?e + 0%0y¢h



Since ™ = Jp¢, we recover the Klein-Gordan equation:
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Question 2. Manipulating the quantum scalar field.

Given that
oo~ [ i g (o) i
m(x) =1 dg \/717 (aT,p - ap) P (2)

H/

3p
P:/(gﬂ)gpaLap (4)

a) Find ap and a}, in terms of ¢(x) and 7(x) by Fourier transforming (1) and (2). By substituting your
results into (3) find H in terms of ¢(x) and 7(x).

b) Again by substituting your results for a, and a;[, from part a) into (4) show that

P——/h%ﬂ@vm@

c¢) By explicit calculation find the eigenvalues of (H, P) for the two particle state |p,p’) = al)a;|0>.
d) Find (0[¢(x)¢(y)|p, p')-

Proof. a) (Taking the Fourier transform of some operator-valued integral really makes no sense in mathemat-
ics...at least in Fourier analysis. Probably we need something like spectral resolutions. From now on
I just pretend that the operators are just scalars and vectors in R3.)

Recall that the Fourier transform in R? is defined by

FIfp) = / Bz f(z)eP®, [ e LURY)

R3
with the inversion given by
-1 d’p olPT 113
Ff@) = [ G e, fell®)

such that F~' o F = Fo F~! =id over L!(R?). Then we note that
o(x) = / p ! (aT +a ) P — -1
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. d3p E in- _
’ﬂw)zlﬁg(%a3 2 (alp—ap) e = 7!

Therefore




Hence we can solve the creation & annihilation operators:

Ep— i Ep—
ap =\ ¢(p) + \/EW(p) al, = \/jcé(p) -

(We used the energy-momentum relation which implies that Ep, = E_.)

Substituting the results into (3):

d3p
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In the last step we swap p with —p. In order to handle the cross terms, we consider the canonical
quantisation given by

which implies that
[Flo)(p), F'lrl(p')] = F o F'lib(x — )] = Flie "] = i(2r)*5(p + p)
Therefore [7(—p), d(p)] = —i(27)35(0). Substitute this back to the expression of Hamiltonian:
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H =

The second term corresponds to an infinitely large zero-point energy, which can be neglected as we
are doing physics. Therefore we have

3
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We expand the Fourier transforms:

/RS (;131)9 ; E;é(—p)d(p) —/ d3p 1 /RS B /Rs &P’ o(x)p(a)) P T e P

/RS B /RS Pz’ ¢(z )/ ® 753 (2 4 p?) P (@)

(@)o(@)F ! [(@? + p?) |

\V] \

l\:)\r—l
SR
o,

w
%\
o,

w
8\
-

1 / / 1 —ipa’ NP
- 5 /RJ d?’m /]R3 dgx ¢(w)¢(w ) (CUQ./T 1[6 P ] _ V2f 1[6 p ]>
_ 1 3¢ 3ol b(x)ob(x)) (W2 — V2 -

_2/Rgd | d2lo(@)é(@) (& - VF) (@ — ')
= ;/RS d3x /RS d3$/¢(m)5(m - (o.)2 B V2) ()

(oW
w
8

=
&
—~

&
(V]

|
<
[\v]
~—
=
&

3

%\%\
N~ N

ol
8

—~
&

25(x) + | V()] )

w



In summary, the Hamiltonian is given by

1

=[5 (@) + 6@’ + Vo)) d'

b) Similar to the calculation for the Hamiltonian, we have

"o ((21; ety
- w(f (- w<p>> (Ewwﬁiﬁw(p))
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In the last step, we obtain the anti-commutator {ﬁ(—p),a(p)} when we swap p with —p. Note that

3 o o 3 L 3 _ _
[, s 52 (Bodtmiit)) = [ 555 5p) (Bpimio-p) = = [ 55 S (Bi-p)oto)

So the first term is in fact zero. Similarly the second term is also zero. We obtain

3
——i [ pr-p)ite) 50 / pdp

R3

But now we can happily claim that the second term is zero (perhaps in the sense of distributions)
because there is an obvious symmetry p — —p.

Expand the Fourier tranform:




c¢) First we calculate the commutator for the ladder operators.

lap, a;r)/] =

[\ \

= (2

%ap) \f (-

(7 (p). $<—p'>] -
m)35(p — p')

5 [g(p)v T _p

Next calculate the commutator of H and a':

d3
A, a;] - /R3 (27:))3

Hence

d3p 3
Bylajap.af) = [ | G Bpah(2m)s(p— a) = Eqa)

H|p,p') = Halal, |0)

Similar calculation for P shows that

Hence

d) Just calculate:

<W¢()( )P p)

dd/
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We have
anqla;a; = Qq [aq’; a;r;]aT/ + aqal,aq/a;,

= aglag, al,]aJr + aan laq aT ]+ aqaLaL,aq

= [aq’7 CLL] [alb a;[)/] + [aq'v a;r)]a;r)’aq + [a% CLI)] [aq’a CLL,] + [aq’7 ai)/}ai)aq + a’qa;a;’aql

Hence

(0] agagal aT

p

0) =

(2m)° (6(q' — p)d(qg — P') + d(q — p)s(d — P))

Substitute back to the first equation, we have

0] p(x)op(y) |p,P') = cl(Pz+p"y) 4 (P z+py)



Question 3. Calculating the unequal time commutator.

The Green’s functions that we will meet in the lecture course can all be expressed more-or-less explicitly in
terms of well-known special functions. For many purposes it is not necessary to do this but you should know
how to go about it. In this question we will calculate

3 . .
A(z) = [6(2), $(0)] = / (‘;;’;32;10 (e-ive _ iva)

a) Set x* = (t,x) and change to polar coordinates for the momentum integral, choosing the polar axis to
be along the direction of . Integrate out the angular variables to show that

A(x)

Pdﬂ fz(E<p>tfp|w|) _ i(E(p)t+plz))
8772\:13| / e c )

where E(p) = ++/p? + m2.

b) Now change to the rapidity variables: t = scosh, |x| = ssinh T and p = msinh ¢ (these are a very useful
way of expressing kinematic quantities in a wide variety of applications). After some manipulations

show that
—im

Alz) = 4n2s

cosh 10) (Re gims cosh ¢) do

What is notable about this result?

¢) The remaining integral is related to the Bessel functions - find out exactly what the relationship is. If
you are careful you will discover that we have made a subtle assumption in our manipulations - what
is it?
For information on Bessel Functions use the book Special Functions € Their Applications by N.N. Lebedev
which contains all the information you need. It is available as a pdf on the web.

Proof.  a)

b) Using the rapidity variables, we have

E(p) =+vVp?>+m?2=my/1 + sinh? ¢ = mcosh ¢
Then

—i m? sinh ¢ cosh pdy

Az) =

8m2ssinh 7 Jp m cosh ¢
Re (e—i(ms cosh ¢ coshT—mssinh psinh7) ei(ms cosh ¢ cosh 7+ms sinh ¢ sinh 1) >
—im

= / sinhnge <e—ims cosh(p—7) eimscos}1(<p+7)) d(p
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Question 4. The Parity Operator.

Consider the same field operator and Hamiltonian as in Question 2, and define a new operator ) by

Q= / éjrp;g (ap —a_p) (al) - aT—p)

a) Show that
(Q,aq + sa_q] = —2(1 — s) (ag — a—q)

where s is a constant.

b) Define Cy = ¢*? where \ is real. For operators A such that [Q, A] = cA where c is a constant show
that A(\) = C,\ACI\ satisfies
0A(N)

O
Solve this differential equation to find A()\) in terms of A and A.

=icA()\)

¢) Using the result of parts a) and b) (hint: you can choose the value s, good choices help!) show that
C30(2)Ch = ¢(~)

and deduce that therefore C% can be identified as the parity operator. What is C% H C’TE?
4

Proof.  a)

) (ap —a—p) {a;r, - aT_p, aq + sa,q]

/]R3
= /]R3 (2m)3 (ap —a—p) ([GL, aq) + [aL, sa_gq| — [aT_p, aql — [an_p, sa_q]>
:AS

d®p (ap —a_p)(1 —s) (5(p+q) — 6(p— q))
=-2(1-s)(ag —a—q)

b) From the definition we note that @ is self-adjoint. {Cy: A > 0} defines a one-parameter strongly

continuous semi-group of unitary operators.!

dCy

) ACN _ i@
Cy =% — o iQe iQC,
The Hermitian adjoint
acl  raon\t . .
dA_(dA)__@q
Then
dA(N)  dCy acl . - _

With A(0) = A, the operator semi-group A(\) is given by

A(N) = Al

!By Hille-Yosida Theorem, Q must satisfy that Q is closed and densely defined, and there exists m,w > 0 such that (w, +00)No(Q) =
@ and ||[(Ad—Q)™"|| S M(A\—w) " for any A > w and n € Z.




c) Take s =1 in part (a). We have

[Q,ap +a—p] =0, [Qa@;r) + aip] = —[Q,ap + afp]T =0

Take s = —1 in part (a). We have

[Q,ap —a—p] = —4(ap — a—p)
Taking the Hermitian adjoint
@, ai, - aip] =—[Q,ap — ‘LIJPL = 4(a;r) - aip)
By part (b) we have
Cx(ap + a—p)cj\ = ap + a—p, Cx(ap — a—p)C,T\ = e ap — ap)

Therefore we have )

Cﬂ'/4apC7Tr/4 =3 ((ap+a_p)+e ™ (ap—a_p)) =ap

and, taking the Hermitian adjoint

T
T ot T _
CrjaapCryy = (Cw/4a—PCﬂ/4> = a},

Put these results into the expression we are looking for:

3
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D
S

S

= /R3 ((21?))3 21Ep e ipT <ap + aT,p>
= ¢(—=)

Hence C /4 is the parity operator for the free scalar field ¢(x) in the Heisenberg picture.

For the Hamiltonian, we have

3
io_ [ 4P t
CrpaHCL = /]R . @) EpCrjaapapCy
d’p f f
5 (27)3 Ep (Cﬁ/4ai)cw/4) (Cw/4apc7r/4)

Therefore the parity operator does not change the Hamiltonian. This is consistent with the spatial
symmetry of reflection in a free scalar field theory. O



