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Section A: Introductory

Question 1

(a) Show that if char(k) does not divide d, then the hypersurface
\/(xd+ +xd) cp”
o t...tx,] S
is nonsingular.

(b) Under the same assumption on k, find the singular locus of the hypersurface

\/(xg+...+x,‘f_1)§[lj’"

Question 2

Let X be an irreducible affine variety. Show that for any open set U € X and point p € X, the rings Ox (U) and Oy,
are subrings of the function field k(X).

Hint. You need to explain first how to include Ox (U) < k(X) and O, < k(X).

Section B: Core
Question 3
Let X1 = V(xy(x—y)) €A% and X, = V(xy, yz, zx) € A3.
(a) Decompose these varieties into irreducible components.
(b) By computing the dimension of tangent spaces at various points, show that X; and X, are not isomorphic.
Proof. (a) We have X; =V(xy(x—y))=V(x) uV(y)uV(x - y). Since the varieties are the vanishing loci of linear poly-
nomials. This is an irreducible decomposition.

For (a, b, ¢) € X,, we have ab = bc = ca = 0. Then two of a, b, ¢ are zero. Then X, = V(xy,yz,zx) = V(x,y) U
V(y,2) UV(z,x). This is clearly an irreducible decomposition. /

(b) We note that the dimensional of the tangent space at some point is an intrinsic property of an algebraic
variety, since dimT, X = dimgm,/ mf,, where m,, is the unique maximal ideal of the ring of germs of regular
functions O . In particular, if f: X; — X5 is an isomorphism, we must have dimT), X; = dim T, X for

Yes, Houah
L‘g, ",\UM:»& p€ Xl.
**/ts > Both X; and X, are the union of three lines which intersect at the origin. For p € X; \ {0}, dimT, X; =

;,:acozj‘ dim, X; = lye then compute dim Ty X; for i € {1,2}.

The Jacobian of the generators of the ideal of X; at 0 is given by

_ 12 2 _ =
Jo—(ny Yo ox ny)(x,y):«),m 0

Then dim Ty X; = dimker Jy = 2. e

e. 'TaX.



The Jacobian of the generators of the ideal of X, at 0 is given by

y x 0
]() =10 =z y =0
2 0 X e ya=000

Then dim Ty X, = dimker Jy = 3.

X has a point with 2-dimensional tangent space, whereas no points in X, have 2-dimensional tangent
space. Hence these two varieties cannot be isomorphic. O
/ Rt
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Question 4

(a) Let F: X --+ Y be arational map of quasi-projective varieties, with X irreducible. If (U, f) is a representation

for F, with U affine, show that
{(u, f(w):ueUtcUxY

is a closed subvariety. Define the graph I'r of F to be the (Zariski) closure of {(u, f(u)) : ue U} € X x Y. Show
that the projection from the graph I'r — X is a birational equivalence.

(b) Define F: A% — A! by F(x,y) = )—}; Find the equation defining I'r < A3,

Proof.

(a) Consider the map fxidy: UxY — Y x Y. Since f is a regular map, f is a morphism of quasi-projective
varieties and hence it is continuous. Then f x idy is continuous. We have Fi"’"ﬂ qelP N: :

9 e |

P Zue- b
{(u, f(W): ue U} = (f xidy) 1 (D) / ' ““a el ‘Pj y andl s
M SV (g ) g

where D :={(y,y): y € Y}. We claim that D is closed in Y x Y. Let Y < P". We consider the Segre embedding - (AE)
Y x Y CP" x P" € P’ +2"_Then we have < L

E\ T'w L\an s..::H\a, bt

D= (Y x Y)n (P" x P") A V(det M) “’lU does 2) hold?

where det M is a polynomial in the matrix elements of pr+2n, (We use the fact that det(yT 1/) =0.) Hence D
is closed in Y x Y. We conclude that {(u, f(u)): ue U}isclosedin U x Y.

Let yr := {(u, f(w)): u € U} be the genuine graph and I'r := yr be the closed graph. The projection 7 :
I'r — X is clearly a dominant rational map. We claim that idx xF: X --+ X x Y is an inverse to 7. idx xF
has a representative (U,idx x f). We have mo (idx x f) = idy. The composition (idx x f) o 7 is defined on
a YW(U) = YF, on which clearly (idx x f) oz = idy,. Since yg is dense in I'r, we have (idx x f) o = idr, as
rational maps. Therefore r is a birational equivalence. /

(b) We claim thatT'r = \/( Y- xz) c A3, Fis defined on (A!\{0}) x Al. From the definition we immediately note
that
yr=1{(a,b,c): a#0, ac—-b=0}=V(y—xz)n{x+# 0}

Thenyrisopenin V(y— xz). Since (y — xz) is prime, V(y — xz) is irreducible. Hence y is dense in V(y — xz).
We conclude that I'r = V(y — xz). v O

A

Question 5

Recall that the projective varieties P?, P! x P! are not isomorphic. Find a birational equivalence ¢ : P? -~ P! x P!,
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Proof. This is already outlined in the lectures. Let F : P? --» A? be the rational map with identity on Uy — A2. Let
a:A? — Al x Al be the canonical isomorphism. Let i, : A' — P! be the inclusion map. Then

3

bi=(rxinoaoF: P -»P xP! Ty wit W:Ta_’
is a rational map. To show that it is a birational equivalence, the only non-trivial part is show that

ixin: Al AT =PI xPL (e z) = (Ll [Lize)) (m; LS

is a birational equivalence. — Tt hoy inere (C1:27,L1:z.0)— (= Ze) dlored on Uox U !

Let 011: P! x P! — P3 be the Segre embedding. Define 7 : P32 Uy — Al x Al by [1 : zo1 : 210 : 211] — (210, Z01)-

Thennmoop;:P! xP! --» Al@ Al is a rational map. We can verify that
X 7

woar10 X it)(z1,22) = 7([1: 22 21 2 2122]) = (21, 22) S

Somoo,10(iy x i) =ida1 1. For the inverse direction, note that (i} x i;)omoo,; is defined on (U1 x Ul)rm (U3),
where Uj = {xo # 0} < P". We have

, , . . LR <1 . . [41 W1
(llXll)OﬂOUl,l([Zoizﬂ,[woiwl])=(l1xl1)°ﬂ( 1:—:— ])=(11le)(—,—)=([z0:z1],[w0:w1])
Wo Zo Zo Wo 20 Wo
Hence (i x ij)omooy,; =idpi«p1. Then wo oy is an inverse to i x ;. This concludes the proof. O
A Good, oy gom cold hoe
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Question 6 o B e e

In these examples, attempt a resolution of singularities of the given variety by successively blowing up singular
points.

(a) Find a resolution of singularities of the affine curve C; = V (y? — x? — x¥) € A2. Deduce that C; is rational, in

other words birationally equivalent to P!.

Hint. Try blowing up the curve at the origin, and consider the map that projects to the exceptional divisor.

2

(b) Desingularise the affine curve C, =V (y* - x* —x°) ¢ AZ?. Draw a picture of the series of blow-ups.

(c) Desingularise the affine surface S, =V (—xy + 2%) < A3.
Proof. Let m: BygA? — A? be the projection map. Then
BoA%={((x,y),[a:b]): xb—ya=0} < A? xP! = (A% x Up) U (A® x Uy)

(@) Let f(x,y) = y2 — x%2 - x3. Note that Vflp =0if and only if p = 0. Hence Sing(C;) = {0}. /

The blow-up of C; at the origin:
By C1 = (ByC1)4 U (By C1)p = (B C1 N (A% x Up)) U (B C1 N (A% x Uy))

On the affine chart A x Uy we have the local coordinates x, y,u:=bl/a. Then

BoCla={(x,pw: y=ux, y?=x2+x3, (x, ) # 0,00} ={(x, y, w): y=ux, u2:1+x}:\/(y—ux,u2—x—1)/

On the affine chart A% x U; we have the local coordinates x, y,v:=alb. Then

BoC)p=4{(x,y,v): x=vy, Y2 =x2+x3, (x, ) # 0,00} = {(x,y, v): x=vy, 1= v* + V’y} =V(x - vy, v* + Py 1)
v



/

Both (B C1), and (Bp C1)p, are non-singular. So the blow-up By C; is a non-singular quasi-projective variety.

v

Let 0 : By C; — Ep := m1({0}) be the projection onto the exceptional divisor, which is a rational map. The

inverse 0! : Ey — By C; is given by 07! : Uy — (BoC1)g, u— (1 —u?,u—ud,u); and 07! : Uy — (ByC1)p,
1—1}2 1—1}2 (-1, uw,w)

v— ( T v). Hence ¢! is rational. We deduce that By C; = IP’1 Since By C; = C;, we conclude that

C is rational. K ol
1 / p= (-45,0) o sebiibes VA=

(b) Let f(x,y) =y~ — x* — x°. Note that Vflp = 0 if and only if p = 0. Hence Sing(C») = {0}. We compute the
blow-up of Cz at the origin. On the affine chart A% x U, we have the local coordinates x, y, u:= b/ a. Then

BoC2)a={(x,y,u): y=ux, y>=x*+x5, (x,y) #(0,0)}

={x,yw: y=ux, ¥ =1 +x)x*} = V(y - ux, u®* - x¥*(x + 1)) S
gV(uz‘ xj(&f‘)> gAx,U.

We note that (By C,), is singular: the Jacobian
_ —-u 1 —x
T 13x%-2x 0 2u

hasrank 1 at p = (0,0,0) € A% x Uy = A3

xyu

On the affine chart A% x U; we have the local coordinates x, y,v:=alb. Then

BoC)p ={(x,y,v): x=vy, y>=x*+x°, (x,y) # (0,0)}
={,pv): x=vy, 1=y '+ v’} =V(x-vy,y* v 1 +vy) -1) /

Note that (By C2)p N Eg = &. This suggests that we only need to consider the desingularisation of (By C»),

(Why?). See l:&louo

To desingularise By C,, we embed (By C»), into A2 via the the following isomorphism (restricting to (Bg C»)4)
p: A =A% (g yw— (W

Then we identify (By Cy)4 as V(y* - x* — x°) € AZ | We consider the blow-up of CiV := (By Cy),, at the ori-
gin. The rest of the calculation is the same as in part (a). We obtain a non-singular quasi-projective curve
Bo C3") = (Bo C3")a U (Bo C5)-

/
¢ N V-
v :EX\ y'= X"‘-")N
K
(Bo (BoC2)a)a — BoC2)a R s

(c) Let f(x,y,2) = —xy+z>. Then Vfl,=0ifand only if p = (0,0,0). We blow up S; at the origin.

BoS2 ={((x,y,2),la:b:cl) € A3 xP2: (x,y,2) = Aa, b,c), L€ k\{0}, xy = z%}
={((x,y,z),[a:b:c])€ﬁ\3 xP?: (x,y,2) = AMa,b,c), Aek, xy =27, ab:cz} /

The intersection with the exceptional divisor is a projective defined by the same equation, i.e. E = V(—ab+c¢*) <
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On the affine chart A3 x Uy with local coordinates x, »z,a:=bla,f:=cla,
(Bo S2)a =V(y—ax, z—px, f*—a)

This is a non-singular affine surface. By symmetry this is also true on the affine chart A3 x Uy.

On the affine chart A3 x U, with local coordinates x, y,z,a := a/c, B:= b/,
BoS2)c =V(x—az, y— Pz, ap-1)

This is also a non-singular affine surface. Hence By S, is a non-singular quasi-projective variety. / O

Greal!
Section C: Optional A

Question 7

(a) Find an inductive procedure to desingularise the affine surface
Sp=V(-xy+2z")cA’

for a positive integer n > 2.

(b) By successively blowing up singular points, desingularise the surface

T ={x*+y*+2° =0} c A3

(c) Investigate whether it is possible to desingularise the affine surface
T, ={x*-y*z=0} cA®

by a procedure with begins by blowing up the origin (0,0,0) € T>. How is this example different from all the
earlier examples of singular affine surfaces?

Question 8

Assume that the base field k = C. Show that the projective surface
X={x3+x}+x+x3=0}cP®
contains at least 27 lines.

Hint. Move two of the summandes to the other side, and factorise both sides of the resulting equality.

Comment. It is possible to show that there exists a union of six disjoint lines
E=Lu..Ulgc X

and a birational morphism n : X — P? such that n is the blowup of six points in P> and E < P? is the exceptional
locus of . For details, see the last chapter of Reid: Undergraduate Algebraic Geometry.

Proof. This problem is quite combinatorial. Let o € S4 be a permutation on {0, 1,2,3}. The surface can be factorised as



follows:

xg+x?+x§‘+x§:0
3 3 _ 3 3
= Xy0) T Xo) =~ Xp) T Xg3) /

= (X5(0) — Xo 1)) (Xg0) — W+ Xo 1)) (Xo0) — W-Xo1)) = —(Xg@2) — Xo3)) (Ko@) — W+ X53)) (Xo2) — W-Xg(3))

where w4 = . For convenience we write

Cg’b:: Xaq— Xp, C;—'yb=xu—wixb
for the hyperplanes in P3. For a fixed o € Sy, ng),a(l) = Cg @03 =0 defines a line on the surface X, where
a, B € {0, +}. This provides 3 x 3 =9 distinct lines on X. It is easy to count that S, has 3 orbits. This gives at least
3 x9=27distinct lines on X. O

in! A+

Ct\a” e ‘btavo (Zan%j[\/%z& #\Jf #\c.\o
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