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Question 1

(i) Show that given any 5 points in CP2, there is at least one conic passing through them. Show also that this
conic is unique if no three of the points are collinear.

(ii) Let C be a quartic (degree 4) curve in CP2 with four singular points. Use the strong form of Bézout’s
theorem to show C must be reducible.

(iii) Show that y4 −4xz y2 −xz(x − z)2 = 0 defines a quartic with three singular points.

Proof. (i) This is Question 3 of Sheet 2 of Projective Geometry.

• First we consider the case where no three points are collinear.

Let A,B ,C ,D,E be the given five points. By assumption A,B ,C ,D are in general position. By applying
a projective transformation we may assume that A = [1 : 0 : 0], B = [0 : 1 : 0], C = [0 : 0 : 1] and D = [1 :

1 : 1]. Suppose that E = [α0 :α1 :α2]. Let C :
2∑

i , j=0
λi , j xi x j = 0 be a conic that contains the five points.

A,B ,C ∈C implies that λ0,0 =λ1,1 =λ2,2 = 0. So C has the form

λ0,1x0x1 +λ1,2x1x2 +λ2,1x2x0 = 0

D,E ∈C implies that (λ0,1,λ1,2,λ2,0)·(1,1,1) = 0, (λ0,1,λ1,2,λ2,0)·(α0,α1,α2) = 0. Since D 6= E , 〈(1,1,1)〉 6=
〈(α0,α1,α2)〉. We deduce that (λ0,1,λ1,2,λ2,0) ∈ 〈(1,1,1), (α0,α1,α2)〉⊥, which is a 1-dimensional sub-
space. Hence the coefficients of the quadric is uniquely determined up to rescaling by a constant.
The conic determined by the quadric is unique.

• Second, consider the case where A,B ,C are collinear.

If the five points are not collinear, let ax + by + c = 0 and d x + e y + f = 0 be the equations of the
projective lines ABC and DE respectively. Then (ax +by + c)(d x + e y + f ) = 0 defines a reducible
conic passing through the five points.

If the five points are collinear, then they define a projective line ax +by + c = 0. For any other line
d x+e y+ f = 0, (ax+by+c)(d x+e y+ f ) = 0 defines a reducible conic passing through the five points.

(ii) Suppose that C is irreducible. Let W, X ,Y , Z be the four singular points of C . Choose a non-singular point
V ∈ C . By (i) there exists a conic D passing through V ,W, X ,Y , Z . Since C is irreducible, C and D has no
common components. By Bézout’s Theorem,∑

p∈C∩D
Ip (C ,D) = 8

By Proposition 13, we know that Ip (C ,D) Ê 2 for p ∈ {W, X ,Y , Z }. And IV (C ,D) Ê 1. Then we have∑
p∈C∩D

Ip (C ,D) Ê 9

which is a contradiction. Hence C is reducible.

(iii) The polynomial P (x, y, z) := y4 −4xz y2 − xz(x − z)2 is homogeneous of degree 4. Hence its set of zeros is
a quartic curve in CP2.

To find the singular points, we compute its partial derivatives.

∂P

∂x
=−4z y2 − z(x − z)2 −2xz(x − z),

∂P

∂y
= 4y3 −8x y z,

∂P

∂z
=−4x y2 −x(x − z)2 −2xz(z −x)

By simple observation, we find that P = ∂P

∂x
= ∂P

∂y
= ∂P

∂z
= 0 has at least three solutions: [1 : 0 : 1], [1 : 0 : 0]

and [0 : 0 : 1]. So the curve has at least three singular points.

Next we shall show that the curve has at most three singular points. By (ii) it suffices to show that the
curve is irreducible.

Suppose that P has a linear factor ax +by + cz. Since P contains a term y4 but not x y3 or z y3, a = c = 0.
But P is not divisible by y . We deduce that P does not have a linear factor.
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Suppose that P is reducible. Then there exists quadratic polynomials Q(x, y, z) and R(x, y, z) such that

P (x, y, z) = y4 −4xz y2 −xz(x − z)2 = (
y2 +Q(x, y, z)

)(
y2 +R(x, y, z)

)
Then

Q +R =−4xz, QR =−xz(x − z)2

By unique factorisation, we can list all the possible polynomials Q and R, and find that the equation has
no solutions. We conclude that P is irreducible and hence the curve has exactly three singular points.

Question 2

Let P (x, y, z) be a homogeneous polynomial of degree d defining a nonsingular curve C .

(i) Write down Euler’s relation for P,Px ,Py ,Pz . Deduce that the Hessian determinant satisfies:

zHP (x, y, z) = (d −1)det

 Pxx Px y Pxz

Py x Py y Py z

Px Py Pz


(ii) Deduce further that:

z2HP (x, y, z) = (d −1)2 det

 Pxx Px y Px

Py x Py y Py

Px Py dP/(d −1)


(iii) Deduce that if P (x, y,1) = y − g (x) then [a,b,1] is a flex of C iff b = g (a) and g ′′(a) = 0.

Proof. (Inspired by physicists’ convention in General Relativity, we shall denote the partial derivative
∂P

∂x
by P,x instead

of Px .)

(i) The Euler relation is given by
xP,x + yP,y + zP,z = dP

The first partial derivatives P,i are homogeneous of degree (d −1). Hence the Euler relation is given by

P,i =
∑

j∈{x,y,z}
j P,i j = (d −1)P

Starting from the Hessian determinant

HP (x, y, z) = det

P,xx P,x y P,xz

P,y x P,y y P,y z

P,zx P,z y P,zz


We perform some elementary row operations:

zHP (x, y, z) = det

 P,xx P,x y P,xz

P,y x P,y y P,y z

zP,zx zP,z y zP,zz


= det

 P,xx P,x y P,xz

P,y x P,y y P,y z

xP,xx + yP,y x + zP,zx xP,x y + yP,y y + zP,z y xP,xz + yP,y z + zP,zz


= det

 P,xx P,x y P,xz

P,y x P,y y P,y z

(d −1)P,x (d −1)P,y (d −1)P,z


= (d −1)det

P,xx P,x y P,xz

P,y x P,y y P,y z

P,x P,y P,z


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(ii) Starting from the result of (i), We perform some elementary column operations:

z2HP (x, y, z) = (d −1)det

P,xx P,x y zP,xz

P,y x P,y y zP,y z

P,x P,y zP,z


= (d −1)det

P,xx P,x y xP,xx + yP,x y + zP,xz

P,y x P,y y xP,y x + yP,y y + zP,y z

P,x P,y xP,x + yP,y + zP,z


= (d −1)det

P,xx P,x y (d −1)P,x

P,y x P,y y (d −1)P,y

P,x P,y dP


= (d −1)2 det

P,xx P,x y P,x

P,y x P,y y P,y

P,x P,y dP/(d −1)


(iii) Since P (x, y,1) = y − g (x), we have

P,xx (x, y,1) =−g ′′(x), P,x y (x, y,1) = 0, P,y y (x, y,1) = 0, P,x (x, y,1) =−g ′(x), P,y (x, y,1) = 1

Hence

HP (x, y,1) = det


−g ′′(x) 0 −g ′(x)

0 0 1

−g ′(x) 1
d

d −1
(y − g (x))

= g ′′(x)

Hence

[a : b : 1] is a flex of C ⇐⇒ P (a,b,1) = 0 ∧ HP (a,b,1) = 0

⇐⇒ b = g (a) ∧ g ′′(a) = 0

The result suggests that the definition of inflection point using Hessian determinant coincides with the
usual definition using second derivative.

Question 3

Let C and D be nonsingular projective curves of degree n and m in P2. Show that if C is homeomorphic to D
then either n = m or {n,m} = {1,2}.

Proof. Projective curves in CP2 are topologically compact connected Riemann surfaces, which are orientable. By the
classification of compact surfaces, a projective curve is uniquely determined by its genus g up to homeomor-
phism. If C and D are homeomorphic, by the degree-genus formula, we have

gC = 1

2
(n −1)(n −2) = 1

2
(m −1)(m −2) = gD

Hence (n −1)(n −2) = (m −1)(m −2). It follows that either n = m or {n,m} = {1,2}.

Question 4

Show that if C is the conic y2 = xz then the map

f :P1 →C

given by

f : [s, t ] 7→ [
s2, st , t 2

]
is a homeomorphism. Deduce without using the degree-genus formula that all nonsingular conics have genus
zero.

Proof. Since the map z 7→ z2 is surjective onto C, f is a surjective map. Suppose that [s2 : st : t 2] = [s′2 : s′t ′ : t ′2]. Then
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there exists λ ∈C\ {0} such that s =±λs′, t =±λt ′ and st =λ2s′t ′. Hence (s, t ) =±λ(s′, t ′) and [s, t ] = [s′, t ′]. We
deduce that f is injective.

To show that f is a homeomorphism, it suffices to show that it is locally a homeomorphism. Without loss of
generality we assume that t 6= 1. Then f : [s/t : 1] 7→ [s2/t 2 : s/t : 1] is locally the map f̃ : C → C2 given by
z 7→ (z2, z). This is clearly a local homeomorphism because the derivative is non-vanishing and we can apply
the inverse function theorem.

Next we shall show that all non-singular conic can be put into the form y2 = xz by a projective transformation.

By applying a suitable projective transformation we may assume that the conic C passes through [1 : 0 : 0], and
the tangent line of C at [1 : 0 : 0] is z = 0. Suppose that C is defined by the polynomial

ax2 +by2 + cz2 +d x y +e y z + f zx = 0

Then a = 0 and d = 0. Since C is non-singular, it is irreducible, and hence b f 6= 0. The conic equation becomes(p
by

)2 =−z( f x +e y + cz)

The projective transformation [x : y : z] 7→ [ f x +e y + cz :
p

by : −z] takes C to the conic y2 = xz.

We deduce that all non-singular conics are homeomorphic to the projective line CP1, which is homeomorphic
to S2, and has genus 0.

Question 5

Let f : X → Y be a (nonconstant) holomorphic map of compact connected Riemann surfaces, where X is the
Riemann sphere. Show that Y is homeomorphic to X .

Proof. This is Question 2 of Sheet 2 of Geometry of Surfaces.

Recall the Riemann-Hurwitz formula from Geometry of Surfaces:

χ(X ) = deg f ·χ(Y )− ∑
x∈X

(ν f (x)−1)

Since Y is a compact connected Riemann surface, it is orientable. So by classification theorem of compact
surfaces, Y is homeomorphic to some connected sum of tori. χ(Y ) = 2−2g for some g ∈N.

Suppose that n Ê 1. Then

χ(X ) = deg f ·χ(Y )− ∑
x∈X

(ν f (x)−1) É deg f ·χ(Y ) É 0

But we know that X is the Riemann sphere, so χ(X ) = 2. This is a contradiction. Hence g = 0 and Y ∼= S2. We
deduce that Y is homeomorphic to X .

Question 6

(i) Let U be a connected open subset of C, and let f : U → C be holomorphic. Show that if a ∈ U , then for
sufficiently small real positive r, we have:

f (a) = 1

2π

∫ 2π

0
f
(
a + r e iθ

)
dθ

(ii) Deduce that if | f | has a local maximum at a ∈U , then | f | is constant on some neighbourhood of a.

(iii) Deduce that if | f | has a local maximum at a ∈U , then f is constant on U .

(iv) Now suppose S is a compact connected Riemann surface and f : S 7→ C is a holomorphic function. Show
that f is constant. (You may assume the Identity Theorem for Riemann surfaces, that is, if two holomor-
phic maps on a Riemann surface agree then on a nonempty open set then they agree everywhere).
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Proof. (i) This is Question 1 of Sheet 6 of Complex Analysis.

For sufficiently small r > 0, γ∗(a,r ) ⊆U . Since f is holomorphic in U , by Cauchy’s integral formula:

f (a) = 1

2πi

∮
γ(a,r )

f (z)

z −a
dz = 1

2πi

∫ 2π

0

f (a + r eiθ)

a + r eiθ−a
ir eiθ dθ = 1

2π

∫ 2π

0
f
(
a + r eiθ

)
dθ

(ii) Since | f | attains local maximum at a ∈U , there exists R > 0 | f (a)| Ê | f (z)| for all z ∈ B(a,R). For r ∈ (0,R],
by part (i) we have

| f (a)| = 1

2π

∣∣∣∣∫ 2π

0
f
(
a + r eiθ

)
dθ

∣∣∣∣É sup
θ∈[0,2π]

∣∣∣ f
(
a + r eiθ

)∣∣∣
But | f (a)| is a local maximum. Hence

| f (a)| = sup
θ∈[0,2π]

∣∣∣ f
(
a + r eiθ

)∣∣∣
and ∫ 2π

0

(
f
(
a + r eiθ

)
− sup
θ∈[0,2π]

∣∣∣ f
(
a + r eiθ

)∣∣∣) dθ = 0

Since f is continuous, f is constant on γ∗(a,r ). Since r is arbitrary, we deduce that f is constant on
B(a,R).

(iii) B(a,R) ⊆U has a limit point in U . Since U is connected, by the identity theorem, f is constant on U .

(iv) Since S is compact and f is continuous, f (S) is bounded in C. | f | attains maximum at some a ∈C. By (ii)
f is constant in an open neighbourhood of a. By the (stronger) q4identity theorem, f is constant.


