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Question 1

Define the Euler characteristic of a surface with a subdivision. By choosing a suitable subdivision show that the Euler charac-
teristic of a torus is zero.

An engineer constructs a vessel in the shape of a torus from a finite number of steel plates. Each plate is in the form of a not
necessarily regular curvilinear polygon with n edges. The plates are welded together along the edges so that at each vertex n
distinct plates are joined together, and no plate is welded to itself. What is the number 7 ? Justify your answer.

[You may assume that the Euler characteristic is independent of the choice of subdivision of the surface.]

Proof. Let X be a topological space and f: S"~! — X be a continuous map. The space obtained by attaching an n-cell to X along f,
XUy D", is defined to be the quotient of the disjoint union X 11 D", such that each x € X is identified with f “1(ixh.

Let X be a topological surface. A cellular decomposition of X is a chain Ky € Kj € Kz = X, where Kj is a finite set (the
'0-cells") and each Kj, is obtained by attaching finitely many n-cells to K,—;. We define the Euler characteristic of X:

2
XX =) (-D"c,
n=0
where ¢, is the number of n-cells.

A torus T2 = S! x S! has the fundamental group (a, b | aba1b™1y so it can be constructed with one 0-cell, two 1-cells and
one 2-cell. It is visually shown in Figure 1.

Figure 1: Cellular Decomposition of a Torus, borrowed from P13, Lecture notes for Topology & Groups

So the Euler characteristic of the torus is
¥(T?=1-2+1=0

For the second part of the question, suppose that the torus is constructed by welding m such plates. Each vertex on T? corre-
sponds to 7 vertices of the plates; each edge on T? corresponds to 2 edges of the plates; and each face on T? corresponds to
1 face of the plates. Hence the torus is subdivided into mn/n = m vertices, mn/2 edges and m faces. The Euler characteristic

2 mn
X(T):m—7+m:0

Hence the only possibility is that n = 4. n = 4 works if we consider the torus as the side identification of a square, as shown
in Figure 2. O

Figure 2:



Question 2. The Thomsen Graph / The Three Amenities Problem.

Let Hy, H», H3, G, W, E be six points on a sphere. Show that it is not possible to join each of Hj, Hz, H3 to each of G, W, E by
curves intersecting only at their end points (nine curves in all).

[You may assume that such a configuration of curves would give a subdivision of the sphere.]

By drawing a diagram show that such a construction is possible on the projective plane. Decide whether it is possible on the
torus or the Klein bottle.

Proof. For simplicity, we called these points A1, Az, A3, B1, B2, B3 where each A; is connecgg to each B; by a curve on s2. Suppose
that these curves are non-intersecting away from the vertices. Such configuratjop/defines a subdivision of the sphere. It has
6 vertices and 9 edges. For each face on S?, it is surroungded by at least 4 edges A; — By, — Aj— By (i # j and k # £). Each edge
connects 2 faces on S2, so there are at most |9-2/4] #£4 faces. Since )((Sz) =2, S% has 5 faces, which is a contradiction. Hence
no such configuration is possible.

The constructions for real projective plane, 2-torus, and the Klein bottle are shown in the following figure:
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Figure 3: The Thomsen Graph on RP?, T? and KB

Question 3 @

Use the formula for the Euler characteristic to show that there are no more than five Platonic solids.

(A Platonic solid is a convex polyhedron with congruent faces consisting of regular polygons and the same number of faces meet
at each vertex.)

What are the possibilities for subdividing a torus into polygons each with 7 sides, and such that k edges meet at each vertex?

Proof. A convex polyhedron is homeomorphic to S? so it has Euler characteristic 2. Suppose that the polyhedron is made of m
n-sided polygons such that k edges meet at each vertex. Then the polyhedron has mn/k verji€es, mn/2 edges and m faces.
We have

mn mn
— - tm=2
k 2
which implies that
1 1 1 2 1
—t+—==+—>=

k n 2 mn 2

where 7, k = 3, The only positive integer solutions of (n, k) are: (3,3), (3,4), (4,3), (5,3), (3,5). So there are at most five distinct
Platonic solids.

1 1 1
Since a torus has Euler characteristic 0, we deduce that — + — = 5" The only possibility is n = k = 4, which is consistent with
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Question 4

1

(i) Calculate the Euler characteristic of the surface given in planar form by a1 azaz lasas a, lal_ a;lag as. Show that the

surface contains a Mobius band.



(ii) By looking for xyx~!y~! terms (or using the classification of surfaces) show that the surface described by
byay bz az 1 193_1 aza, 1 al_l by Lais homeomorphic to T#T.

Proof (i) The fundamental polygon is shown in th(; f:gure: Ca{e ( W(
e éow* J—L{

CYR §
We observe that the surface obtained h&vertices, kedges and 1 face. So the Euler characteristicis2—-10+ 1= -7.

The surface contains a Mébius band because it contains two copies of the letter as. If we connect the two curves as by
two lines across the face, we will obtain a M6bius band.

(ii) Let X denotes this surface. Then X is obtained by gluing a 10-sided polygon with the boundary word
bya;bsaz L by Las a, L al_l bl_l ay. Cyclically permutating this word we obtain a;, 1 al_l bflal by as bs aglbs_ L as. We observe
that X = X,#X,, where X; is obtained by gluing a hexagon with the boundary word a;, laflbl_lal by ay, and X, is ob-
tained by gluing a square with boundary word bza; lbg las. Fg# X, first we cyclically permute the boundary word:
1b1. Now it is clear that both X; and X» are homeomor-
|

ar aglal_l bflal b1. Next we contract ap az_l and obtain al_l b
phic to T?. We conclude that X = T2#T2.

Question 5 @

Suppose Z is a compact, connected surface with y(Z) = n. Compute the number of isomorphism classes of ordered pairs
(X, Y) of compact, connected surfaces X, Y with X#Y = Z, in the cases when

(i) Z is orientable;

(i) Z is not orientable.

Proof. We know that y(Z) = y(X#Y) = y(X) + x(Y) —2 and that Z is orientable if and only if both X and Y are orientable.
(i) Suppose that Z is orientable. Then both X and Y are orientable. By classification of compact surfaces, X = Zg and
Y = g, for some g1, g2 € N. Therefore y(X) =2-2g; and (Y) =2—2g>. We have
n=y(Z)=2-2g1+2-2g,-2=2-2(g1+ &)
Hence g1 + g2 = 1 — n/2. In particular n is even and is not greater than 2. The possibilities are
(g1,82)=(0,1-n/2),(1,-n/2),...,,(1—n/2,0). There are 2 — n/2 isomorphism classes.
(ii) Suppose that Z is not orientable.

¢ If neither X nor Y is orientable, then by classification of compact surfaces, X and Y are some connected sum
of RP2, and we have x(X) =2—-hy and y(Y) = 2 - hy for some hj,hy € Z,. Then n = 2— (h] + hy) and hence
hy + hy = 2 —n. The possibilities are (h, hp) = (1,1 - n),(2,—n),...,(1 —n,1). There are 1 — n isomorphism classes.
(n<0)

¢ Assume that exactly one of X and Y is orientable. First we consider that X is orientable and Y is not orientable.
Therefore y(X) =2—-2gand y(Y)=2-hforgeNand he Z,.

n=2-2g+2-h+2=2-(2g+h)
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If n is odd, then the possibilities are (g, h) = (0,2 — n),(1,—n),...,((1 —n)/2,1). There are (1 — n)/2 isomorphism
classes. If nis even, then hen the possibilities are (g, h) = (0,2—n), (1,—n), ..., (—n/2,2). There are —n/2 isomorphism
classes. We can exchange X and Y and the result is similar.

In summary: If n is even, then n < 0 and there are 1 - n+2- (—n)/2 = 1 - 2n isomorphism classes. If z is odd, then n < 1
and thereare 1 —n+2:(1—n)/2 =2 —2n isomorphism classes. O
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