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Section A: Introductory

Question 1

(a) Show that if char(k) does not divide d , then the hypersurface

V
≥
xd

0 + . . .+xd
n

¥
µPn

is nonsingular.

(b) Under the same assumption on k, find the singular locus of the hypersurface

V
≥
xd

0 + . . .+xd
n°1

¥
µPn

Question 2

Let X be an irreducible affine variety. Show that for any open set U µ X and point p 2 X , the rings OX (U ) and OX ,p

are subrings of the function field k(X ).

Hint. You need to explain first how to include OX (U ) µ k(X ) and OX ,p µ k(X ).

Section B: Core

Question 3

Let X1 =V(x y(x ° y)) µA2 and X2 =V(x y, y z, zx) µA3.

(a) Decompose these varieties into irreducible components.

(b) By computing the dimension of tangent spaces at various points, show that X1 and X2 are not isomorphic.

Proof. (a) We have X1 =V
°
x y(x ° y)

¢
=V(x)[V

°
y
¢
[V

°
x ° y

¢
. Since the varieties are the vanishing loci of linear poly-

nomials. This is an irreducible decomposition.

For (a,b,c) 2 X2, we have ab = bc = ca = 0. Then two of a,b,c are zero. Then X2 =V
°
x y, y z, zx

¢
=V

°
x, y

¢
[

V
°
y, z

¢
[V(z, x). This is clearly an irreducible decomposition.

(b) We note that the dimensional of the tangent space at some point is an intrinsic property of an algebraic
variety, since dimTp X = dimk mp /m2

p , where mp is the unique maximal ideal of the ring of germs of regular
functions OX ,p . In particular, if f : X1 ! X2 is an isomorphism, we must have dimTp X1 = dimT f (p) X2 for
p 2 X1.

Both X1 and X2 are the union of three lines which intersect at the origin. For p 2 Xi \ {0}, dimTp Xi =
dimp Xi = 1. We then compute dimT0 Xi for i 2 {1,2}.

The Jacobian of the generators of the ideal of X1 at 0 is given by

J0 =
≥
2x y ° y2 x2 °2x y

¥
(x,y)=(0,0)

= 0

Then dimT0 X1 = dimker J0 = 2.
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The Jacobian of the generators of the ideal of X2 at 0 is given by

J0 =

0
B@

y x 0
0 z y
z 0 x

1
CA

(x,y,z)=(0,0,0)

= 0

Then dimT0 X2 = dimker J0 = 3.

X1 has a point with 2-dimensional tangent space, whereas no points in X2 have 2-dimensional tangent
space. Hence these two varieties cannot be isomorphic.

Question 4

(a) Let F : X 99K Y be a rational map of quasi-projective varieties, with X irreducible. If (U , f ) is a representation
for F , with U affine, show that

{(u, f (u)) : u 2U } µU £Y

is a closed subvariety. Define the graph °F of F to be the (Zariski) closure of {(u, f (u)) : u 2U } µ X £Y . Show
that the projection from the graph °F ! X is a birational equivalence.

(b) Define F :A2 !A1 by F (x, y) = y
x . Find the equation defining °F µA3.

Proof. (a) Consider the map f £ idY : U £Y ! Y £Y . Since f is a regular map, f is a morphism of quasi-projective
varieties and hence it is continuous. Then f £ idY is continuous. We have

{(u, f (u)) : u 2U } = ( f £ idY )°1(D)

where D := {(y, y) : y 2 Y }. We claim that D is closed in Y £Y . Let Y µPn . We consider the Segre embedding
Y £Y µPn £Pn µPn2+2n . Then we have

D = (Y £Y )\ (Pn £Pn)\V(det M)

where det M is a polynomial in the matrix elements of Pn2+2n . (We use the fact that det
°
v>v

¢
= 0.) Hence D

is closed in Y £Y . We conclude that {(u, f (u)) : u 2U } is closed in U £Y .

Let ∞F := {(u, f (u)) : u 2 U } be the genuine graph and °F := ∞F be the closed graph. The projection º :
°F ! X is clearly a dominant rational map. We claim that idX £F : X 99K X £Y is an inverse to º. idX £F
has a representative (U , idX £ f ). We have º ± (idX £ f ) = idU . The composition (idX £ f ) ±º is defined on
º°1(U ) = ∞F , on which clearly (idX £ f ) ±º = id∞F . Since ∞F is dense in °F , we have (idX £ f ) ±º = id°F as
rational maps. Therefore º is a birational equivalence.

(b) We claim that °F =V
°
y °xz

¢
µA3. F is defined on (A1 \ {0})£A1. From the definition we immediately note

that
∞F = {(a,b,c) : a 6= 0, ac °b = 0} =V

°
y °xz

¢
\ {x 6= 0}

Then∞F is open inV
°
y °xz

¢
. Since

≠
y °xz

Æ
is prime,V

°
y °xz

¢
is irreducible. Hence∞F is dense inV

°
y °xz

¢
.

We conclude that °F =V
°
y °xz

¢
.

Question 5

Recall that the projective varieties P2,P1 £P1 are not isomorphic. Find a birational equivalence ¡ :P2 99KP1 £P1.

✓

✓ Perfect ! At

Fixing YE1P
"

y:
:

f is given by mtl✓ regular f 's fi , and so

Ff = (
yo
-%) ,

- - -

yn
- Edsel)

C- UX4

E) I'm happy with, but
why does =) hold ?

✓

✓
A-



3

Proof. This is already outlined in the lectures. Let F : P2 99K A2 be the rational map with identity on U0 ! A2. Let
Æ :A2 !A1 £A1 be the canonical isomorphism. Let i1 :A1 !P1 be the inclusion map. Then

¡ := (i1 £ i1)±Æ±F : P2 99KP1 £P1

is a rational map. To show that it is a birational equivalence, the only non-trivial part is show that

i1 £ i1 : A1 £A1 !P1 £P1, (z1, z2) 7! ([1 : z1], [1 : z2])

is a birational equivalence.

Let æ1,1 : P1 £P1 ! P3 be the Segre embedding. Define º : P3 ∂ U0 ! A1 £A1 by [1 : z01 : z10 : z11] 7! (z10, z01).
Then º±æ1,1 :P1 £P1 99KA1 !A1 is a rational map. We can verify that

º±æ1,1 ± (i1 £ i1)(z1, z2) =º([1 : z2 : z1 : z1z2]) = (z1, z2)

Soº±æ1,1±(i1£i1) = idA1£A1 . For the inverse direction, note that (i1£i1)±º±æ1,1 is defined on (U 1
0 £U 1

0 )\æ°1
1,1(U 3

0 ),
where U n

0 = {x0 6= 0} µPn . We have

(i1 £ i1)±º±æ1,1([z0 : z1], [w0 : w1]) = (i1 £ i1)±º
µ∑

1 :
w1

w0
:

z1

z0
:

z1w1

z0w0

∏∂
= (i1 £ i1)

µ
z1

z0
,

w1

w0

∂
= ([z0 : z1], [w0 : w1])

Hence (i1 £ i1)±º±æ1,1 = idP1£P1 . Then º±æ1,1 is an inverse to i1 £ i1. This concludes the proof.

Question 6

In these examples, attempt a resolution of singularities of the given variety by successively blowing up singular
points.

(a) Find a resolution of singularities of the affine curve C1 =V
°
y2 °x2 °x3¢ µA2. Deduce that C1 is rational, in

other words birationally equivalent to P1.

Hint. Try blowing up the curve at the origin, and consider the map that projects to the exceptional divisor.

(b) Desingularise the affine curve C2 =V
°
y2 °x4 °x5¢µA2. Draw a picture of the series of blow-ups.

(c) Desingularise the affine surface S2 =V
°
°x y + z2¢µA3.

Proof. Let º : B0A
2 !A2 be the projection map. Then

B0A
2 =

©
((x, y), [a : b]) : xb ° y a = 0

™
µA2 £P1 = (A2 £U0)[ (A2 £U1)

(a) Let f (x, y) = y2 °x2 °x3. Note that r f |p = 0 if and only if p = 0. Hence Sing(C1) = {0}.

The blow-up of C1 at the origin:

B0 C1 = (B0 C1)a [ (B0 C1)b = (B0 C1 \ (A2 £U0))[ (B0 C1 \ (A2 £U1))

On the affine chartA2 £U0 we have the local coordinates x, y,u := b/a. Then

(B0 C1)a =
©
(x, y,u) : y = ux, y2 = x2 +x3, (x, y) 6= (0,0)

™
=

©
(x, y,u) : y = ux, u2 = 1+x

™
=V

°
y °ux,u2 °x °1

¢

On the affine chartA2 £U1 we have the local coordinates x, y, v := a/b. Then

(B0 C1)b =
©
(x, y, v) : x = v y, y2 = x2 +x3, (x, y) 6= (0,0)

™
=

©
(x, y, v) : x = v y, 1 = v2 + v3 y

™
=V

°
x ° v y, v2 + v3 y °1

¢

Uo→ A
'
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Both (B0 C1)a and (B0 C1)b are non-singular. So the blow-up B0 C1 is a non-singular quasi-projective variety.

Let æ : B0 C1 ! E0 := º°1({0}) be the projection onto the exceptional divisor, which is a rational map. The
inverse æ°1 : E0 ! B0 C1 is given by æ°1 : U0 ! (B0 C1)a , u 7! (1°u2,u °u3,u); and æ°1 : U1 ! (B0 C1)b ,

v 7!
µ

1° v2

v2 ,
1° v2

v3 , v
∂
. Henceæ°1 is rational. We deduce that B0 C1 'P1. Since B0 C1 'C1, we conclude that

C1 is rational.

(b) Let f (x, y) = y2 ° x4 ° x5. Note that r f |p = 0 if and only if p = 0. Hence Sing(C2) = {0}. We compute the
blow-up of C2 at the origin. On the affine chartA2 £U0 we have the local coordinates x, y,u := b/a. Then

(B0 C2)a =
©
(x, y,u) : y = ux, y2 = x4 +x5, (x, y) 6= (0,0)

™

=
©
(x, y,u) : y = ux, u2 = (1+x)x2™=V

°
y °ux,u2 °x2(x +1)

¢

We note that (B0 C2)a is singular: the Jacobian

J =
√

°u 1 °x
3x2 °2x 0 2u

!

has rank 1 at p = (0,0,0) 2A2 £U0 =A3
x,y,u .

On the affine chartA2 £U1 we have the local coordinates x, y, v := a/b. Then

(B0 C2)b =
©
(x, y, v) : x = v y, y2 = x4 +x5, (x, y) 6= (0,0)

™

=
©
(x, y, v) : x = v y, 1 = y2(v4 + v5 y)

™
=V

°
x ° v y, y2v4(1+ v y)°1

¢

Note that (B0 C2)b \E0 = ?. This suggests that we only need to consider the desingularisation of (B0 C2)a

(why?).

To desingularise B0 C2, we embed (B0 C2)a intoA2 via the the following isomorphism (restricting to (B0 C2)a)

' : A3 !A2, (x, y,u) 7! (x,u)

Then we identify (B0 C2)a as V
°
y2 °x2 °x3¢ µ A2

x,y . We consider the blow-up of C (1)
2 := (B0 C2)a at the ori-

gin. The rest of the calculation is the same as in part (a). We obtain a non-singular quasi-projective curve
B0 C (1)

2 = (B0 C (1)
2 )a [ (B0 C (1)

2 )b .

(c) Let f (x, y, z) =°x y + z2. Then r f |p = 0 if and only if p = (0,0,0). We blow up S2 at the origin.

B0 S2 =
©
((x, y, z), [a : b : c]) 2A3 £P2 : (x, y, z) =∏(a,b,c), ∏ 2 k \ {0}, x y = z2

™

=
©
((x, y, z), [a : b : c]) 2A3 £P2 : (x, y, z) =∏(a,b,c), ∏ 2 k, x y = z2, ab = c2™

The intersection with the exceptional divisor is a projective defined by the same equation, i.e. E =V
°
°ab + c2¢µ

✓
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To answer

your question :

Reason 1 : We only care about the birational class of the variety when doing-

ulwising
Reason 2 : Let it : Blo A'→A

'

be the projection . Then

a-
" (Cato) = it

- 'CG10 ) n {a#0 }

so Bloc, = closure( É
' CG10) n {a#0} )

=/+" (Cato)n {a#0} )u ( (0,01 ,
[ I :O])
-

exceptional
divisor of

Blo Can

= { (4)
y
)
,
[ I :u]) :y=ux ,

u
'=x'+xs}

⇐ C ,
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P2.

On the affine chartA3 £U0 with local coordinates x, y, z,Æ := b/a,Ø := c/a,

(B0 S2)a =V
°
y °Æx, z °Øx, Ø2 °Æ

¢

This is a non-singular affine surface. By symmetry this is also true on the affine chartA3 £U1.

On the affine chartA3 £U2 with local coordinates x, y, z,Æ := a/c,Ø := b/c,

(B0 S2)c =V
°
x °Æz, y °Øz, ÆØ°1

¢

This is also a non-singular affine surface. Hence B0 S2 is a non-singular quasi-projective variety.

Section C: Optional

Question 7

(a) Find an inductive procedure to desingularise the affine surface

Sn =V
°
°x y + zn¢

µA3

for a positive integer n > 2.

(b) By successively blowing up singular points, desingularise the surface

T1 =
©

x2 + y3 + z3 = 0
™
µA3

(c) Investigate whether it is possible to desingularise the affine surface

T2 =
©

x2 ° y2z = 0
™
µA3

by a procedure with begins by blowing up the origin (0,0,0) 2 T2. How is this example different from all the
earlier examples of singular affine surfaces?

Question 8

Assume that the base field k =C. Show that the projective surface

X =
©

x3
0 +x3

1 +x3
2 +x3

3 = 0
™
µP3

contains at least 27 lines.

Hint. Move two of the summands to the other side, and factorise both sides of the resulting equality.

Comment. It is possible to show that there exists a union of six disjoint lines

E = L1 [ . . .[L6 µ X

and a birational morphism º : X ! P2 such that º is the blowup of six points in P2 and E µ P2 is the exceptional
locus of º. For details, see the last chapter of Reid: Undergraduate Algebraic Geometry.

Proof. This problem is quite combinatorial. Let æ 2 S4 be a permutation on {0,1,2,3}. The surface can be factorised as

✓

✓
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follows:

x3
0 +x3

1 +x3
2 +x3

3 = 0

=) x3
æ(0) +x3

æ(1) =°(x3
æ(2) +x3

æ(3))

=) (xæ(0) °xæ(1))(xæ(0) °!+xæ(1))(xæ(0) °!°xæ(1)) =°(xæ(2) °xæ(3))(xæ(2) °!+xæ(3))(xæ(2) °!°xæ(3))

where !± = 1±
p

5
2

. For convenience we write

C 0
a,b := xa °xb , C±

a,b = xa °!±xb

for the hyperplanes in P3. For a fixed æ 2 S4, CÆ
æ(0),æ(1) = CØ

æ(2),æ(3) = 0 defines a line on the surface X , where
Æ,Ø 2 {0,±}. This provides 3£3 = 9 distinct lines on X . It is easy to count that S4 has 3 orbits. This gives at least
3£9 = 27 distinct lines on X .

✓

AtNice !

Challenge : prove
(directly ) that these

are
all of the lines


