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Section A: Introductory

Question 1. Degree of a conic, explicitly

Let C =
©

x2
0 +x2

1 +x2
2 = 0

™
µP2

x0,x1,x2
. Consider lines

L = {a0x0 +a1x1 +a2x2 = 0} µP2
x0,x1,x2

(a) Find the maximum number of intersection points between C and L.

(b) Find also the set of coefficients (a0, a1, a2) so that the intersection L \C does not consist of the maximal
number of intersection points.

Question 2. Basics on dimension

(a) Show that dimension is an invariant of the isomorphism class of a projective variety.

(b) Show that, if X ! Y is a surjective morphism of affine algebraic varieties, then the dimension of X is at least
as large as the dimension of Y .

Section B: Core

Question 3. Another set of equations for the twisted cubic curve

(a) Let Q =
©

x0x2 = x2
1

™
µP3 and F =

©
x0x2

3 °2x1x2x3 +x3
2 = 0

™
µP3. Prove that C =Q\F µP3 is the twisted cubic

curve, the image of the third Veronese embedding ∫3
°
P1¢µP3.

Hint: multiply the second equation with x2 and use the first equation to put it in the form of a perfect square.

(b) Does this mean that the ideal I
°
∫3

°
P1¢¢ can in fact be generated by two elements? (Compare with Sheet 2,

Question 3.)

Proof. (a) Let C = ∫3(P1) =
©
[t 3 : t 2s : t s2 : s3] : [t : s] 2P1™=V(F0,F1,F2) µP3 be the twisted cubic curve. where F0,F1,F2

are the homogeneous polynomials as given in Question 3 of Sheet 2:

F0 (x0, x1, x2, x3) = x0x2 °x2
1, F1 (x0, x1, x2, x3) = x0x3 °x1x2, F2 (x0, x1, x2, x3) = x1x3 °x2

2

For [z0 : z1 : z2 : z3] 2Q \F , we have 8
<
:

z0z2 = z2
1

z0z2
3 °2z1z2z3 + z3

2 = 0

Multiply the second equation with z2 and substitute the first equation into it:

0 = z2
1 z2

3 °2z1z2
2 z3 + z4

2 = (z2
2 ° z1z3)2

Hence F2(z0, z1, z2, z3) = z1z3°z2
2 = 0. Multiply the second equation with z0 and substitute the first equation

into it:
0 = z2

0 z2
3 °2z0z1z2z3 + z2

1 z2
2 = (z0z3 ° z1z2)2

Hence F1(z0, z1, z2, z3) = z0z3 ° z1z2 = 0. It is clear that F0(z0, z1, z2, z3) = 0. Hence [z0 : z1 : z2 : z3] 2C .

On the other hand, for [t 3 : t 2s : t s2 : s3] 2 C , we can directly verify that [t 3 : t 2s : t s2 : s3] 2 Q \F . Hence we
deduce that C =Q \F = ∫3(P1).
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(b) By the projective Nullstellensatz and part (a), we have

q≠
x0x2 °x2

1, x0x3 °x1x2, x1x3 °x2
2

Æ
= I

°
∫3(P1)

¢
=

q≠
x0x2 °x2

1, x0x2
3 °2x1x2x3 +x2

2

Æ

The pull-back of the Veronese map ∫3 gives a ring isomorphism from
k[x0, x1, x2, x3]≠

x0x2 °x2
1, x0x3 °x1x2, x1x3 °x2

2

Æ to

k[t ], which is an integral domain. Hence
≠

x0x2 °x2
1, x0x3 °x1x2, x1x3 °x2

2

Æ
is a prime ideal.

But
≠

x0x2 °x2
1, x0x2

3 °2x1x2x3 +x2
2

Æ
is not radical, since

(x0x3 °x1x2)2 = x0(x0x2
3 °2x1x2x3 +x3

2)°x2
2(x0x2 °x2

1) 2
≠

x0x2 °x2
1, x0x2

3 °2x1x2x3 +x2
2
Æ

and x0x3 °x1x2 ›
≠

x0x2 °x2
1, x0x2

3 °2x1x2x3 +x2
2

Æ
. So

I
°
∫3(P1)

¢
=

q≠
x0x2 °x2

1, x0x2
3 °2x1x2x3 +x2

2

Æ
6=

≠
x0x2 °x2

1, x0x2
3 °2x1x2x3 +x2

2
Æ

We cannot say that I
°
∫3(P1)

¢
is generated by two elements from (a). (In Question 3 of Sheet 2 we have shown

that any two of {x0x2 °x2
1, x0x3 °x1x2, x1x3 °x2

2} cannot generate I
°
∫3(P1)

¢
.)

Question 4. Projecting a space curve

Let Q0 =
©

x0x3 = x2
1

™
µ P3 and Q1 =

©
x1x3 = x2

2

™
µ P3. Consider the projective variety C = Q0 \Q1 µ P3. Show that

the formula º : [x0 : x1 : x2 : x3] 7! [x0 : x1 : x2] defined on a Zariski open subset of C can be extended to a projective
morphism

º : C !P2

Show that º maps C isomorphically to the projective variety (plane curve)

D =
©

x0x2
2 = x3

1
™
µP2

Hint: to extend º, try to express the ratios x0 : x1 : x2 in a different way using the equations of C .

Proof. Let [z0 : z1 : z2 : z3] 2 C . If z3 6= 0, we set z3 = 1. Then z0z3 = z2
1 and z1z3 = z2

2 imply that z0 = z2
1 = z4

2. Hence
[z0 : z1 : z2 : z3] = [z4

2 : z2
2 : z2 : 1]. We have, for z2 6= 0

º([z4
2 : z2

2 : z2 : 1]) = [z4
2 : z2

2 : z2] = [z3
2 : z2 : 1] 2 D

For z2 = 0, [0 : 0 : 0 : 1] is not in the domain of º. But the above expression suggests that we extend º by defining

º([0 : 0 : 0 : 1]) = [0 : 0 : 1] 2 D

Next we check that º : C ! D µ P2 is a projective isomorphism. It is clear from the definition that º is injective.
For surjectivity, suppose that [z0 : z1 : z2] 2 D .

• If z0 = 0, then z1 = 0. Hence [z0 : z1 : z2] = [0 : 0 : 1]. We have º([0 : 0 : 0 : 1]) = [0 : 0 : 1] 2 imº;

• If z2 = 0, then z1 = 0. Hence [z0 : z1 : z2] = [1 : 0 : 0]. We have º([1 : 0 : 0 : 0]) = [1 : 0 : 0] 2 imº;

• If z0z2 6= 0, then z1 6= 0. We set z2 = 1. hence [z0 : z1 : z2] = [z3
1 : z1 : 1] =º([z4

1 : z2
1 : z1 : 1]) 2 imº.

So º is surjective.

Finally we check that º is a projective morphism. On the open sets U0 \C ,U1 \C ,U2 \C , º is a well-defined
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projective morphism by definition. On U3 \C , we have

º([z0 : z1 : z2 : 1]) = [z3
2 : z2 : 1]

So it is a projective morphism.

Question 5. Dimension, degree and Hilbert polynomial

(a) Show carefully that if X is a reducible projective variety with equidimensional irreducible components Xi ,
then deg X =P

i deg Xi .

(b) Compute the degree deg∫d
°
P1¢ directly from the definition.

(c) Let F be a homogeneous irreducible polynomial of degree d in k [x0, . . . , xn], and let X =V(F ) µ Pn . Find the
Hilbert polynomial of X . Deduce that, as expected, dim X = n °1 and deg X = d .

Proof. (a) X is a finite union of its irreducible components because the polynomial ring R := k[x0, ..., xn] is Noetherian.

Let X =
n[

i=1
Xi . We use induction on n to prove that deg X =

nX

i=1
deg Xi . Let dim X = d . Let Y1 :=

n[

i=2
Xi .

Consider the ideals I1 = I(X1) and I2 = I(X2). We have an short exact sequence of graded R-modules

0 R/(I1 \ I2) R/I1 ©R/I2 R/(I1 + I2) 0

which is just

0 S(X1 \Y1) S(X1)©S(Y1) S(X ) 0

By the definition of Hilbert functions, we have

hX1\Y1 +hX = hX1 +hY1

Since the Hilbert functions are eventually polynomials, the Hilbert polynomials satisfy

pX1\Y1 +pX = pX1 +pY1

We assumed that X1 and Y1 have pure dimensions, and dim X1 = dimY1 = d . Then dim(X1\Y1) < d . Taking
the leading order term (deg = d) in the above equation, we have

1
d !

deg X = 1
d !

deg X1 +
1
d !

degY1

Hence deg X = deg X1 +degY1. By induction, deg X =
nX

i=1
deg Xi .

(b) Let ∫d : P1 ! Pd be the d-th Veronese embedding of P1. Since ∫d is an isomorphism onto its image, we
have dim∫d (P1) = 1. Let L be a linear subvariety of dimension n°1. L is a hyperplane with L =V

°Pn
i=0 ai xi

¢

where [a0 : · · · : ad ] 2Pd . We shall count ∫d (P1)\L.

In the affine patch U0, x0 6= 0. Consider the point [1 : z1 : · · · : zn] 2 ∫d (P1)\L. Since

U0 \∫d (P1) = {[t d : t d°1s : · · · : sd ] : [t : s] 2P1 \U0} = {[1 : (s/t ) : · · · : (s/t )d ] : s/t 2C}

Substitute this into the equation of L, we have

dX

i=0
ai (s/t )i = 0

y

""
"

" """ " " "" " " ""

- defined projective morphism, but to show

it is an iso
' it isn't enough to

show it is bijective!

e.g. At
'

→ {
y
'
⇒i } c- A:c

,

Bt
t ↳ (1-3,1-2)

is a bijective morphism which isn't an

isomorphism .

(For completeness : it's

✓
good to give the maps

)

✓
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For general [a0 : · · · : ad ], the equation has d distinct roots (s1/t1), ..., (sd /td ), corresponding to d distinct
intersection points of ∫d (P1)\L in U0.

Finally we consider [z0 : z1 : · · · : zn] 2 ∫d (P1)\L with z0 = 0. There is a unique such point [z0 : z1 : · · · : zn] =
[0 : 0 · · · : 0 : 1] on ∫d (P1). Therefore “in general” ∫d (P1)\L =? in Pn \U0. We conclude that “in general”
|∫d (P1)\L| = d . Hence deg∫d (P1) = d .

(c) The graded homogeneous coordinate ring of X is

S(X ) = k[x0, ..., xn]/hF (x0, ..., xn)i

The grading of I(X )m is k[x0, ..., xn]m°d for m   d . Therefore the Hilbert function of X is, for m   d

hX (m) = dimkk[x0, ..., xn]m °dimkk[x0, ..., xn]m°d =
√

m +n
m

!
°

√
m +n °d

m °d

!

Hence the Hilbert polynomial is

pX (m) =
√

m +n
m

!
°

√
m +n °d

m °d

!
= (m +1) · · · (m +n)

n!
° (m °d +1) · · · (m °d +n)

n!
2Q[m]

The leading order term of pX (m) is

1
n!

mn°1

√
nX

i=1
i °

nX

i=1
(i °d)

!
= d

(n °1)!
mn°1

We know that
d

(n °1)!
mn°1 = deg X

(dim X )!
mdim X

Hence deg X = d and dim X = n °1.

Question 6. Affine and quasi-projective varieties

(a) Find an open affine cover of A2 \ {(0,0)}.

(b) Show that GL(n,k) is an affine variety, i.e. that it is isomorphic as a quasi-projective variety to a Zariski closed
subset of an affine space.

(c) Let X be an affine variety and f 2 k[X ]. Show that f vanishes nowhere on X if and only if f is invertible in
k[X ].

Proof. (a) A2 \ {0} has an open cover

A2 \ {0} =U0 \ (U1 [U2)\P2 = (U0 \U1 \P2)[ (U0 \U2 \P2)

We claim that X1 :=U0 \U1 µ P2 and X2 :=U0 \U2 µ P2 are affine. This is clear, as X1
ª= {(x, y) : x 6= 0} µA2

and X2
ª= {(x, y) : y 6= 0} µA2. So A2 \ {0} = X1 [X2 is an open affine cover of A2 \ {0}.

(b) We have
GLn(k) =

n
M 2An2

: det M 6= 0
o
=An2

\V(det M)

where det M is a polynomial in the variables xi j . By Lemma 10.1, GLn(k) is an affine quasi-projective variety.

(c) Let D f := X \V
°

f
¢
. By Lemma 10.1, D f is an affine quasi-projective variety, and the inclusion ∂ : D f ,! X has

µ
Can
you say

for which [ - - -ai - - -] this is true?

Remember , you
need to show that the set of

such points is ope in
Ñd

You have the right idea
, you just

need

to be more careful justifying why
for generic

L c- Ñd
,

#②DUP
' ) n h) = d.

✓
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µ
i. e. ✗ i

=D(a) EA2

and 0=1 f- c- KEX]

⇒ ☐(f) =X-Vlf)

0K is affine
(from lectures)
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pull-back ∂§ : k[X ] ! k[D f ] ª= k[X ] f given by g 7! g /1. We have

f vanishes nowhere on X () V
°

f
¢
\X = {0}

() D f = X

() ∂§ : k[X ] ! k[D f ] ª= k[X ] f is an isomorphism

() 1/ f 2 k[X ]

() f is invertible in k[X ]

Section C: Optional

Question 7. The Veronese image

Find the Hilbert polynomial of the Veronese image ∫d (Pn) . Find the dimension and degree of this projective variety.

Question 8. Complete intersection of two hypersurfaces

(a) Let f , g 2 k [x0, . . . , xn] be two essentially distinct irreducible homogeneous polynomials (i.e. not scalar multi-
ples of each other) of degrees e, f such that the homogeneous ideal I = h f , g i is radical. Compute the Hilbert
function of X =V(I ) µPn . Deduce the dimension and degree of X .

(b) Conclude that the twisted cubic ∫3
°
P1¢µP3 is not a complete intersection: its (radical) vanishing ideal cannot

be generated by two homogeneous polynomials. Compare with Question .

/
Aside : this argument (unlike anything

involving the Null 'tz) carries

over to the case of

affine schemes :

if feA then A →Ae corresponds
to DIE)= Sped-1£) °É Spec(A) ,4
% ☐(f) = Spec(A) ⇐ A Af

{g. c-Speck) : f¢p} ⇐ feA×

A

✓Nice !


