A⁻

3: A+ 4: B+

5: A⁻ 6: A 7: -8: -

Peize Liu St. Peter's College University of Oxford

Problem Sheet 3 C3.4: Algebraic Geometry

Section A: Introductory

Question 1. Degree of a conic, explicitly

Let $C = \{x_0^2 + x_1^2 + x_2^2 = 0\} \subseteq \mathbb{P}^2_{x_0, x_1, x_2}$. Consider lines

$$L = \{a_0x_0 + a_1x_1 + a_2x_2 = 0\} \subseteq \mathbb{P}^2_{x_0, x_1, x_2}$$

- (a) Find the maximum number of intersection points between *C* and *L*.
- (b) Find also the set of coefficients (a_0, a_1, a_2) so that the intersection $L \cap C$ does not consist of the maximal number of intersection points.

Question 2. Basics on dimension

- (a) Show that dimension is an invariant of the isomorphism class of a projective variety.
- (b) Show that, if $X \to Y$ is a surjective morphism of affine algebraic varieties, then the dimension of X is at least as large as the dimension of Y.

Section B: Core

Question 3. Another set of equations for the twisted cubic curve

(a) Let $Q = \{x_0x_2 = x_1^2\} \subseteq \mathbb{P}^3$ and $F = \{x_0x_3^2 - 2x_1x_2x_3 + x_2^3 = 0\} \subseteq \mathbb{P}^3$. Prove that $C = Q \cap F \subseteq \mathbb{P}^3$ is the twisted cubic curve, the image of the third Veronese embedding $v_3(\mathbb{P}^1) \subseteq \mathbb{P}^3$.

Hint: multiply the second equation with x_2 and use the first equation to put it in the form of a perfect square.

(b) Does this mean that the ideal $\mathbb{I}(v_3(\mathbb{P}^1))$ can in fact be generated by two elements? (Compare with Sheet 2, Question 3.)

Proof. (a) Let $C = v_3(\mathbb{P}^1) = \{[t^3 : t^2s : ts^2 : s^3] : [t : s] \in \mathbb{P}^1\} = \mathbb{V}(F_0, F_1, F_2) \subseteq \mathbb{P}^3$ be the twisted cubic curve. where F_0, F_1, F_2 are the homogeneous polynomials as given in Question 3 of Sheet 2:

$$F_{0}\left(x_{0},x_{1},x_{2},x_{3}\right)=x_{0}x_{2}-x_{1}^{2},\quad F_{1}\left(x_{0},x_{1},x_{2},x_{3}\right)=x_{0}x_{3}-x_{1}x_{2},\quad F_{2}\left(x_{0},x_{1},x_{2},x_{3}\right)=x_{1}x_{3}-x_{2}^{2}$$

For $[z_0 : z_1 : z_2 : z_3] \in Q \cap F$, we have

$$\begin{cases} z_0 z_2 = z_1^2 \\ z_0 z_3^2 - 2z_1 z_2 z_3 + z_2^3 = 0 \end{cases}$$

Multiply the second equation with z_2 and substitute the first equation into it:

$$0 = z_1^2 z_3^2 - 2z_1 z_2^2 z_3 + z_2^4 = (z_2^2 - z_1 z_3)^2$$

Hence $F_2(z_0, z_1, z_2, z_3) = z_1 z_3 - z_2^2 = 0$. Multiply the second equation with z_0 and substitute the first equation into it:

$$0 = z_0^2 z_3^2 - 2z_0 z_1 z_2 z_3 + z_1^2 z_2^2 = (z_0 z_3 - z_1 z_2)^2$$

Hence $F_1(z_0, z_1, z_2, z_3) = z_0 z_3 - z_1 z_2 = 0$. It is clear that $F_0(z_0, z_1, z_2, z_3) = 0$. Hence $[z_0 : z_1 : z_2 : z_3] \in C$.

On the other hand, for $[t^3:t^2s:ts^2:s^3] \in C$, we can directly verify that $[t^3:t^2s:ts^2:s^3] \in Q \cap F$. Hence we deduce that $C = Q \cap F = v_3(\mathbb{P}^1)$.

(b) By the projective Nullstellensatz and part (a), we have

$$\sqrt{\left\langle x_0 x_2 - x_1^2, \ x_0 x_3 - x_1 x_2, \ x_1 x_3 - x_2^2 \right\rangle} = \mathbb{I}\left(v_3(\mathbb{P}^1)\right) = \sqrt{\left\langle x_0 x_2 - x_1^2, \ x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^2 \right\rangle}$$

The pull-back of the Veronese map v_3 gives a ring isomorphism from $\frac{\mathsf{k}[x_0,x_1,x_2,x_3]}{\langle x_0x_2-x_1^2,\ x_0x_3-x_1x_2,\ x_1x_3-x_2^2\rangle}$ to $\mathsf{k}[t]$, which is an integral domain. Hence $\langle x_0x_2-x_1^2,\ x_0x_3-x_1x_2,\ x_1x_3-x_2^2\rangle$ is a prime ideal.

But $\langle x_0 x_2 - x_1^2, x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^2 \rangle$ is not radical, since

$$(x_0x_3 - x_1x_2)^2 = x_0(x_0x_3^2 - 2x_1x_2x_3 + x_2^3) - x_2^2(x_0x_2 - x_1^2) \in \langle x_0x_2 - x_1^2, x_0x_3^2 - 2x_1x_2x_3 + x_2^2 \rangle$$

and $x_0x_3 - x_1x_2 \notin \langle x_0x_2 - x_1^2, x_0x_3^2 - 2x_1x_2x_3 + x_2^2 \rangle$. So

$$\mathbb{I}(v_3(\mathbb{P}^1)) = \sqrt{\langle x_0 x_2 - x_1^2, x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^2 \rangle} \neq \langle x_0 x_2 - x_1^2, x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^2 \rangle$$

We cannot say that $\mathbb{I}(v_3(\mathbb{P}^1))$ is generated by two elements from (a). (In Question 3 of Sheet 2 we have shown that any two of $\{x_0x_2 - x_1^2, x_0x_3 - x_1x_2, x_1x_3 - x_2^2\}$ cannot generate $\mathbb{I}(v_3(\mathbb{P}^1))$.)

Question 4. Projecting a space curve

Let $Q_0 = \{x_0x_3 = x_1^2\} \subseteq \mathbb{P}^3$ and $Q_1 = \{x_1x_3 = x_2^2\} \subseteq \mathbb{P}^3$. Consider the projective variety $C = Q_0 \cap Q_1 \subseteq \mathbb{P}^3$. Show that the formula $\pi : [x_0 : x_1 : x_2 : x_3] \mapsto [x_0 : x_1 : x_2]$ defined on a Zariski open subset of C can be extended to a projective morphism

$$\pi:C\to\mathbb{P}^2$$

Show that π maps C isomorphically to the projective variety (plane curve)

$$D=\left\{x_0x_2^2=x_1^3\right\}\subseteq\mathbb{P}^2$$

Hint: to extend π , try to express the ratios $x_0: x_1: x_2$ in a different way using the equations of C.

Proof. Let $[z_0:z_1:z_2:z_3]\in C$. If $z_3\neq 0$, we set $z_3=1$. Then $z_0z_3=z_1^2$ and $z_1z_3=z_2^2$ imply that $z_0=z_1^2=z_2^4$. Hence $[z_0:z_1:z_2:z_3]=[z_2^4:z_2^2:z_2:1]$. We have, for $z_2\neq 0$

$$\pi([z_2^4:z_2^2:z_2:1]) = [z_2^4:z_2^2:z_2] = [z_2^3:z_2:1] \in D$$

For $z_2 = 0$, [0:0:0:0:1] is not in the domain of π . But the above expression suggests that we extend π by defining

$$\pi([0:0:0:1]) = [0:0:1] \in D$$

Next we check that $\pi: C \to D \subseteq \mathbb{P}^2$ is a projective isomorphism. It is clear from the definition that π is injective. For surjectivity, suppose that $[z_0: z_1: z_2] \in D$.

- If $z_0 = 0$, then $z_1 = 0$. Hence $[z_0 : z_1 : z_2] = [0 : 0 : 1]$. We have $\pi([0 : 0 : 0 : 1]) = [0 : 0 : 1] \in \operatorname{im} \pi$;
- If $z_2 = 0$, then $z_1 = 0$. Hence $[z_0 : z_1 : z_2] = [1 : 0 : 0]$. We have $\pi([1 : 0 : 0 : 0]) = [1 : 0 : 0] \in \operatorname{im} \pi$;
- If $z_0 z_2 \neq 0$, then $z_1 \neq 0$. We set $z_2 = 1$. hence $[z_0 : z_1 : z_2] = [z_1^3 : z_1 : 1] = \pi([z_1^4 : z_1^2 : z_1 : 1]) \in \operatorname{im} \pi$.

So π is surjective.

Finally we check that π is a projective morphism. On the open sets $U_0 \cap C$, $U_1 \cap C$, $U_2 \cap C$, π is a well-defined

You've shown T: C > D is a rell - defined projective exerption, but to show T is an iso' it isn't enough to show T is bijective!

e.g.
$$A_t \longrightarrow \{y^3 = \infty^2\} \in A_{\infty}y$$

$$\pi([z_0:z_1:z_2:1]) = [z_2^3:z_2:1] \qquad \qquad t \mapsto (t^3,t^2)$$
is a bijective morphism which isn't are isomorphism.

e.g. A = {y3 = x2} = A2y

So it is a projective morphism.

Question 5. Dimension, degree and Hilbert polynomial

- (a) Show carefully that if X is a reducible projective variety with equidimensional irreducible components X_i , then $\deg X = \sum_i \deg X_i$.
- (b) Compute the degree $\deg v_d(\mathbb{P}^1)$ directly from the definition.
- (c) Let *F* be a homogeneous irreducible polynomial of degree *d* in $k[x_0,...,x_n]$, and let $X = \mathbb{V}(F) \subseteq \mathbb{P}^n$. Find the Hilbert polynomial of X. Deduce that, as expected, $\dim X = n - 1$ and $\deg X = d$.
- (a) X is a finite union of its irreducible components because the polynomial ring $R := k[x_0, ..., x_n]$ is Noetherian. Proof. Let $X = \bigcup_{i=1}^{n} X_i$. We use induction on n to prove that $\deg X = \sum_{i=1}^{n} \deg X_i$. Let $\dim X = d$. Let $Y_1 := \bigcup_{i=2}^{n} X_i$. Consider the ideals $I_1 = \mathbb{I}(X_1)$ and $I_2 = \mathbb{I}(X_2)$. We have an short exact sequence of graded R-modules

(For completeness: it's good to give the maps)
$$0 \longrightarrow R/(I_1 \cap I_2) \longrightarrow R/I_1 \oplus R/I_2 \longrightarrow R/(I_1 + I_2) \longrightarrow 0$$
 which is just

$$0 \longrightarrow S(X_1 \cap Y_1) \longrightarrow S(X_1) \oplus S(Y_1) \longrightarrow S(X) \longrightarrow 0$$

By the definition of Hilbert functions, we have

$$h_{X_1 \cap Y_1} + h_X = h_{X_1} + h_{Y_1}$$

Since the Hilbert functions are eventually polynomials, the Hilbert polynomials satisfy

$$p_{X_1 \cap Y_1} + p_X = p_{X_1} + p_{Y_1}$$

We assumed that X_1 and Y_1 have pure dimensions, and dim $X_1 = \dim Y_1 = d$. Then dim $(X_1 \cap Y_1) < d$. Taking the leading order term (deg = d) in the above equation, we have

$$\frac{1}{d!}\deg X = \frac{1}{d!}\deg X_1 + \frac{1}{d!}\deg Y_1$$

Hence $\deg X = \deg X_1 + \deg Y_1$. By induction, $\deg X = \sum_{i=1}^n \deg X_i$.

(b) Let $v_d: \mathbb{P}^1 \to \mathbb{P}^d$ be the *d*-th Veronese embedding of \mathbb{P}^1 . Since v_d is an isomorphism onto its image, we have dim $v_d(\mathbb{P}^1) = 1$. Let L be a linear subvariety of dimension n-1. L is a hyperplane with $L = \mathbb{V}(\sum_{i=0}^n a_i x_i)$ where $[a_0:\cdots:a_d]\in\mathbb{P}^d$. We shall count $v_d(\mathbb{P}^1)\cap L$.

In the affine patch U_0 , $x_0 \neq 0$. Consider the point $[1:z_1:\dots:z_n] \in v_d(\mathbb{P}^1) \cap L$. Since

$$U_0 \cap V_d(\mathbb{P}^1) = \{ [t^d : t^{d-1}s : \dots : s^d] : [t : s] \in \mathbb{P}^1 \cap U_0 \} = \{ [1 : (s/t) : \dots : (s/t)^d] : s/t \in \mathbb{C} \}$$

Substitute this into the equation of *L*, we have

$$\sum_{i=0}^{d} a_i (s/t)^i = 0$$

Can you say for which I -- a: - I this is true?

Remember, you need to show that the set of such points is open in I de

For general $[a_0:\cdots:a_d]$, the equation has d distinct roots $(s_1/t_1),...,(s_d/t_d)$, corresponding to d distinct intersection points of $v_d(\mathbb{P}^1) \cap L$ in U_0 .

Finally we consider $[z_0:z_1:\dots:z_n]\in v_d(\mathbb{P}^1)\cap L$ with $z_0=0$. There is a unique such point $[z_0:z_1:\dots:z_n]=0$ $[0:0\cdots:0:1]$ on $v_d(\mathbb{P}^1)$. Therefore "in general" $v_d(\mathbb{P}^1)\cap L=\varnothing$ in $\mathbb{P}^n\setminus U_0$. We conclude that "in general" $|v_d(\mathbb{P}^1)\cap L|=d$. Hence $\deg v_d(\mathbb{P}^1)=d$. You have the right idea, you just read to be more excelled just for general" (c) The graded homogeneous coordinate ring of X is $\mathscr{L}(\mathcal{Q}(\mathbb{P}^1)\cap L)=d$.

$$S(X) = k[x_0, ..., x_n] / \langle F(x_0, ..., x_n) \rangle$$

The grading of $\mathbb{I}(X)_m$ is $k[x_0,...,x_n]_{m-d}$ for $m \ge d$. Therefore the Hilbert function of X is, for $m \ge d$

$$h_X(m) = \dim_k k[x_0, ..., x_n]_m - \dim_k k[x_0, ..., x_n]_{m-d} = \binom{m+n}{m} - \binom{m+n-d}{m-d}$$

Hence the Hilbert polynomial is

$$p_X(m) = \binom{m+n}{m} - \binom{m+n-d}{m-d} = \frac{(m+1)\cdots(m+n)}{n!} - \frac{(m-d+1)\cdots(m-d+n)}{n!} \in \mathbb{Q}[m]$$

The leading order term of $p_X(m)$ is

$$\frac{1}{n!}m^{n-1}\left(\sum_{i=1}^{n}i-\sum_{i=1}^{n}(i-d)\right)=\frac{d}{(n-1)!}m^{n-1}$$

We know that

$$\frac{d}{(n-1)!}m^{n-1} = \frac{\deg X}{(\dim X)!}m^{\dim X}$$

Hence $\deg X = d$ and $\dim X = n - 1$.

Question 6. Affine and quasi-projective varieties

- (a) Find an open affine cover of $\mathbb{A}^2 \setminus \{(0,0)\}.$
- (b) Show that GL(n, k) is an affine variety, i.e. that it is isomorphic as a quasi-projective variety to a Zariski closed subset of an affine space.
- (c) Let *X* be an affine variety and $f \in k[X]$. Show that *f* vanishes nowhere on *X* if and only if *f* is invertible in

Proof. (a) $\mathbb{A}^2 \setminus \{0\}$ has an open cover

We claim that $X_1 := U_0 \cap U_1 \subseteq \mathbb{P}^2$ and $X_2 := U_0 \cap U_2 \subseteq \mathbb{P}^2$ are affine. This is clear, as $X_1 \cong \{(x, y) : x \neq 0\} \subseteq \mathbb{A}^2$ and $X_2 \cong \{(x, y): y \neq 0\} \subseteq \mathbb{A}^2$. So $\mathbb{A}^2 \setminus \{0\} = X_1 \cup X_2$ is an open affine cover of $\mathbb{A}^2 \setminus \{0\}$.

(b) We have

$$\operatorname{GL}_n(\mathsf{k}) = \left\{ M \in \mathbb{A}^{n^2} : \det M \neq 0 \right\} = \mathbb{A}^{n^2} \setminus \mathbb{V}(\det M)$$

where det M is a polynomial in the variables x_{ij} . By Lemma 10.1, $GL_n(k)$ is an affine quasi-projective variety.

(c) Let $D_f := X \setminus V(f)$. By Lemma 10.1, D_f is an affine quasi-projective variety, and the inclusion $\iota: D_f \hookrightarrow X$ has

pull-back $\iota^*: \mathsf{k}[X] \to \mathsf{k}[D_f] \cong \mathsf{k}[X]_f$ given by $g \mapsto g/1$. We have $f \text{ vanishes nowhere on } X \iff \mathbb{V}(f) \cap X = \{0\}$ $\Leftrightarrow D_f = X$ $\Leftrightarrow \iota^*: \mathsf{k}[X] \to \mathsf{k}[D_f] \cong \mathsf{k}[X]_f \text{ is an isomorphism}$ $\Leftrightarrow 1/f \in \mathsf{k}[X]$ $\Leftrightarrow f \text{ is invertible in } \mathsf{k}[X]$ $\bigcup_{i=1}^{k} \mathsf{k}[X] \to \mathsf{k}[D_f] \cong \mathsf{k}[X]_f \text{ is an isomorphism}$

Section C: Optional

Question 7. The Veronese image

Find the Hilbert polynomial of the Veronese image $v_d(\mathbb{P}^n)$. Find the dimension and degree of this projective variety.

Question 8. Complete intersection of two hypersurfaces

- (a) Let $f, g \in k[x_0, ..., x_n]$ be two essentially distinct irreducible homogeneous polynomials (i.e. not scalar multiples of each other) of degrees e, f such that the homogeneous ideal $I = \langle f, g \rangle$ is radical. Compute the Hilbert function of $X = V(I) \subseteq \mathbb{P}^n$. Deduce the dimension and degree of X.
- (b) Conclude that the twisted cubic $v_3(\mathbb{P}^1) \subseteq \mathbb{P}^3$ is not a *complete intersection*: its (radical) vanishing ideal cannot be generated by two homogeneous polynomials. Compare with Question .