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Question 1

Obtain the electric field of a uniformly moving charge, as follows: place the charge at the origin of the primed frame S′ and
write down the field in that frame, then transform to S using the equations for the transformation of the fields (not the force
transformation method) and the coordinates. Be sure to write your result in terms of coordinates in the appropriate frame.
Sketch the field lines. Prove (from the transformation equations, or otherwise) that the magnetic field of a uniformly moving
charge is related to its electric field by B = v∧E/c2.

Solution. Let v be the velocity of the moving charge and S′ be the inertial frame moving with the charge. In the frame S′ the charge
is stationary. The fields of it is given by

E′ = q

4πε0

r′

r ′3 , B′ = 0

We write down the transformations of fields and coordinates:

E//= E′
// E⊥ = γ(E′

⊥−v∧B′)

B//= B′
// B⊥ = γ(B′

⊥+v∧E′/c2)

r′//= γ(r//−vt ) r′⊥ = r⊥

Hence the electric field in frame S is given by

E//= E′
//=

q

4πε0

r′//
x ′3 = q

4πε0

γ(r//−vt )

(γ2 ‖r//−vt‖2 +‖r⊥‖2)3/2

E⊥ = γE′
⊥ = q

4πε0

γr⊥
(γ2 ‖r//−vt‖2 +‖r⊥‖2)3/2

E = E//+E⊥ = q

4πε0

γ(r−vt )

(γ2 ‖r//−vt‖2 +‖r⊥‖2)3/2

For the magnetic field, we have

B = B//+B⊥ = B′
//+γ(B′

⊥+v∧E′/c2) = q

4πε0c2

γv∧ r′

r ′3 = q

4πε0c2

γv∧ r

(γ2 ‖r//−vt‖2 +‖r⊥‖2)3/2
= v∧E

c2

Question 2

A sphere of radius a in its rest frame is uniformly charged with charge density ρ = 3q/4πa3 where q is the total charge. Find
the fields due to a moving charged sphere by two methods, as follows.

[N.B. it will be useful to let the rest frame of the sphere be S′ (not S) and to let the frame in which we want the fields be S.
This will help to avoid a proliferation of primes in the equations you will be writing down. Let S and S′ be in the standard
configuration.]

(i) Field method: write down the electric field as a function of position in the rest frame of the sphere, for the two regions
r ′ < a and r ′ Ê a where r ′ = (

x ′2 + y ′2+ z ′2)1/2
. Use the field transformation equations to find the electric and magnetic

fields in frame S (re-using results from previous questions where possible), making clear in what regions of space your
formulae apply.
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(ii) Potential method: in the rest frame of the sphere the 3 -vector potential is zero, and the scalar potential is

φ′ = q

8πε0a

(
3− r ′2/a2)

for r ′ < a, and

φ′ = q

4πε0r ′

for r ′ Ê a.

Form the 4-vector potential, transform it, and thus show that bothφ and A are time-dependent in frame S. Hence derive
the fields for a moving sphere. [Beware when taking gradients that you do not muddle ∂/∂x and ∂/∂x ′, etc.]

Solution. (i) By Gauss’ Theorem we can write down the electric field of the uniformly charged sphere in the frame S′ where the
sphere is stationary:

E′ =


q

4πε0

r′

a3 , r ′ < a

q

4πε0

r′

r ′3 , r ′ Ê a

The magnetic field in frame S′ is B′ = 0. For r ′ Ê a, or equivalently γ2 ‖r//−vt‖2 +‖r⊥‖2 Ê a2, the field is the same as a
point charge. We can use the result of Question 1 and write down the fields in frame S:

E = q

4πε0

γ(r−vt )

(γ2 ‖r//−vt‖2 +‖r⊥‖2)3/2
, B = q

4πε0c2

γv∧ r

(γ2 ‖r//−vt‖2 +‖r⊥‖2)3/2

For r ′ < a, or equivalently γ2 ‖r//−vt‖2 +‖r⊥‖2 < a2, we have

E = E′
//+γE′

⊥ = q

4πε0

r′//+γr′⊥
a3 = q

4πε0

γ(r−vt )

a3

B = γv∧E′/c2 = q

4πε0c2

γv∧ r

a3

(ii) We are given the electromagnetic potential in the frame S′:

ϕ′ =


q

8πε0a

(
3− r ′2

a2

)
, r ′ < a

q

4πε0r ′ , r ′ Ê a
, A′ = 0

The Lorentz transformation from S′ to S is given by

ϕ= γ(ϕ′+v ·A′), A//= γ(A′
//+vϕ′/c2), A⊥ = A′

⊥

Hence

ϕ= γϕ′ =


γq

8πε0a

(
3− γ2 ‖r//−vt‖2 +‖r⊥‖2

a2

)
, γ2 ‖r//−vt‖2 +‖r⊥‖2 < a2

γq

4πε0

1√
γ2 ‖r//−vt‖2 +‖r⊥‖2

, γ2 ‖r//−vt‖2 +‖r⊥‖2 Ê a2

A = γv

c2 ϕ
′ =


γqv

8πε0c2a

(
3− γ2 ‖r//−vt‖2 +‖r⊥‖2

a2

)
, γ2 ‖r//−vt‖2 +‖r⊥‖2 < a2

γqv

4πε0c2

1√
γ2 ‖r//−vt‖2 +‖r⊥‖2

, γ2 ‖r//−vt‖2 +‖r⊥‖2 Ê a2

Then the fields are given by

E =−∇ϕ− ∂A

∂t
, B =∇∧A

By explicitly computing the partial derivatives (or muddling with the vector identities) we should obtain the same result
as in (i). (I don’t know the advantage of using the potential method in the uniform motion. The calculation is significantly
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harder than the field method. Some of the calculations are already incorporated in the transformation rules of fields,
which are derived from the Lorentz transformation of the 4-potential.)

Question 3

In a frame S a point charge first moves uniformly along the negative x-axis in the positive x direction, reaching the point
(−d ,0,0) at t =−∆t , and then it is slowed down until it comes to rest at the origin at t = 0. Sketch the lines of electric field in S
at t = 0, in the region (x +d)2 + y2 + z2 > (c∆t )2.

Solution. The observers in frame S located in the region (x +d)2 + y2 + z2 > (c∆t )2 does not know the deceleration of the charge,
because the electric field propagates in the speed of light. They will simply observe a field which looks like a uniformly
moving charge.

Question 4

Give a 4-vector argument to show that the 4-vector potential of a point charge q in an arbitrary state of motion is given by

Aµ = q

4πε0

Uµ/c

−RνUν

where Uµ and Rµ are suitably chosen 4-vectors which you should define in your answer.

Proof. Let us derive the retarded potential A(X ) for general charge distribution J (Xs ). Starting from the d’Alembert’s equation with
Lorenz gauge: (

∇2 − 1

c2

∂2

∂t 2

)
Aµ =−µ0 Jµ

The general solution is obtained by

Aµ(X ) =
∫

−µ0G(X ; Xs )Jµ(Xs )d4Xs

where G(X , Xs ) is the Green’s function satisfying(
∇2 − 1

c2

∂2

∂t 2

)
G(X ; Xs ) = δ4(X −Xs )

The Green’s function should only depends on the difference X − Xs . So G = G(X − Xs ) = G(t − ts ,x− xs ) Let R := X − Xs ,
r := x−xs and r := ‖x−xs‖.

We take inverse Fourier transforms:

G(t − ts ,r) = 1

2π

∫
R

eiω(t−ts ) Ĝ(ω,r)dω

δ4(X −Xs ) = δ(t − ts )δ3(r) = δ3(r)
1

2π

∫
R

eiω(t−ts ) dω(
∇2 − 1

c2

∂2

∂t 2

)
G(t − ts ,r) = 1

2π

∫
R

(
∇2 − 1

c2

∂2

∂t 2

)(
eiω(t−ts ) Ĝ(ω,r)

)
dω= 1

2π

∫
R

(
∇2 + ω2

c2

)(
eiω(t−ts ) Ĝ(ω,r)

)
dω
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Hence we have (
∇2 + ω2

c2

)
Ĝ(ω,r) = δ3(r)

We only concern the spherical symmetric solutions. So Ĝ(ω,r) = Ĝ(ω,r ). In the spherical coordinates, we have

1

r 2

∂

∂r

(
r 2 ∂Ĝ

∂r

)
+ ω2

c2 Ĝ(ω,r ) = δ(r )

To eliminate the δ-function we multiply both sides by r :

∂2

∂r 2 (rĜ)+ ω2

c2 rĜ(ω,r ) = rδ(r ) = 0

Hence the general solution is given by

Ĝ(ω,r ) = A eiωr /c +B e−iωr /c

4πr

Let Ĝ (±)(ω,r ) = 1

4πr
e±iωr /c . Substituting into the inversion formula:

G (±)(t − ts ,r ) = 1

2π

∫
R

eiω(t−ts ) e±iωr /c

4πr
dω= 1

2πr

∫
R

eiω(t−ts±r /c) dω= 1

4πr
δ(t − ts ± r /c)

(The whole method of Green’s function is valid only in the sense of distributions.)

G (+) is the retarded Green’s function and G (−) is the advanced Green’s function. For the situtation where there is no incoming
wave, we only keep G (+) (and add a minus sign to meet the limiting case). So the 4-potential is given by

Aµ(X ) = µ0

4π

∫
Jµ(Xs )

‖x−xs‖
δ

(
t − ts +

‖x−xs‖
c

)
d4Xs = µ0

4π

∫
Jµ(Xs )ret

‖x−xs‖
d3xs

where Jµ(ts ,xs )ret = Jµ
(

t − ‖x−xs‖
c

, xs

)
.

Now we focus on moving charges and derive the Liénard-Wiechart potential. For a charge q with 3-velocity v , we have

ρ(xs ) = qδ3(xs −x′(t )), j(xs ) = qvδ3(xs −x′(t ))

We change the parameter to proper time τ. The 4-current is given by

Jµ(Xs ) = q
∫

Uµ(τ)δ3(xs −x′(τ))δ(ts − t ′(τ))dτ= q
∫

Uµ(τ)δ4(Xs −X ′(τ))dτ

where X ′(τ) is the worldline of the charge and U (τ) is the 4-velocity of the charge. Hence the 4-potential of the charge is
given by

Aµ(X ) = µ0

4π

∫
1

‖x−xs‖
δ

(
t − ts +

‖x−xs‖
c

)(
q

∫
Uµ(τ)δ4(Xs −X ′(τ))dτ

)
d4Xs

= µ0

4π
q

∫
Uµ(τ)

(∫
1

‖x−xs‖
δ

(
t − ts +

‖x−xs‖
c

)
δ4(Xs −X ′(τ))d4Xs

)
dτ

= µ0

4π
q

∫
Uµ(τ)

1

‖x−x′‖δ
(

t − t ′+
∥∥x−x′

∥∥
c

)
dτ

To evaluate the integral, we can use a trick to deal with the integrand 1. Note that

δ
(∥∥X −X ′∥∥2

)
= δ

(
c2(t − t ′)2 −∥∥x−x′

∥∥2
)
= δ((

c(t − t ′)+∥∥x−x′
∥∥)(

c(t − t ′)−∥∥x−x′
∥∥))

= 1

2c ‖x−x′‖
(
δ

(
t − t ′+

∥∥x−x′
∥∥

c

)
+δ

(
t − t ′−

∥∥x−x′
∥∥

c

))
1Section 12.11 of Classical Electrodynamics by Jackson.
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For the physical retarded potential, we take t > t ′. We can write

1

‖x−x′‖δ
(

t − t ′+
∥∥x−x′

∥∥
c

)
= 2c1{t>t ′}δ

(∥∥X −X ′∥∥2
)

On the other hand, as a function of the proper time τ, we have

δ
(∥∥X −X ′∥∥2

)
=∑

i
δ(τ−τi )

∣∣∣∣∣d
∥∥X −X ′(τ)

∥∥2

dτ

∣∣∣∣∣
−1

∣∣∣∣∣∣‖X−X ′(τi )‖2=0

= ∑
i

δ(τ−τi )

−2(Xν−X ′
ν)Uν

∣∣∣∣∣‖X−X ′(τi )‖2=0

Note that
∥∥X −X ′(τi )

∥∥ = 0 has two solutions, one earlier and one later than t . The physical solution is the earlier point τ0.
Hence

1{t>t ′}δ
(∥∥X −X ′∥∥2

)
= δ(τ−τ0)

−2RνUν(τ0)

where R := X −X ′. Finally we obtain the Liénard-Wiechart potential for moving charges

Aµ(X ) = µ0q

4π

∫
Uµ(τ)

2cδ(τ−τ0)

−2RνUν(τ0)
dτ= q

4πε0c

Uµ(τ0)

−RνUν(τ0)

Question 5

The electromagnetic field of a charge in an arbitrary state of motion is given by

E = q

4πε0κ3

(
n̂−v/c

γ2r 2 + n̂∧ [(n̂−v/c)∧a]

c2r

)
where n̂ = r/r and κ= 1− vr /c = 1− n̂ ·v/c, and

B = n̂∧E/c

where r is the vector from the source point to the field point, and v and a are the velocity and acceleration of the charge at the
source event. Without detailed derivation, outline briefly how this result may be obtained. How is the source event identified?
A charged particle moves along the x axis with constant proper acceleration ("hyperbolic motion" ), its worldline being given
by

x2 − t 2 =α2

in units where c = 1. Find the electric field at t = 0 at points in the plane x =α, as follows:

(i) Consider the field event (t , x, y, z) = (0,α, y,0). Show that the source event is at

xs =α+ y2

2α

(ii) Show that the velocity and acceleration at the source event are

vs =−
√

x2
s −α2

xs

as = α2

x3
s

(iii) Consider the case α = 1, and the field point y = 2. Write down the values of xs vs , and as . Draw on a diagram the field
point, the source point, and the location of the charge at t = 0. Mark at the field point on the diagram the directions of
the vectors n̂,v,a, and n̂∧ (n̂∧a). Hence, by applying the formula above, establish the direction of the electric field at
(t , x, y, z) = (0,1,2,0).

(iv) If two such particles travel abreast, undergoing the same motion, but fixed to a rod perpendicular to the x axis such that
their separation is constant, comment on the forces they exert on one another.
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Solution. For this question only we use the natural unit c = 1.

(i) The field propagates in the speed of light. We have

(xs −α)2 + y2 = t 2

In addition, the motion of the source satisfies
x2

s − t 2 =α2

Subtracting the two equations we obtain

2α2 −2xsα+ y2 = 0 =⇒ xs =α+ y2

2α

(ii) Differentiate the equation of motion with repsect to t to obtain the velocity. The time t =−
√

x2
s −α2 because the casual

relation.

x2
s − t 2 =α2 =⇒ 2xs vs = 2t =−2

√
x2

s −α2 =⇒ vs =−
√

x2
s −α2

xs

The acceleration is given by

as = dvs

dt
= vs

dvs

dxs
= vs

 1√
x2

s −α2
+ vs

xs

= 1

xs
− x2

s −α2

x3
s

= α2

x3
s

(iii) For α= 1 and y = 2, we have xs = 3, vs =−2
p

2

3
and as = 1

27
. Then

r = (−2,2,0), n̂ =
(
− 1p

2
,

1p
2

,0

)
, v =

(
−2

p
2

3
,0,0

)
, a =

(
1

27
,0,0

)
, n̂∧ (n̂∧a) =

(
− 1

54
,

1

54
,0

)
, κ= 1

3
, γ= 3

The electric field at (0,1,2,0) is given by

E = q

4πε0κ3r

(
n̂−v

γ2r
+ n̂∧ ((n̂−v)∧a)

)
where

n̂−v

γ2r
+ n̂∧ ((n̂−v)∧a) =

(
− 1

108
,

1

108
,0

)
So the direction of E is

1p
2

(−1,1,0).

(iv) The two charges repel each other through Coulomb force. Apart from the force along the rod, there is another compo-
nent of the electric field which points towards the direction of velocity. Then the two charges as a whole exert a force
on itself which is against the deceleration.
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Question 6

The far field due to an elementary wire segment d z carrying oscillating current I is given by

dE = I sinθ

2ε0cr

d z

λ
cos(kr −ωt )

Compare and contrast the case of a short antenna and the half-wave dipole antenna. Roughly estimate E in the far field for
each case by proposing a suitable model for the distribution of current I (z) in the antenna. What happens (qualitatively) for
still longer antennae?

Solution. A thin antenna is modelled by an oscillating sinusoidal current given by I (z, t ) = I0 sin

(
kL

2
−k|z|

)
e−iωt , so that the current

at the end points z = ±L

2
is identically zero. The time dependence of I is absorbed in the far field expression of the electric

field.

For the short antenna approximation, we assume that kL ¿ 1. We use a Taylor expansion on the current:

I (z) ∼ I0

(
1− 2|z|

L

)
The far field electric field is given by

E = sinθcos(kr −ωt )

2ε0crλ

∫
I (z)dz = sinθcos(kr −ωt )

ε0crλ

∫ L/2

0
I0

(
1− 2z

L

)
dz = I0L sinθcos(kr −ωt )

4ε0crλ

For the half-wave dipole antenna, we have L =λ/2. Then

I (z) = I0 sin

(
k

(
λ

4
−|z|

))
= I0 coskz

The far field electric field is given by

E = sinθcos(kr −ωt )

2ε0crλ

∫
I (z)dz = sinθcos(kr −ωt )

2ε0crλ

∫ λ/4

−λ/4
I0 coskz dz = I0 sinθcos(kr −ωt )

2πε0cr

For longer antennae, we should bring back the phase factor eikz cosθ in the integral, which we have neglected for the previous
cases. The far field electric field is given by

E = I0 cos(kr −ωt )

ε0cr

∫ L/2

0
sin

(
kL

2
−kz

)
cos(kz cosθ)dz = I0 cos(kr −ωt )

ε0cr

cos

(
kL

2
cosθ

)
−cos

(
kL

2

)
sinθ

Since L > λ2, the superposition of electric field is significantly out of phase. We should observe a more complicated θ-
distribution of the electric field.

Question 7

Show that the space-space part of the energy-momentum tensor

T µν = ε0c2
(
−FµλFν

λ −
1

4
gµνFκλFκλ

)
is

σi j = 1

2
ε0

(
E k Ek + c2B k Bk

)
δi j −ε0

(
E i E j + c2B i B j

)
(Greek indices run over space and time, and Latin indices over space only.)

Use the stress-energy tensor T µν to find the forces exerted by the magnetic field inside a long cylindrical solenoid of radius
3 cm and field 1 tesla. Mu-metal is an alloy of high magnetic permeability that can be used to provide shielding against
magnetic fields. If a piece of mu-metal is placed against the end of a solenoid, it "confines" the magnetic field to the interior
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of the solenoid. By interpreting the stress-energy tensor for the field on each side of the mu-metal sheet, discover whether the
latter is attracted or repelled by the solenoid, and find the net force.

Solution. The electromagnetic field tensor of type (2,0), (1,1) and (0,2) are given respectively by

(Fµν) =


0 Ex /c Ey /c Ez /c

−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0

 (Fµ
ν ) =


0 −Ex /c −Ey /c −Ez /c

−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0

 (Fµν) =


0 −Ex /c −Ey /c −Ez /c

Ex /c 0 Bz −By

Ey /c −Bz 0 Bx

Ez /c By −Bx 0


From Question 9 in Sheet 3 we have shown that

FµνFµν =−2E 2

c2 +2B 2

Next we compute FµλFν
λ

:

(
FµλFν

λ

)
=


0 Ex /c Ey /c Ez /c

−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0




0 −Ex /c −Ey /c −Ez /c
−Ex /c 0 Bz −By

−Ey /c −Bz 0 Bx

−Ez /c By −Bx 0


=

(
0 Eᵀ/c

−E/c ℬ

)(
0 −Eᵀ/c

−E/c ℬ

)
=

(
0 Eᵀℬ/c

−ℬE/c EEᵀ/c2 +ℬ2

)

where ℬ =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

= (Bi j ) so that Bi j = εi j k B k . Then

(ℬ2)i
j =ℬi

kℬ
k
j = Bi k Bk j = εi k`εk j mB`B m = (

δi mδ j`−δi jδ`m
)

B`B m = B i B j −δi j B 2

Hence F iνF j
ν = E i E j /c2 +B i B j −δi j B 2. Substituting back to the energy-momentum tensor:

σi j = ε0c2
(
−F iνF j

ν −
1

4
δi j FκλFκλ

)
= ε0c2

(
−E i E j /c2 −B i B j +δi j B 2 +δi j

(
E 2

2c2 − B 2

2

))
= 1

2
ε0

(
E k Ek + c2B k Bk

)
δi j −ε0

(
E i E j + c2B i B j

)
For a long straight solenoid, the fields are given by

E = 0, B = Bez

Hence

σi j = ε0c2
(

1

2
B 2δi j −B i B j

)
=⇒

(
σi j

)
= 1

2
ε0c2B 2

1 0 0
0 1 0
0 0 −1


Suppose that the solenoid occupies {(x, y, z) ∈R3 : x2+ y2 = r 2,0 É z É L}. The µ-metal is placed at z = L. On z = L−, the stress
tensor component σzz is negative. On z = L+, σzz = 0. The force exerted on the µ-metal is given by

F =
Ï

{(x,y,z): x2+y2Ér 2, z=L}
σi j dxi ∧dx j =−1

2
ε0c2B 2 ·πr 2 =−1125 N

The minus sign indicates that the force is attractive.

Question 8

Write down the stress-energy tensor and the 4-wave vector for an electromagnetic plane wave propagating in the x direction.

Such a wave is observed in two frames in standard configuration. Show that the values of radiation pressure P , momentum
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density g , energy density u, and frequency ν in the two frames satisfy

P ′

P
= g ′

g
= u′

u
= ν′2

ν2

(Optional: can you prove this for any relative motion of the frame? [Hint: write T µν in terms of K µ])

A confused student proposes that these quantities should transform like ν′/ν rather than ν′2/ν2, on the grounds that energy-
momentum Nµ = (uc,N) is a 4-vector and so should transform in the same way as the wave vector. What is wrong with this
argument?

Solution. Consider the plane wave travelling in the z-direction:

E = E0 cos(kx −ωt )ex , B = B0 cos(kx −ωt )ey , k = kez

The energy density is given by

u = 1

2
ε0E 2 + 1

2µ0
B 2 = E 2

0

µ0c2 cos2(kx −ωt )

The Poynting vector is given by

S = 1

µ0
E∧B = E 2

0

µ0c2 cos2(kx −ωt )ez

The momentum flow has the (z, z)-component only:

σzz = E 2
0

µ0c2 cos2(kx −ωt )

Hence the energy-momentum tensor is given by

(
T µν

)= E 2
0

µ0c2 cos2(kx −ωt )


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


In general the tensor is expressed as

T µν = E 2
0

µ0c2ω2 cos2(K λXλ)K µK ν

from which we find that E 2
0 /ω2 is invariant under Lorentz transformations.

Note that u,P, g ∝ E 2
0 and ν∝ω2. We deduce that in two different inertial frames the values of the quantities satisfy

P ′

P
= g ′

g
= u′

u
= ν′2

ν2

The "energy-momentum" N = (uc,N) is not a tangent vector field in the Minkowski spacetime, so it does not transform like
a 4-vector under Lorentz transformations. In fact N is a part of the energy-momentum tensor, which is a tensor field.
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