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Examinable Syllabus

B4.1 Functional Analysis I
• Brief recall of material from Part A Metric Spaces and Part A Linear Algebra on real and complex normed

vector spaces, their geometry and topology and simple examples of completeness. The norm associated with an
inner product and its properties. Banach spaces, exemplified by ℓp, Lp, C(K), spaces of differentiable functions.
Finite-dimensional normed spaces, including equivalence of norms and completeness. Hilbert spaces as a class of
Banach spaces having special properties (illustrations, but no proofs); examples (Euclidean spaces, ℓ2, L2).

• Density. Approximation of functions, Stone-Weierstrass Theorem. Separable spaces; separability of subspaces.

• Bounded linear operators, examples (including integral operators). Continuous linear functionals. Dual spaces.
Hahn-Banach Theorem (proof for separable spaces only); applications, including density of subspaces and embed-
ding of a normed space into its second dual. Adjoint operators.

• Spectrum and resolvent. Spectral mapping theorem for polynomials.

B4.2 Functional Analysis II
• Hilbert spaces; examples including L2-spaces. Orthogonality, orthogonal complement, closed subspaces, projection

theorem. Riesz Representation Theorem.

• Linear operators on Hilbert space, adjoint operators. Self-adjoint operators, orthogonal projections, unitary
operators.

• Baire Category Theorem and its consequences for operators on Banach spaces (Uniform Boundedness, Open
Mapping, Inverse Mapping and Closed Graph Theorems). Strong convergence of sequences of operators.

• Weak convergence. Weak precompactness of the unit ball.

• Spectral theory in Hilbert spaces, in particular spectra of self-adjoint and unitary operators.

• Orthonormal sets, Pythagoras, Bessel’s inequality. Complete orthonormal sets, Parseval. L2-theory of Fourier
series, including completeness of the trigonometric system. Examples of other orthogonal expansions (Legendre,
Laguerre, Hermite etc.).

• Brief contextual comments on the classical theory of Fourier series and modes of convergence; exposition of failure
of pointwise convergence of Fourier series of some continuous functions.
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Chapter 1

Banach Spaces

In this chapter we discuss the basic concepts of normed vector spaces and bounded linear operators, and investigate
how completeness becomes a central idea in the study of linear functional analysis.

In this chapter, the scalar field F is either R or C.

1.1 Definitions and Basic Properties

Definition 1.1. Normed Vector Spaces

Suppose that X is a vector space over F. A norm ‖·‖ : X → R is a map such that for x, y ∈ X, λ ∈ F:

• (Positivity) ‖x‖ > 0;

• (Definiteness) ‖x‖ = 0 ⇐⇒ x = 0;

• (Homogeneity) ‖λx‖ = |λ| ‖x‖;

• (Triangular Inequality) ‖x+ y‖ 6 ‖x‖+ ‖y‖.

The pair (X, ‖·‖) is called a normed vector space.

Remark. If ‖·‖ : X → R satisfies everything above expect for definiteness, then it is called a seminorm. It induces a
proper norm on the quotient space X/X0 by ‖x+X0‖ := ‖x‖, where X0 = {x ∈ X : ‖x‖ = 0}.

The norm ‖·‖ induces a metric on X by d(x, y) := ‖x− y‖. Therefore we have the notions and properties of metric
spaces (and topological spaces) on a normed vector space.

Definition 1.2. Banach Spaces

A complete normed vector space is called a Banach space.

Remark. From A2 Metric Spaces, we know that every complete subspace of a Banach space is closed.

Suppose that ‖·‖ and ‖·‖′ are two norms on X. They are called equivalent if there exists C1, C2 > 0 such that for all
x ∈ X

‖x‖ 6 C1‖x‖′, ‖x‖′ 6 C2‖x‖

If two norms are equivalent, then they induces the same topology.

Proposition 1.3. Banach Spaces and Absolute Convergence

(X, ‖·‖) is a Banach space if and only if every absolutely convergent sequence in X is convergent.

1



2 CHAPTER 1. BANACH SPACES

Proof. =⇒ If
∑∞
n=1 ‖xn‖ <∞ then sn is a Cauchy sequence in (X, ‖ · ‖) since for m > n > N

‖sn − sm‖ =

∥∥∥∥∥
m∑

k=n+1

xk

∥∥∥∥∥ 6
m∑

k=n+1

‖xk‖ 6
∞∑

k=N+1

‖xk‖ → 0 as N → ∞

As (X, ‖ · ‖) is complete we thus obtain that sn converges to some element s ∈ X.

⇐= Let (xn) be a Cauchy sequence. Select a subsequence xnj
so that∥∥xnj − xnj+1

∥∥ 6 2−j ,

where the existence of such a subsequence is ensured by the fact that xn is a Cauchy sequence. Then
∞∑
j=1

∥∥xnj+1
− xnj

∥∥ 6 1 <∞

so by assumption
∑∞
j=1

(
xnj+1

− xnj

)
converges. Hence xnk

= xn1
+
∑k−1
j=1

(
xnj+1

− xnj

)
converges, so (xn)

has a convergent subsequence and must thus itself converge.

1.2 Examples of Banach Spaces

Example 1.4. (Fn, ‖·‖p)

Consider the finite dimensional vector space Fn equipped with the p-norm:

‖x‖p :=


(

n∑
i=1

|xi|p
)1/p

1 6 p <∞

max
16i6n

|xi| p = ∞

(Fn, ‖·‖p) is a Banach space for 1 6 p 6 ∞. This is a consequence of Heine-Borel Theorem.

The p-norms on Fn are equivalent in the sense that

‖x‖∞ 6 ‖x‖p 6 n1/p‖x‖∞

In Corollary 1.24 we shall show that all norms on a finite-dimensional vector space are equivalent.

Example 1.5. Sequence Space (ℓp, ‖·‖p)

The infinite-dimensional analogue of (Fn, ‖·‖p) is the sequence space (ℓp, ‖·‖p).

ℓp :=


{
(xi)i∈N :

∑
i∈N

|xi|p <∞

}
1 6 p <∞{

(xi)i∈N : sup
i∈N

|xi| <∞
}

p = ∞

and

‖(xi)‖p :=


(∑
i∈N

|xi|p
)1/p

1 6 p <∞

sup
i∈N

|xi| p = ∞

Proposition 1.6. Completeness of ℓp

(ℓp, ‖·‖p) is a Banach space for 1 6 p 6 ∞.
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Proof. • 1 6 p <∞:

Suppose that x(n) = (x
(n)
i )i∈N, (x(n))n∈N ⊆ ℓp is a Cauchy sequence. Then for each i ∈ N,∣∣∣x(n)i − x

(m)
i

∣∣∣ 6 ∥∥∥x(n) − x(m)
∥∥∥p
p
→ 0

as n,m→ ∞. Hence (x(n)i )n∈N is (pointwise) Cauchy for each i ∈ N. x(n)i → xi as n→ ∞ for some xi ∈ F .
Let x := (xi)i∈N. We claim that x ∈ ℓp and x(n) → x in ℓp as n→ ∞.

Fix ε ∈ (0, 1). There exists N ∈ N such that for all m,n > N ,
∥∥x(m) − x(n)

∥∥ < ε. For each K ∈ N and
n > N ,

K∑
i=0

|x(n)i − xi|p = lim
m→∞

K∑
i=0

|x(n)i − x
(m)
i |p 6 εp

Taking K → ∞, we obtain that
∥∥x(n) − x

∥∥p
p
6 εp. Hence x(n) → x in ℓp. And

‖x‖p 6
∥∥∥x(n) − x

∥∥∥
p
+
∥∥∥x(n)∥∥∥ <∞

Hence x ∈ ℓp.

• p = ∞: The idea is essentially the same.

Proposition 1.7. Inclusion Relation for ℓp

Suppose that 1 6 p < q 6 ∞. Then ℓp ( ℓq.

Proof. For 1 6 p < q < ∞, note that (xi) ∈ ℓp implies trivially that (xi) is bounded, which means that (xi) ∈ ℓ∞.
Furthermore, we must have |xi| < 1 for all but finitely many i ∈ N. And |xi|q < |xi|p for q > p. Then (xi) ∈ ℓq.

The opposite non-inclusions are trivial.

An important subspace of ℓ∞ is the space of all sequences converging to 0:

c0 :=
{
(xi) ∈ ℓ∞ : lim

i→∞
xi = 0

}
It is a closed subspace of ℓ∞ and hence a Banach space.

Example 1.8. Function Space (Lp, ‖·‖p)

Let Ω ⊆ Rn be a measurable set. a The function spaces Lp(Ω) are defined by

Lp :=


{
f : Ω → R

∣∣∣∣ f measurable and
∫
Ω

|f |p <∞
}

1 6 p <∞

{f : Ω → R | f measurable and ∃M > 0 |f | 6M a.e.} p = ∞

and the (semi) p-norms are given by

‖f‖p :=


(∫

Ω

|f |p
)1/p

1 6 p <∞

ess. sup |f | := inf {M : |f | 6M a.e.} p = ∞

‖·‖p is a seminorm on Lp(Ω), as ‖f − g‖p = 0 if and only if f = g almost everywhere. Lp(Ω) is the quotient space
of Lp on which ‖·‖p becomes a proper norm.

aAll discussions about Lp spaces generalise naturally to the abstract Lp(Ω, µ) with any σ-finite measure µ on the measurable space
Ω. So the sequence spaces ℓp are also special cases of Lp spaces.

Next we collect some important results from A3 Integration.
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Theorem 1.9. Hölder’s Inequality

Let 1 6 p, q 6 ∞ such that p−1 + q−1 = 1. Such numbers p, q are called a pair of Hölder conjugates.

1. For x, y ∈ Fn,
n∑
i=1

|xiyi| 6 ‖x‖p‖y‖q =

(∑
i∈N

|xi|p
)1/p(∑

i∈N

|yi|q
)1/q

2. For (xn) ∈ ℓp, (yn) ∈ ℓq,
∑
n∈N

|xnyn| 6 ‖x‖p‖y‖q =

(∑
n∈N

|xn|p
)1/p(∑

n∈N

|yn|q
)1/q

3. For f ∈ Lp(Ω), g ∈ Lq(Ω),
∫
Ω

|fg| = ‖fg‖1 6 ‖f‖p‖g‖q =
(∫

Ω

|f |p
)1/p(∫

Ω

|g|q
)1/q

Proof. See A3 Integration. The key step is to use the concavity of the function t 7→ log t and Jensen’s inequality.

Proposition 1.10. Inclusion Relation for Lp(Ω)

Suppose that Ω ⊆ Rn has finite measure. Let 1 6 p < q 6 ∞. Then Lp(Ω) ) Lq(Ω).

Proof. Let m be the Lebesgue measure on Rn. So m(Ω) < ∞. The inclusions follow from the following observation.
For 1 6 p < q <∞,

f ∈ L∞(Ω) =⇒ ‖f‖p =
(∫

Ω

|f |p
)1/p

6 m(Ω)1/p‖f‖∞ <∞ =⇒ f ∈ Lp(Ω)

f ∈ Lq(Ω) =⇒ ‖f‖p =
(∫

Ω

|f |p · 1
)1/p

6
((∫

Ω

(|f |p)q/p
)p/q (∫

Ω

1(1−p/q)
−1

)1−p/q
)1/p

(Hölder’s Inequality)

= m(Ω)
1
p−

1
q ‖f‖q =⇒ f ∈ Lp(Ω)

The opposite non-inclusions are trivial.

Remark. The proposition is not true if Ω has infinite measure!

Proposition 1.11. Completeness of Lp(Ω)

(Lp(Ω), ‖·‖p) is a Banach space for 1 6 p 6 ∞.

Proof. See A3 Integration.

The convergence in Lp and almost everywhere convergence do not imply each other. However we have the following
proposition:

Corollary 1.12. Lp and Almost Everywhere Convergence

Suppose that (fn) ⊆ Lp(Ω) such that
∫
Ω

|fn − f |p → 0 as n → ∞. Then there exists a subsequence (fnk
) of (fn)

such that fnk
→ f almost everywhere as k → ∞.

Remark. In fact we have the following more general result on the modes of convergence of measurable functions. Here
1 6 p <∞.
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L∞ convergence (strong) Lp convergence weak Lp convergence

a.e. convergence convergence in measure

finite measure

finite measure

subsequence

Example 1.13. Continuous Bounded Functions (Cb(Ω), ‖·‖∞)

Consider the space of continuous bounded function on Ω ⊆ Rn equipped with the supremum norm: (Cb(Ω), ‖·‖∞).
It is a Banach space by the Cauchy criterion of uniform continuity and the fact that the uniform limit of a sequence
of continuous functions is continuous.

Example 1.14. Sobolev Space W1,p(a, b)

The Sobolev space
W1,p(a, b) := {f ∈ Lp(a, b) : f ′ ∈ Lp(a, b)}

is normed by

‖f‖W1,p(a,b) :=


(∫ b

a

(|f |p + |f ′|p)

)1/p

1 6 p <∞

max {‖f‖∞, ‖f ′‖∞} p = ∞

where f ′ is the distributional derivative of f . See B4.3 Distribution Theory for definition. W1,p(a, b) is a
Banach space for 1 6 p 6 ∞.

1.3 Bounded Linear Maps

Definition 1.15. Bounded Linear Maps

Suppose that T : (X, ‖·‖X) → (Y, ‖·‖Y ) is a linear map between normed vector spaces. T is said to be bounded if
there exists M ∈ R such that for all x ∈ X,

‖T (x)‖Y 6M‖x‖X

The set of bounded linear maps from X to Y is denoted by ℬ(X,Y ).

Definition 1.16. Operator Norm

Suppose that T : (X, ‖·‖X) → (Y, ‖·‖Y ) is a bounded linear map. We define the operator norm

‖T‖ℬ(X,Y ) := sup
x∈X\{0}

‖T (x)‖Y
‖x‖X

= sup
∥x∥X=1

‖T (x)‖Y = sup
∥x∥X61

‖T (x)‖Y

Remark. For all x ∈ X, ‖T (x)‖Y 6 ‖T‖ℬ(X,Y )‖x‖X .

Proposition 1.17. Continuity and Boundedness

Suppose that T : (X, ‖·‖X) → (Y, ‖·‖Y ) is a linear map. The following are equivalent:

1. T is bounded;

2. T is Lipschitz continuous;

3. T is continuous;

4. T is continuous at 0.
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Proof. 1 =⇒ 2 =⇒ 3 =⇒ 4 is trivial.

”4 =⇒ 1”: Suppose that T /∈ ℬ(X,Y ). There exists a sequence (xn) ⊆ X such that ‖T (xn)‖Y > n‖xn‖X for all
n ∈ N. Let yn :=

xn
‖T (xn)‖Y

so that ‖yn‖X <
1

n
→ 0 as n→ ∞. By continuity of T at 0 we have ‖T (yn)‖Y → 0

as n→ ∞. However,
‖T (yn)‖Y =

‖T (xn)‖Y
‖T (xn)‖Y

= 1

which is a contradiction.

General procedure of proving T ∈ ℬ(X,Y ):

• Check that T is well-defined, or T (x) ∈ Y for all x ∈ X;

• Check that T is linear.

• Find M > 0 such that ‖T (x)‖Y 6M‖x‖X for all x ∈ X.

• Additionally, if we want to prove that ‖T‖ =M , we need to find a sequence (xn) ∈ X such that ‖T (xn)‖Y
‖x‖X

→M

as n→ ∞.

Proposition 1.18. Completeness of Spaces of Bounded Linear Maps

Suppose that (X, ‖·‖X) is a normed vector space and (Y, ‖·‖Y ) is a Banach space. Then the space of bounded
linear maps

(
ℬ(X,Y ), ‖·‖ℬ(X,Y )

)
is a Banach space.

Proof. Let (Tn) be a Cauchy sequence in ℬ(X,Y ). Then for every x ∈ X we have

‖Tn(x)− Tm(x)‖ 6 ‖Tn − Tm‖ ‖x‖ → 0

as m,n → ∞. So (Tn(x)) is a Cauchy sequence in Y and, as Y is complete, thus converges to some element in
Y which we call T (x).

We now show that the resulting map x 7→ T (x) is an element of ℬ(X,Y ) and Tn → T in ℬ(X,Y ), i.e.
‖T − Tn‖ → 0. We first note that the linearity of Tn implies that also T is linear. Given any ε > 0 we now let
N be so that for m,n > N we have ‖Tn − Tm‖ 6 ε. Given any x ∈ X we thus have

‖T (x)− Tn(x)‖ =
∥∥∥ lim
m→∞

Tm(x)− Tn(x)
∥∥∥ = lim

m→∞
‖Tm(x)− Tn(x)‖ 6 ε‖x‖

Hence T is bounded (as‖Tx‖ 6 (‖Tn‖+ ε) ‖x‖ for all x) and so an element of ℬ(X,Y ) with ‖T − Tn‖ 6 ε for
all n > N . We obtain that Tn → T in ℬ(X,Y ).

Proposition 1.19. Composition of Bounded Linear Maps

Suppose that T ∈ ℬ(X,Y ) and S ∈ ℬ(Y, Z). Then S ◦ T ∈ ℬ(X,Z), and

‖S ◦ T‖ℬ(X,Z) 6 ‖S‖ℬ(Y,Z)‖T‖ℬ(X,Y )

Proof. Trivial.

A bounded linear operator T ∈ ℬ(X) is said to be invertible in ℬ(X), if there exists S ∈ ℬ(X) such that T ◦ S =
S ◦ T = idX .

T ∈ ℬ(X) is invertible in ℬ(X), if it is bijective and

∃ δ > 0 ∀x ∈ X : ‖T (x)‖Y > δ‖x‖X
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Proposition 1.20. Inverse Mapping Theorem

Suppose that (X, ‖·‖X) is a Banach space. Then every bijective T ∈ ℬ(X) is invertible in ℬ(X).

Proof. See the Inverse Mapping Theorem 4.5 after the Open Mapping Theorem.

Lemma 1.21. Convergence of Neumann Series

Suppose that X is a Banach space. T ∈ ℬ(X) such that ‖T‖ 6 1. Then id−T is invertible in ℬ(X) with

(id−T )−1 =

∞∑
j=0

T j ∈ ℬ(X)

Proof. Trivial.

Corollary 1.22

Suppose that (X, ‖·‖X) is a Banach space. T ∈ ℬ(X) is invertible. Then for any S ∈ ℬ(X) such that ‖S‖ <∥∥T−1
∥∥−1, T − S is invertible.

1.4 Finite-Dimensional Normed Vector Spaces
Now we shall study the most trivial cases of Banach spaces. They are the finite-dimensional normed vector spaces.
Here are a collection of the important results.

In a finite-dimensional normed vector space X:

• all norms are equivalent;

• all linear operators are bounded;

• X is complete;

• all bounded closed subspaces are compact;

• the unit sphere is compact.

Proposition 1.23. Equivalence of ‖·‖ and ‖·‖2
Suppose that ‖·‖ is a norm on Rn. Then ‖·‖ is equivalent to ‖·‖2.

Proof. Let {e1, ..., en} be a basis of Rn. For x =

n∑
i=1

xiei ∈ Rn, by Cauchy-Schwarz Inequality,

‖x‖ 6
n∑
i=1

|xi|‖ei‖ 6
(

n∑
i=1

|xi|2
)1/2( n∑

i=1

‖ei‖2
)1/2

= ‖x‖2

(
n∑
i=1

‖ei‖2
)1/2

On the other hand, suppose for contradiction that there exists a sequence (x(n))n∈N such that
∥∥x(n)∥∥

2
> n

∥∥x(n)∥∥.
Let y(n) := x(n)/

∥∥x(n)∥∥
2
. Then (y(n))n∈N is a sequence in the unit sphere S, which is sequentially compact by

Bolzano-Weierstrass Theorem. There exists a subsequence (y(nk))k∈N such that y(nk) → y ∈ S in the 2-norm as
k → ∞. But

‖y‖ 6
∥∥∥y − y(nk)

∥∥∥+ ∥∥∥y(nk)
∥∥∥ 6 C

∥∥∥y − y(nk)
∥∥∥
2
+

1

nk
→ 0

C :=

(
n∑
i=1

‖ei‖2
)1/2


as k → ∞, which is contradictory. Hence there exists C ′ > 0 such that ‖x‖2 6 C ′‖x‖. We deduce that ‖·‖ and
‖·‖2 are equivalent.
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Corollary 1.24

Any two norms on the finite-dimensional vector space X are equivalent.

Proposition 1.25

Suppose that (X, ‖·‖X) and (Y, ‖·‖Y ) are normed vector spaces. If X is finite-dimensional, then all linear maps
T : X → Y are bounded.

Proof. We define the graph norm on X: For x ∈ X,

‖x‖T := ‖x‖X + ‖T (x)‖Y

It is easy to check that ‖·‖T is a norm on X. Since it is equivalent to ‖·‖X , there exists C > 0 such that

‖T (x)‖Y 6 ‖x‖T 6 C‖x‖X

Hence T ∈ ℬ(X,Y ).

Corollary 1.26

Every finite-dimensional normed vector space is homeomorphic to Fn.

Proof. Let X be a finite-dimensional normed vector space. Then there exists a linear isomorphism T : X → Fn. By
the previous theorem T and T−1 are continuous. Hence X is homeomorphic to Fn.

Corollary 1.27

Every finite-dimensional vector space is a Banach space.

Corollary 1.28

Every finite-dimensional subspace of a normed vector space is complete and hence closed.

Lemma 1.29. Riesz Lemma

Let (X, ‖·‖) be a normed vector space, and Y ( X a closed subspace. Then for each ε ∈ (0, 1) there exists x ∈ S
(S is the unit sphere) such that

dist(x, Y ) := inf {‖x− y‖ : y ∈ Y } 6 1− ε

Proof. As Y 6= X is closed we know that the set X \ Y is open and non-empty, so we can choose some x∗ ∈ X \ Y and
use that d := dist (x∗, Y ) > 0, as X \ Y must contain some ball B(x, δ) which ensures that d > δ > 0.

By the definition of the infimum, we can now select y∗ ∈ Y so that d 6 ‖x∗ − y∗‖ < d

1− ε
and claim that

x :=
x∗ − y∗

‖x∗ − y∗‖
has the desired properties. Clearly ‖x‖ = 1, i.e. x ∈ S as desired, and we furthermore have that

dist(x, Y ) = inf
y∈Y

‖x− y‖ = inf
y∈Y

∥∥∥∥ x∗

‖x∗ − y∗‖
− y∗

‖x∗ − y∗‖
− y

∥∥∥∥ = inf
ỹ∈Y

∥∥∥∥ x∗

‖x∗ − y∗‖
− ỹ

∥∥∥∥
= inf
ŷ∈Y

∥∥∥∥ x∗ − ŷ

‖x∗ − y∗‖

∥∥∥∥ =
dist (x∗, Y )

‖x∗ − y∗‖
> 1− ε

where we used twice that Y is a subspace, to replace the infimum over y ∈ Y first by an infimum over ỹ =
y∗

‖x∗ − y∗‖
+ y and then an infimum over ŷ which is related to ỹ by ỹ =

ŷ

‖x∗ − y∗‖
.
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Proposition 1.30. Equivalent Characterisations of Finite-Dimensional Normed Vector Spaces

Let (X, ‖·‖) be a normed vector space. The following are equivalent:

1. dimX <∞;

2. Every bounded closed subset of X is compact;

3. The unit sphere S ⊆ X is compact.

Proof.

1 =⇒ 2: Suppose that Y ⊆ X is bounded and closed. Let T : X → Fn be a linear isomorphism. T and T−1 are
continuous. Then T (Y ) ⊆ F is bounded and closed, and hence compact by Heine-Borel Theorem. Therefore
Y = T−1(T (Y )) is also compact.

2 =⇒ 3: This is clear since S is bounded and closed.

3 =⇒ 1: We argue by contradiction and assume that S is compact but dim(X) = ∞. We may choose a sequence of
linearly independent elements yk ∈ X, k ∈ N. Then the subspace Yk := span {y1, . . . , yk} ( Yk+1 is finite
dimensional, and so a closed proper subspace of Yk+1. Applying Riesz Lemma with ε = 1/2 (viewing Yk as
a subspace of Yk+1 instead of X), it gives us a sequence of elements yk ∈ Yk+1 ∩S with dist (yk, Yk) > 1/2.
In particular for every k > ℓ we have

‖yk − yℓ‖ > dist (yk, Yℓ+1) > dist (yk, Yk) >
1

2

Therefore no subsequence of (yk) can be a Cauchy sequence. Having constructed a sequence (yk) in S ⊆ X
that does not contain a convergent subsequence, we conclude that S is not sequentially compact and hence
not compact, leading to a contradiction.

1.5 Dual Spaces and Dual Operators

Definition 1.31. Dual Spaces

Let (X, ‖·‖) be a normed vector space. The dual space X∗ := ℬ(X,F) is a normed vector space equipped with
the operator norm ‖·‖∗, given by

‖ℓ‖∗ := sup
∥x∥=1

|ℓ(x)|

The notion of dual space in functional analysis is differential from that in linear algebra. Here the dual space X∗ is the
set of bounded linear functionals, contrast to the set of all linear functionals, X ′, which is now called the algebraic
dual space (of X).

Remark. As a consequence of Proposition 1.18, the dual space X∗ is complete regardless of the completeness of X.

Lemma 1.32. Kernels and Linear Functionals

Suppose that (X, ‖·‖) is a normed vector space and ℓ : X → F is a linear functional. Then ℓ ∈ X∗ if and only if
ker ℓ is closed in X.

Proof. If ℓ ∈ X∗, then ℓ is continuous. Hence ker ℓ = ℓ−1({0}) is closed. Conversely, suppose that ker ℓ is closed.
Without loss of generality, ℓ 6= 0. Let x0 ∈ X such that ℓ(x0) = 1. Since ker ℓ is closed, δ := dist(x0, ker ℓ) > 0.

For x ∈ X \ ker ℓ, define y := −x− x0ℓ(x)

ℓ(x)
∈ X. Then

ℓ(y) = −ℓ(x)− ℓ(x)ℓ(x0)

ℓ(x)
= 0

So y ∈ ker ℓ. We have
δ 6 ‖x0 − y‖ =

∥∥∥∥x0 + x− x0ℓ(x)

ℓ(x)

∥∥∥∥ =
‖x‖
|ℓ(x)|
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Hence |ℓ(x)| < δ−1‖x‖ for all x ∈ X. We deduce that ℓ ∈ X∗.

The dual operator is the same as in linear algebra.

Definition 1.33. Dual Operator

Suppose that T : X → Y is a linear map between the normed vector spaces X and Y . The dual operator or
pull-back of T is T ′ : Y ′ → X ′, given by T ′(ℓ) = ℓ ◦ T for all ℓ ∈ Y ′.

In case of bounded operator we have the important proposition. The result requires a proposition which is the conse-
quence of Hahn-Banach Theorem in Section 5.1.

Proposition 1.34. Dual of Bounded Operators

Suppose that X and Y are normed vector spaces. Let T ∈ ℬ(X,Y ). Then T ′ ∈ ℬ(Y ∗, X∗) is well-defined and
‖T ′‖ℬ(Y ∗,X∗) = ‖T‖ℬ(X,Y ).

Proof. We have T ′(ℓ) ∈ X∗ for ℓ ∈ Y ∗, because

‖T ′(ℓ)‖X∗ = ‖ℓ ◦ T‖X∗ 6 ‖T‖ℬ(X,Y )‖f‖Y ∗

Hence T ′ : Y ∗ → X∗ is well-defined and ‖T ′‖ℬ(Y ∗,X∗) 6 ‖T‖ℬ(X,Y ). Conversely, fix x ∈ X. By Proposition 5.4
there exists ℓ ∈ Y ∗ such that ‖ℓ‖Y ∗ = 1 and ℓ ◦ T (x) = ‖T (x)‖. Hence

‖T (x)‖ = |ℓ ◦ T (x)| = |T ′(ℓ)(x)| 6 ‖T ′‖ℬ(Y ∗,X∗)‖ℓ‖Y ∗‖x‖X = ‖T ′‖ℬ(Y ∗,X∗)‖x‖X

Hence ‖T ′‖ℬ(Y ∗,X∗) > ‖T‖ℬ(X,Y ).

Proposition 1.35. Kernels and Images of the Dual Operator

Suppose that X and Y are normed vector spaces. Let T ∈ ℬ(X,Y ).

1. kerT = (imT ′)◦, kerT ′ = (imT )◦;

2. imT = (kerT ′)◦.

(See Definition 5.11 for the annihilators.)

Proof. 1. x ∈ kerT ⇐⇒ T (x) = 0 f ∈ kerT ′ ⇐⇒ T ′(f) = f ◦ T = 0

⇐⇒ ∀ ℓ ∈ Y ∗ : T ′(ℓ)(x) = ℓ ◦ T (x) = 0 ⇐⇒ ∀x ∈ X : f ◦ T (x) = 0

⇐⇒ ∀ f ∈ imT ′ : f(x) = 0 ⇐⇒ ∀ y ∈ imT : f(y) = 0

⇐⇒ x ∈ (imT ′)◦ ⇐⇒ f ∈ (imT )◦

Note that the second “ ⇐= ” on the left hand side requires Proposition 5.4.

2. By Corollary 5.13.3, we have imT = ((imT )◦)◦ = (kerT ′)◦.

Remark. It is not true in general that imT ′ = (kerT )◦. In fact (kerT )◦ is the weak* closure of imT ′.



Chapter 2

Hilbert Spaces

We introduce the concept of Hilbert spaces, which generalises the inner product spaces to infinite dimensions.

2.1 Orthogonality

Definition 2.1. Inner Product Spaces

Suppose that X is a vector space over F, An inner product 〈·, ·〉 : X → F is a map such that for x, y, z ∈ X, λ ∈ F:

• (Additivity in the Second Slot) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉;

• (Homogeneity in the Second Sq4lot) 〈x, λy〉 = λ 〈x, y〉;

• (Symmetry / Conjugate Symmetry) 〈x, y〉 = 〈y, x〉;

• (Positivity) 〈x, x〉 > 0;

• (Definiteness) 〈x, x〉 = 0 ⇐⇒ x = 0.

The pair (X, 〈·, ·〉) is called an inner product space.

Remark. If F = R, then 〈·, ·〉 is called bilinear; if F = C, then 〈·, ·〉 is called sesquilinear.

Remark. Every inner product on X induces a norm via ‖x‖ :=
√

〈x, x〉.

We collect some results from A0. Linear Algebra which holds for general inner product spaces:

• Cauchy-Schwarz Inequality: For x, y ∈ X,

|〈x, y〉| 6 ‖x‖‖y‖

with the equality holds if x and y are linearly dependent.

• Orthogonality: We say that x, y ∈ X are orthogonal, if 〈x, y〉 = 0.

• Pythagorean Theorem: For x, y ∈ X,

‖x‖2 + ‖y‖2 = ‖x+ y‖2 ⇐⇒ Re 〈x, y〉 = 0

More generally, suppose that {x1, ..., xn} ⊆ X is an orthonormal set. Then for x ∈ X,

‖x‖2 =

n∑
m=1

|〈xm, x〉|2 +

∥∥∥∥∥x−
n∑

m=1

〈xm, x〉xm

∥∥∥∥∥
2

• Parallelogram Identity: For x, y ∈ X,

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
11
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• Polarisation Identities: For x, y ∈ X, if F = R, then

〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
if F = C, then

〈x, y〉 = 1

4

3∑
n=0

in‖x+ iny‖2

• Let (X, ‖·‖) be a normed vector space. The norm ‖·‖ induces an inner product 〈·, ·〉 via the polarisation identity
if and only if the parallelogram identity holds in (X, ‖·‖).

Lemma 2.2

Suppose that X is an inner product space and K ⊆ X is a convex subset. Let x ∈ X and y ∈ K. The following
are equivalent:

1. ‖x− y‖ = dist(x,K);

2. Re〈x− y, z − y〉 6 0 for all z ∈ K.

Proof. • =⇒ : Fix z ∈ K. Since K is convex, tz + (1− t)y ∈ K for t ∈ [0, 1]. We have

‖x− y‖ = dist(x,K) 6 ‖x− (tz + (1− t)y)‖

=⇒ ‖x− y‖2 6 ‖(x− y) + t(y − z)‖2 = ‖x− y‖2 + t2‖y − z‖2 − 2tRe 〈x− y, z − y〉

=⇒ t2‖y − z‖2 − 2tRe 〈x− y, z − y〉 > 0

Let f(t) := t2‖y − z‖2 − 2tRe 〈x− y, z − y〉. Then f(t) > 0 for t ∈ [0, 1]. Note that f(0) = 0. Hence we
must have

f ′(0) = −2Re 〈x− y, z − y〉 > 0

which implies that Re 〈x− y, z − y〉 6 0 as required.

• ⇐= : For all z ∈ K,

‖x− z‖2 = ‖(x− y) + (y − z)‖2 = ‖x− y‖2 + ‖y − z‖2 − 2Re 〈x− y, z − y〉 > ‖x− y‖2

because ‖y − z‖ > 0 and Re 〈x− y, y − z〉 6 0. Hence ‖x− y‖ 6 inf
z∈K

‖x− z‖ = dist(x,K). Since y ∈ K,
we have ‖x− y‖ = dist(x,K).

Definition 2.3. Hilbert Spaces

A complete inner product space is called a Hilbert space.

It is clear that all Hilbert spaces are Banach spaces.

Example 2.4. Examples of Hilbert Spaces

We consider the scalar field F = C.

1. The finite-dimensional vector space Cn is a Hilbert space with inner product

〈x, y〉 =
n∑
i=1

xnyn

2. The sequence space ℓ2 is a Hilbert space with inner product

〈x, y〉 =
∞∑
n=0

xnyn
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3. The function space L2(Ω) is a Hilbert space with inner product

〈f, g〉 =
∫
Ω

f · g

4. The Sobolev space W1,2(a, b) is a Hilbert space with inner product

〈f, g〉 =
∫ b

a

(
f · g + f ′ · g′

)

Definition 2.5. Orthogonal Complement

Suppose that X is an inner product space. Let Y ⊆ X. Then the orthogonal complement of Y is defined by

Y ⊥ := {x ∈ X : ∀ y ∈ Y 〈x, y〉 = 0} ⊆ X

Proposition 2.6. Properties of Orthogonal Complement

Let X be an inner product space and Y ⊆ X.

1. Y ∩ Y ⊥ = {0};

2. Y ⊥ is a closed subspace of X;

3. Y ⊆ Y ⊥⊥;

4. If Z ⊆ Y , then Y ⊥ ⊆ Z⊥;

5. (spanY )⊥ = Y ⊥;

6. If Y, Z 6 X such that X = Y + Z and Z ⊆ Y ⊥, then Y ⊥ = Z.

Proof. 2. It is straightforward that Y ⊥ is a subspace of X. Let (zn) ⊆ Y ⊥ such that zn → z ∈ X. By Cauchy-Schwarz
Inequality, we have for any y ∈ Y

|〈zn, y〉 − 〈z, y〉| = |〈zn − z, y〉| 6 ‖y‖‖zn − z‖ → 0

as n→ ∞. Hence 〈z, y〉 = 0 and z ∈ Y ⊥.

6. Let c ∈ Y ⊥. We write c = y + z for y ∈ Y and z ∈ Z. Then y = c− z ∈ Y ⊥. But Y ∩ Y ⊥ = {0}, we have
c− z = 0 and hence c = z ∈ Z.

Proposition 2.7. Closest Point in a Closed Convex Subset, Hilbert Space

Let X be a Hilbert space and K ⊆ X a non-empty closed convex set. Then for all x ∈ X there exists a unique
y ∈ K such that ‖x− y‖ = dist(x,K).

Proof. • Existence: Let d : K → X given by d(z) := ‖x− z‖. For simplicity, write dK := dist(x,K). Then there
exists a sequence (yn) ⊆ K such that d(yn) → dK as n → ∞. Applying the Parallelogram Identity to
1

2
(x− yn) and

1

2
(x− ym),

d

(
1

2
(yn + ym)

)2

+
1

4
‖yn − ym‖2 =

1

2

(
d(yn)

2 + d(ym)2
)

Since K is convex, 1
2
(yn + ym) ∈ K and hence dK 6 d

(
1

2
(yn + ym)

)
. Taking m,n→ ∞ we have

d2K +
1

4
‖yn − ym‖2 6 1

2

(
d(yn)

2 + d(ym)2
)
→ d2K

Hence ‖yn − ym‖ → 0 and (yn) is a Cauchy sequence. Let y = lim
n→∞

yn. Since K is closed, by the continuity
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of the norm we have
d(y) = lim

n→∞
d(yn) = dK

• Uniqueness: Suppose that y′ ∈ K such that d(y′) = dK . Applying the Parallelogram Identity to 1

2
(x− y)

and 1

2
(x− y′),

d2K +
1

4
‖y − y′‖2 6 d

(
1

2
(y + y′)

)2

+
1

4
‖y − y′‖2 =

1

2

(
d(y)2 + d(y′)2

)
= d2

This implies that ‖y − y′‖ = 0 and hence y = y′.

Remark. We shall show that the result can be generalised to uniformly convex Banach spaces in Corollary 5.41.

Theorem 2.8. Projection Theorem

Suppose that X is a Hilbert space and Y ⊆ X is a closed subspace. Then X = Y ⊕ Y ⊥.

Proof. It suffices to show that X = Y + Y ⊥. Fix x ∈ X. By Proposition 2.7 there exists y0 ∈ Y such that ‖x− y0‖ =
dist(x, Y ). For all y ∈ Y and t ∈ R, we have

‖x− y0‖2 6 ‖x− (y0 − ty)‖2 = ‖x− y0‖2 + 2tRe 〈x− y0, y〉+ t2‖y‖2

Hence 2tRe 〈x− y0, y〉 + t2‖y‖2 > 0 for all t ∈ R. Therefore Re 〈x− y0, y〉 = 0. By replacing y with iy ∈ Y
we obtain Im 〈x− y0, y〉 = 0. Hence 〈x− y0, y〉 = 0 for all y ∈ Y . We conclude that x − y0 ∈ Y ⊥ and
x = y0 + (x− y0) ∈ Y + Y ⊥.

Corollary 2.9

Suppose that X is a Hilbert space and Y ⊆ X. Then X = spanY ⊕ Y ⊥ and Y ⊥⊥ = spanY .

Lemma 2.10. Bessel’s Inequality

Suppose that X is an inner product space. Let (xn)n∈N ⊆ X be an orthonormal sequence. Then for x ∈ X,

∞∑
n=0

|〈xn, x〉|2 6 ‖x‖2

Proof. By Pythagorean Theorem we have

m∑
n=0

|〈xn, x〉|2 6
m∑
n=0

|〈xn, x〉|2 +

∥∥∥∥∥x−
m∑
n=0

〈xn, x〉xn

∥∥∥∥∥
2

= ‖x‖2

The result follows as we take m→ ∞.

Theorem 2.11. Parseval’s Identity

Suppose that X is a Hilbert space. Let (xn)n∈N ⊆ X be an orthonormal sequence. Then

span{xn}n∈N =

{
x =

∞∑
n=0

anxn : (an)n∈N ∈ ℓ2

}

Furthermore, for x ∈ span{xn}n∈N, we have an = 〈xn, x〉 and

‖x‖2 =

∞∑
n=0

|〈xn, x〉|2
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Proof. Let Y := span{xn}n∈N and Z :=
{∑∞

n=0 anxn : (an)n∈N ∈ ℓ2
}
.

• For (an) ∈ ℓ2, by Pythagorean Theorem,∥∥∥∥∥
n∑

k=m

akxk

∥∥∥∥∥
2

=

n∑
k=m

|ak|2 → 0

as m,n → ∞. Hence (
∑n
k=0 akxk)n∈N is a Cauchy sequence. The sum

∑∞
n=0 anxn converges in norm and

hence Z ⊆ Y .

• Let x ∈ Y . Put an := 〈xn, x〉. By Bessel’s Inequality, (an) ∈ ℓ2. Let x′ =
∑∞
n=0 anxn ∈ Z. Now

〈xn, x′〉 =

〈
xn,

∞∑
m=0

amxm

〉
=

∞∑
m=0

am 〈xn, xm〉 = an = 〈xn, x〉

Hence x− x′ ∈ Y ⊥. But also x− x′ ∈ Y . We deduce that x = x′ ∈ Z and hence Y ⊆ Z.

In summary, Y = Z. Finally, by the Pythagorean Theorem,

‖x‖2 =

n∑
m=0

|〈xm, x〉|2 +

∥∥∥∥∥x−
n∑

m=0

〈xm, x〉

∥∥∥∥∥
2

→
∞∑
m=0

|〈xm, x〉|2

as n→ ∞.

Definition 2.12. Orthonormal Basis

Suppose that X is a Hilbert space. A subset S ⊆ X is called an orthonormal basis of X, if 〈x, y〉 = δxy for all
x, y ∈ S and spanS = X.

Remark. An orthonormal basis of X is not a Hamel basis (i.e. the usual definition of basis for a vector space) because
we are taking closure of spanS.

Theorem 2.13. Existence of Orthonormal Basis

Every inner product space contains an orthonormal basis.

Proof. Let X be a inner product space. Let 𝒮 be the set of all orthonormal subsets of X, partially ordered by set
inclusion. By Zorn’s Lemma, 𝒮 has a maximal element, which is an orthonormal basis of X.

Remark. It is clear that a Hilbert space has a countable orthonormal basis if and only if it is separable. The backward
direction follows from applying the Gram-Schmidt orthonormalisation process to a dense countable subset of the
Hilbert space.

2.2 Adjoints

Theorem 2.14. Riesz-Fréchet Representation Theorem

Suppose that X is a Hilbert space. For each ℓ ∈ X∗, there exists a unique xℓ ∈ X such that ‖xℓ‖ = ‖ℓ‖∗ and
ℓ(x) = 〈xℓ, x〉 for all x ∈ X.

Proof. Without loss of generality assume that ℓ 6= 0. Let Y := ker ℓ. Since ℓ is bounded, Y is closed by Lemma 1.32.
By the Projection Theorem, X = Y ⊕Y ⊥. As Y ⊥ 6= {0}, we can take y⊥ ∈ Y ⊥ \{0} and assume that

∥∥y⊥∥∥ = 1.
Note that ℓ(y⊥) 6= 0, For any x ∈ X, let

w := x− ℓ(x)

ℓ(y⊥)
y⊥ ∈ ker ℓ
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We have
0 =

〈
y⊥, w

〉
=
〈
y⊥, x

〉
− ℓ(x)

ℓ(y⊥)
=⇒ ℓ(x) =

〈
ℓ(y⊥)y⊥, x

〉
Hence we can take xℓ := ℓ(y⊥)y⊥.

The uniqueness is clear: if ℓ(x) = 〈xℓ, x〉 = 〈x′ℓ, x〉 for all x ∈ X, then 〈xℓ − x′ℓ, x〉 = 0 for all x ∈ X, which
implies that xℓ = x′ℓ.

It remains to prove that ‖xℓ‖ = ‖ℓ‖∗. On one hand, by Cauchy-Schwarz Inequality,

|ℓ(x)| = |〈xℓ, x〉| 6 ‖xℓ‖‖x‖

which gives ‖ℓ‖∗ 6 ‖xℓ‖. On the other hand,

‖xℓ‖2 = 〈xℓ, xℓ〉 = |ℓ(xℓ)| 6 ‖ℓ‖∗‖xℓ‖

which gives ‖xℓ‖ 6 ‖ℓ‖∗

Remark. In the case where F = R, the theorem establishes a cannonical isometric isomorphism π : X∗ → X by
π(x)(y) = 〈x, y〉. Therefore for real Hilbert spaces we have the natural identification X = X∗. For complex Hilbert
spaces, the map π is an antilinear bijection, because π(λx) = λπ(x) for λ ∈ C.

Similar to the dual operators on Banach spaces, we have the notion of adjoint operators on Hilbert spaces:

Definition 2.15. Adjoint Operators

Suppose that (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y ) are Hilbert spaces. Let T ∈ ℬ(X,Y ). There exists a unique operator
T ∗ ∈ ℬ(Y,X) such that ‖T‖ℬ(X,Y ) = ‖T ∗‖ℬ(Y,X), and 〈y, Tx〉Y = 〈T ∗y, x〉X for all x ∈ X and y ∈ Y . T ∗ is
called the adjoint of T .

Proof. For each y ∈ Y , the map Ty : x 7→ 〈y, Tx〉Y is a bounded linear functional on X by Cauchy-Schwarz Inequality:

|Ty(x)| = |〈y, Tx〉Y | 6 ‖y‖‖Tx‖ 6 ‖T‖‖x‖‖y‖ =⇒ ‖Ty‖X∗ 6 ‖T‖‖y‖Y

Hence by Riesz-Fréchet Representation Theorem there exists a unique T ∗y ∈ X∗ such that 〈y, Tx〉Y = 〈T ∗y, x〉X
and

‖T ∗y‖X = ‖Ty‖X∗ 6 ‖T‖‖y‖Y
The map y 7→ T ∗y is clearly linear. We have ‖T ∗‖ 6 ‖T‖ and hence T ∗ ∈ ℬ(Y,X).

Conversely, by definition we have T ∗∗ = T . Hence ‖T‖ = ‖T ∗∗‖ 6 ‖T ∗‖. We conclude that ‖T‖ = ‖T ∗‖.

Remark. The Riesz-Fréchet Representation Theorem gives two isometric antilinear bijections πX : X∗ → X and
πY : Y ∗ → Y . We see that the adjoint and the dual operators are related via the following commutative diagram:

Y X

Y ∗ X∗

T ∗

πY

T ′

πX

Proposition 2.16. Properties of Adjoint Operators

Suppose that (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y ) are Hilbert spaces. Let T ∈ ℬ(X,Y ).

1. T ∗∗ = T ;

2. ‖T‖ℬ(X,Y ) = ‖T ∗‖ℬ(Y,X);

3. Taking adjoint is antilinear: For T, S ∈ ℬ(X,Y ) and λ, η ∈ C, we have (λT + ηS)∗ = λT ∗ + ηS∗;

4. For T ∈ ℬ(X,Y ) and S ∈ ℬ(Y, Z), we have (ST )∗ = T ∗S∗;

5. T ∈ ℬ(X) is invertible in ℬ(X) if and only if T ∗ ∈ ℬ(X) in invertible in ℬ(X).
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Proof. 5. Suppose that T ∗ ∈ ℬ(X) is invertible in ℬ(X). Let S := ((T ∗)−1)∗. We have

〈TSx, y〉 = 〈x, S∗T ∗y〉 =
〈
x, (A∗)−1A∗y

〉
= 〈x, y〉

which is true for all y ∈ X. We have STx = x for all x ∈ X and hence ST = idX . Hence T is invertible
with bounded inverse T−1 = S.

Proposition 2.17. Kernels and Images of Adjoint Operators

Suppose that (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y ) are Hilbert spaces. Let T ∈ ℬ(X,Y ).

1. kerT = (imT ∗)⊥;

2. imT = (kerT ∗)⊥.

Proof. Similar to Proposition 1.35.

Definition 2.18. Self-Adjoint Operators

Suppose that X is an inner product space. T ∈ ℬ(X) is called a self-adjoint operator, if T = T ∗.a

aIf T is a continuous unbounded operator on X, the domain D(T ) is a proper dense subset on X. T is said to be symmetric
if T = T ∗ on D(T ) ∩ D(T ∗); T is said to be self-adjoint, if T is symmetric and D(T ) = D(T ∗). For bounded operators, the two
concepts are equivalent.

Proposition 2.19. Polarisation Identities for Self-Adjoint Operators

Let X be a Hilbert space and T ∈ ℬ(X) a self-adjoint operator. For x, y ∈ X,

〈y, Tx〉 = 1

4
(〈x+ y, T (x+ y)〉 − 〈x− y, T (x− y)〉)

Proof. This is a direct computation.

Remark. In comparison, if F = C, then every linear operator T : X → X satisfies the following Polarisation Identity:

〈y, Tx〉 = 1

4

3∑
n=0

in 〈x+ iny, T (x+ iny)〉

Proposition 2.20. Norm of Operators on Hilbert Spaces

Let X be a Hilbert space.

1. If T ∈ ℬ(X), then
‖T‖ℬ(X) = sup{|〈y, Tx〉| : ‖x‖ = ‖y‖ = 1}

2. In particular, if T is self-adjoint, then

‖T‖ℬ(X) = sup{|〈x, Tx〉| : ‖x‖ = 1}

Proof. 1. Let k = sup{|〈y, Tx〉| : ‖x‖ = ‖y‖ = 1}. When ‖x‖ = ‖y‖ = 1, by Cauchy-Schwarz Inequality,

|〈y, Tx〉| 6 ‖Tx‖‖y‖ 6 ‖T‖‖x‖‖y‖ = ‖T‖

Hence k 6 ‖T‖.

For the other direction, we fix ε > 0 and aim to show that ‖T‖ < k + ε. We pick x ∈ X such that ‖x‖ = 1
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and ‖Tx‖ > ‖T‖ − ε. Let y =
Tx

‖Tx‖
. Therefore

|〈y, Tx〉| = ‖y‖‖Tx‖ = ‖Tx‖ > ‖T‖ − ε

Hence ‖T‖ < k + ε. Since ε is arbitrary, we deduce that ‖T‖ 6 k.

2. Let K = sup{|〈x, Tx〉| : ‖x‖ = 1}. By (1) we have ‖T‖ = k > K.

For the other direction, by (1) we can select x, y ∈ X with ‖x‖ = ‖y‖ = 1 such that ‖T‖ − ε < |〈y, Tx〉|.
Replacing y by λy with a suitable scalar |λ| = 1, we may assume that

|〈y, Tx〉| = 〈y, Tx〉 = Re 〈y, Tx〉

We have

4Re 〈y, Tx〉 = 〈x+ y, T (x+ y)〉 − 〈x− y, T (x− y)〉 (Polarisation Identity 2.19)
6 K‖x+ y‖2 +K‖x− y‖2

= 2K
(
‖x‖2 + ‖y‖2

)
(Parallelogram Identity)

= 4K

Putting things together:
‖T‖ − ε < |〈y, Tx〉| = Re 〈y, Tx〉 6 K

Since ε is arbitrary, we deduce that ‖T‖ 6 K.

Corollary 2.21

Let X be a Hilbert space and T ∈ ℬ(X). Then ‖T ∗T‖ = ‖T‖2. In particular, if T is self-adjoint, then
∥∥T 2

∥∥ =

‖T‖2.

Proof. Note that T ∗T is self-adjoint. By the previous proposition we have

‖T ∗T‖ = sup
∥x∥=1

|〈T ∗Tx, x〉| = sup
∥x∥=1

|〈Tx, Tx〉| = sup
∥x∥=1

‖Tx‖2 = ‖T‖2

Proposition 2.22. Self-Adjointness of Orthogonal Projections

Let X be a Hilbert space. Let Y, Z 6 X be closed subspaces such that X = Y ⊕ Z. Let P : X → Y be the
projection onto Y along Z. Then the following are equivalent:

1. Z = Y ⊥;

2. P ∗ = P ;

3. ‖P‖ 6 1 (and in such case either ‖P‖ = 1 or P = 0).

Proof. The direct sum projection P satisfies kerP = Z and imP = Y .

2 =⇒ 1: By Proposition 2.17, Z = kerP = (imP ∗)⊥ = (imP )⊥ = Y ⊥.

1 =⇒ 3: For x ∈ X, let x = y + z, where y ∈ Y and z ∈ Z = Y ⊥. By Pythagoras’ Theorem, ‖x‖2 = ‖y‖2 + ‖z‖2.
Then we have

‖Px‖ = ‖P (y + z)‖ = ‖y‖ =

√
‖x‖2 − ‖z‖2 6 ‖x‖

We deduce that ‖P‖ 6 1.

3 =⇒ 2: Let x ∈ imP and u ∈ im(id−P ). Note that we have Pu = 0 and Px = x. Then

‖x‖ = ‖P (u− x)‖ 6 ‖P‖‖u− x‖ 6 ‖u− x‖

which holds for all x ∈ imP and u ∈ im(id−P ). By Lemma 2.2, we have Re 〈x, u〉 6 0 for all x ∈ imP
and u ∈ im(id−P ). But u ∈ im(id−P ) implies that −u ∈ im(id−P ). So we also have Re 〈x, u〉 =
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−Re 〈x,−u〉 > 0. Hence Re 〈x, u〉 = 0. If the scalar field is C, we may replace u by iu to obtain that
Im 〈x, u〉 = 0. Hence 〈x, u〉 = 0 for all x ∈ imP and u ∈ im(id−P ).

Finally, for x, y ∈ X,

〈y, Px〉 = 〈y − Py, Px〉+ 〈Py, Px〉 = 〈Py, Px〉 = 〈Py, x− Px〉+ 〈Py, Px〉 = 〈Py, x〉 = 〈y, P ∗x〉

Hence P = P ∗.

Now suppose that all of the above conditions holds. Suppose that P 6= 0. Let x ∈ imP . Then Px = x. So

‖P‖ > ‖Px‖
‖x‖

= 1

But we also have ‖P‖ 6 1. Hence ‖P‖ = 1.

2.3 Isometries
Let (X, dX) and (Y, dY ) be metric spaces. A map T : X → Y is called isometric, if dY (T (x), T (y)) = dX(x, y) for all
x, y ∈ X. In particular an isometry is injective and continuous.

Now we consider X and Y to be normed vector spaces. Let T : X → Y be a linear map. T is isometric if and only if
‖T (x)‖ = ‖x‖ for all x ∈ X.

Now we consider X and Y to be inner product spaces. Let T : X → Y be a linear map. By polarisation identities we
note that T is isometric if and only if 〈T (x), T (y)〉 = 〈x, y〉 for all x, y ∈ X.

Proposition 2.23. Properties of Linear Isometries

Suppose that X and Y be Hilbert spaces. Let T ∈ ℬ(X,Y ). The following are equivalent:

1. T is isometric;

2. ‖T (x)‖ = ‖x‖ for all x ∈ X;

3. 〈T (x), T (y)〉 = ‖x, y‖ for all x, y ∈ X;

4. T ∗T = idX .

Theorem 2.24. Mazur-Ulam Theorem

Suppose that X and Y are normed vector spaces. If T : X → Y is a surjective isometry, and T (0) = 0, then T is
R-linear.

Proof. Fix x, y ∈ X. We shall show that T
(
x+ y

2

)
=

1

2
(T (x) + T (y)). Without loss of generality assume that x 6= y.

Let z := x+ y

2
.

Construct a descending sequence of sets (Hn(x, y))n∈N as follows: Let

H0(x, y) :=

{
w ∈ X : ‖w − x‖ = ‖w − y‖ =

1

2
‖x− y‖

}
and, inductively,

Hn+1(x, y) :=

{
p ∈ Hn : ∀w ∈ Hn(x, y) ‖p− w‖ 6 1

2
diamHn(x, y)

}
We shall prove by induction that each Hn(x, y) is symmetric about z. We claim that z ∈ Hn(x, y) and that
w ∈ Hn(x, y) implies 2z −w ∈ Hn(x, y). The base case is trivial. For the induction case, suppose that Hn(x, y)
has the desired properties.
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For w ∈ Hn(x, y), since 2z − w ∈ Hn(x, y), we have

‖z − w‖ =
1

2
‖(2z − w)− w‖ 6 1

2
diamHn(x, y) =⇒ z ∈ Hn+1(x, y)

For p ∈ Hn+1(x, y), since w, 2z − w ∈ Hn(x, y), we have

‖(2z − p)− w‖ = ‖(2z − w)− p‖ 6 1

2
diamHn =⇒ 2z − p ∈ Hn+1(x, y)

which completes the induction. Now we have{
x+ y

2

}
=

∞⋂
n=0

Hn(x, y) = lim
n→∞

Hn(x, y)

Since T is surjective and isometric, T (Hn(x, y)) = Hn(T (x), T (y)). Since T is continuous, it preserves the limits
of those sets. We have{

1

2
(T (x) + T (y))

}
= lim
n→∞

Hn(T (x), T (y)) = lim
n→∞

T (Hn(x, y)) = T
(
lim
n→∞

Hn(x, y)
)
=

{
T

(
x+ y

2

)}

which gives T
(
x+ y

2

)
=

1

2
(T (x) + T (y)) as claimed.

Fix x0 ∈ X. Taking x = x0 and y = −x0 we obtain T (−x0) = −T (x0); taking x = 2x0 and y = 0 we obtain
T (2x0) = 2T (x0). Inductively we have T (2nx0) = 2nT (x0) for all n ∈ Z. For k ∈ Z, we expand it in base 2 and
inductively we have T (kx0) = kT (x0). Hence T (αx0) = αT (x0) for all α ∈ S := {2nk : n, k ∈ Z}. But S is
dense in R, by continuity of T we obtain that T (λx0) = λT (x0) for all λ ∈ R.

Fix x0, y0 ∈ X. Taking x = 2x0 and y = 2y0 we obtain

T (x0 + y0) =
1

2
(T (2x0) + T (2y0)) =

1

2
(2T (x0) + 2T (y0)) = T (x0) + T (y0)

We conclude that T is R-linear.

Remark. Note that the surjectivity condition can be dropped in the context of inner product spaces.

Proposition 2.25. Linearity of Isometry between Inner Product Spaces

Suppose that X and Y are inner product spaces. If T : X → Y is a isometry, and T (0) = 0, then T is R-linear.

Proof. By the previous proof it suffices to show that T (z) = 1

2
(T (x) + T (y)) for x, y ∈ X, where z := x+ y

2
.

‖T (x)− T (y)‖ = ‖x− y‖ =

∥∥∥∥y − x

2

∥∥∥∥+ ∥∥∥∥x− y

2

∥∥∥∥ = ‖z − x‖+ ‖z − y‖ = ‖T (z)− T (x)‖+ ‖T (z)− T (y)‖

Squaring both sides and expanding into inner products:

Re 〈T (z)− T (x), T (z)− T (y)〉 = ‖T (z)− T (x)‖‖T (z)− T (y)‖

Hence T (z) − T (x) and T (z) − T (y) are linearly dependent. There exists λ ∈ F such that T (z) − T (x) =
λ (T (z)− T (y)). We have

‖T (z)− T (x)‖ = ‖T (z)− T (y)‖ =⇒ |λ| = 1

‖T (x)− T (y)‖ = ‖T (z)− T (x)‖+ ‖T (z)− T (y)‖ =⇒ |λ+ 1| = 2

Hence λ = 1. T (z) = 1

2
(T (x) + T (y)) as claimed.
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Definition 2.26. Unitary Operators

Suppose that X and Y are inner product spaces. T ∈ ℬ(X,Y ) is called a unitary operator, if T is isometric and
surjective.

Proposition 2.27. Properties of Unitary Operators

Suppose that X and Y are Hilbert spaces. Let U ∈ ℬ(X,Y ). U is unitary if any of the following holds:

1. U is surjective and isometric;

2. Both U and U∗ are isometric;

3. U∗U = idX and UU∗ = idY ;

4. U−1 = U∗.

2.4 Radon-Nikodym Theorem*
We outline a proof of Radon-Nikodym Theorem by von Neumman as a consequence of Riesz-Fréchet Representation
Theorem.

Let (Ω,ℱ) be a measurable space. A measure µ on Ω is said to be σ-finite, if there exists a sequence (En) ⊆ ℱ such
that µ(En) <∞ for each n ∈ N and Ω =

⋃
{En : n ∈ N}.

Let µ and ν be two measures on Ω. For any E ∈ ℱ, µ(E) = 0 implies ν(E) = 0. In such case we say that ν is
absolutely continuous with respect to µ and write ν � µ.

Theorem 2.28. Radon-Nikodym Theorem

Suppose that (Ω,ℱ) is a meaurable space. Let µ and ν be σ-finite measures on Ω such that ν � µ. Then there
exists a ℱ-measurable function f : Ω → [0,∞) such that

ν(E) =

∫
E

f dµ

for all E ∈ ℱ. Moreover, f is unique up to a µ-null set. We say that f is the Radon-Nikodym derivative and
write f =

dν
dµ .

Proof. • The uniqueness of the Radon-Nikodym derivative is obvious. Suppose tht f1 and f2 are such functions.
Then ∫

E

(f1 − f2) dµ = 0

for all measurable E ⊆ Ω, and hence f1 = f2 almost everywhere with respect to µ.

• Now we prove existence. We assume that µ and ν are finite measures.

jj
ψ(f) =

∫
Ω

f dµ

By Cauchy-Schwarz Inequality,

|ψ(f)| =
∣∣∣∣∫

Ω

f dµ
∣∣∣∣ 6 (∫

Ω

|f |2 dµ
)(∫

Ω

1dµ
)

6
(∫

Ω

|f |2 d(µ+ ν)

)(∫
Ω

1dµ
)

= µ(Ω)1/2‖f‖X

Hence ψ ∈ X∗. By Riesz-Fréchet Representation Theorem, there exists g ∈ X such that∫
Ω

f dµ = ψ(f) = 〈g, f〉 =
∫
Ω

fg d(µ+ ν)
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for all f ∈ X. For a meaurable set E ⊆ Ω, we have

µ(E) =

∫
Ω

1E dµ =

∫
E

g d(µ+ ν)

As g is measurable, the set A := g−1(−∞, 0] is meaurable, and we have

0 6 µ(A) =

∫
A

g dµ+

∫
A

g dν 6 0

Hence µ(a) = 0. Since ν � µ, we have (µ+ ν)(A) = 0. In particular, g > 0 almost everywhere with respect
to (µ+ ν) on Ω.

Now, for each n ∈ Z+ and E ∈ ℱ, define fE,n : Ω → R by

fE,n(x) :=
1E

g(x) + 1/n

Note that fE,n > 0 a.e.. Then

‖fE,n‖2X =

∫
Ω

f2E,n d(µ+ ν) 6
∫
E

n2 d(µ+ ν) = n2(µ+ ν)(E)

Hence fE,n ∈ X. We have∫
E

1

g(x) + 1/n
dµ =

∫
E

g(x)

g(x) + 1/n
dµ+

∫
E

g(x)

g(x) + 1/n
dν

Taking the limit n→ ∞ we obtain
ν(E) =

∫
E

(
1

g
− 1

)
dµ

So we take the Radon-Nikodym derivative dν
dµ =

1

g
− 1.

• Now we extend the result to σ-finite measures µ and ν.

Let {Mn}n∈N be a sequence of disjoint measurable sets such that
⋃
nMn = Ω and µ(Mn) < ∞. Let

(Nn)n∈N be a sequence of disjoint measurable sets such that
⋃
nNn = Ω and ν(Nn) < ∞. Taking Ωmn :=

Mn ∩ Nn and relabelling, we obtain a sequence of disjoint measurable sets Ωn such that
⋃
n Ωn = Ω and

µ(Ω), ν(Ω) <∞.

For E ∈ ℱ, let µn(E) := µ(Ωn ∩ E) and νn(E) := ν(Ωn ∩ E). Then µn, νn are finite measures on Ω and
νn � µn. Then there exist non-negative functions fn : Ω → [0,∞) such that

νn(E) =

∫
E

fn dµn

where fn is unique up to a µn-null set. But µn(Ω \ Ωn) = 0 by definition. We may hence replace fn by
fn1Ωn

. We put f =
∑
n∈N

fn1Ωn
. Therefore

ν(E) =
∑
n∈N

ν(Ωn ∩ E) =
∑
n∈N

νn(E) =
∑
n∈N

∫
E

fn dµn =
∑
n∈N

∫
Ωn∩E

fn dµ =

∫
E

f dµ

The last equality follows from Monotone Convergence Theorem.

Let (Ω,ℱ) be a measurable space. We say that ν : ℱ → R ∪ {−∞,+∞} is a signed measure, if

• ν(∅) = 0;

• ν assumes at most one of −∞ and +∞;

• For any countable collection {En}n∈N of disjoint measurable sets,

ν

(⋃
n∈N

En

)
=
∑
n∈N

ν(En)
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where the series on the right hand side converges absolutely if the left hand side is finite.

From Measure Theory, the Jordan Decomposition Theorem tells us that any signed measure has a unique decom-
position ν = ν+ − ν−, where ν+ and ν− are mutually singular (positive) measures, and one of which is finite. We say
that ν is absolutely continuous respect to µ, if |ν| := ν+ + ν− is absolutely continuous respect to µ.

Combining the result with Radon-Nikodym Theorem, we have the following corollary, which is utilised in Example 5.24
to determine the dual spaces of Lp.

Corollary 2.29. Radon-Nikodym Theorem for Signed Measures

Suppose that (Ω,ℱ) is a meaurable space. Let µ be a σ-finite measure and ν be a σ-finite signed measure on Ω
such that |ν| � µ. Then there exists a ℱ-measurable function f : Ω → R such that for all E ∈ ℱ,

ν(E) =

∫
E

f dµ



Chapter 3

Metric Spaces

In this chapter we collect three important properties of metric spaces and introduce theorems which is essential to linear
functional analysis.

3.1 Density: Stone-Weierstrass Theorem
Recall from A2 Metric Spaces that a subset D ⊆ X is said to be dense in the metric space X, if D = X. Equivalently,
D is dense in X if

∀x ∈ X ∀ ε > 0 ∃ y ∈ D : d(x, y) < ε

First we have an extremely useful example.

Example 3.1. Approximation of Lp Functions by Test Functions

Let Ω ∈ Rn be an open set, and 1 6 p < ∞. Then the space of compactly supported smooth functions C∞
c (Ω) is

dense in Lp(Ω).

Proof. Non-examinable. See B4.3 Distribution Theory for detail. The central idea is to mollify the Lp functions by
convolving them with the standard mollifiers.

Remark. Note that the result does not hold when p = ∞ as one can easily see when trying to approximate step
functions by continuous functions.

Proposition 3.2. Unique Extension of Bounded Linear Maps

Suppose that (X, ‖·‖X) is a normed vector space and (Z, ‖·‖Z) is a Banach space. Let Y ⊆ X be a dense subspace.
Then every bounded linear operator T ∈ ℬ(Y, Z) has a unique extension T̃ ∈ ℬ(X,Z) such that T̃

∣∣∣
Y
= T and

‖T‖ℬ(Y,Z) =
∥∥∥T̃∥∥∥

ℬ(X,Z)

Proof. Fix x ∈ X. Since Y is dense in X, there exists a sequence (yn) ⊆ Y such that yn → x. Let

T̃ (x) := z := lim
n→∞

T (yn)

The limit exists because the (Tyn) is a Cauchy sequence in the Banach space Z:

‖T (yn)− T (ym)‖ 6 ‖T‖‖yn − ym‖ → 0

as n,m → ∞. It is not hard to show that the limit is unique. Hence the map T̃ : X → Z is well-defined. It is
linear by the algebra of limits. Furthermore∥∥∥T̃ (x)∥∥∥ = lim

n→∞
‖T (yn)‖ 6 ‖T‖ lim

n→∞
‖yn‖ = ‖T‖‖x‖

24
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Hence
∥∥∥T̃∥∥∥ 6 ‖T‖. Since T

∣∣
Y
= T we must have

∥∥∥T̃∥∥∥ = ‖T‖.

In order to present the central theorem of Stone-Weierstrass, we need to introduce some definitions. From now on and
till the end of this section, K denotes a compact metric space1 and C(K) denotes the set of real-valued continuous
functions on K.

Definition 3.3. Linear Lattices

A subspace D ⊆ C(K) is called a linear sublattice of C(K), if

f, g ∈ D =⇒ max{f, g} ∈ D

or equivalently
f ∈ D =⇒ |f | ∈ D

Definition 3.4. Separation of Points

We say that D ⊆ C(K) separates points in K, if

∀ p, q ∈ K (p 6= q =⇒ ∃ f ∈ D f(p) 6= f(q))

Definition 3.5. Algebras

A subspace D ⊆ C(K) is called a subalgebra of C(K), if D contains the constant functions and is closed under
pointwise multiplication:

f, g ∈ D =⇒ fg ∈ D

Theorem 3.6. Stone-Weierstrass Theorem, Lattice Form

Let K be a compact metric space. A subspace D ⊆ C(K) is dense in (C(K), ‖·‖∞), if

• D is a linear sublattice;

• D contains the constant functions;

• D separates points in K.

Proof. Fix f ∈ C(K) and ε > 0. For p, q ∈ K, we construct fp,q ∈ D as follows:

If p = q, simply set fp,p = f(p) to be the constant function. Then fp,p ∈ D by assumption. If p 6= q, since D
separates points, there exists g ∈ D such that g(p) = 0 and g(q) = 1. We define

fp,q(x) = f(p) + (f(q)− f(p)) g(x)

Then in either case, we have fp,q ∈ D such that fp,q(p) = f(p) and fp,q(q) = f(q). Consider

Up,q := (f − fp,q)
−1 (B(0, ε)) ⊆ K

Then Up,q is an open subset of K containing p and q. Now {Up,q}q∈K is an open cover of K. By compactness

of K there exists q1, ..., qm ∈ K such that K =

m⋃
i=1

Up,qi . Define

gp := min {fp,q1 , ..., fp,qm}

Since D is a linear sublattice, gp ∈ D. We have gp(p) = f(p). Furthermore, as |f(x)− fp,q(x)| < ε for x ∈ Up,q,
we have gp < f + ε on all of K.

1More generally, K could be a compact Hausdorff space.
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Next, consider the open neighbourbood of p:

Vp := (f − gp)
−1 (B(0, ε)) ⊆ K

Now {Vp}p∈K is an open cover ofK. Again by compactness ofK there exists p1, ..., pk ∈ K such thatK =

k⋃
i=1

Vpi .

Define
g := max {gp1 , ..., gpk}

Then g ∈ D. As |f(x)− gp(x)| < ε for x ∈ Vp, we have g > f − ε on all K. But since gp < f + ε for all p ∈ K,
we also have g < f + ε on K.

Now we have constructed g ∈ D such that ‖f − g‖∞ < ε. We conclude that D is dense in C(K).

Theorem 3.7. Stone-Weierstrass Theorem, Subalgebra Form

Let K be a compact metric space. A subspace D ⊆ C(K) is dense in (C(K), ‖·‖∞), if D is a subalgebra that
separates points in K.

Proof. Since D is a subalgebra, so is D. By the previous theorem it suffices to show that D is a linear sublattice. Fix
f ∈ D. We need to show that |f | ∈ D.

Without loss of generality we assume that ‖f‖∞ 6 1. Consider the sequence (fn) ⊆ D, where f0 = 0 and

fn+1 = fn +
1

2
(f2 − f2n)

We shall prove that fn ↗ |f | pointwise by induction. The base case is trivial. For the induction case,

0 6 fn 6 fn+1 = fn +
1

2
(|f |+ fn)(|f | − fn) 6 fn + (|f | − fn) = |f |

(
fn 6 |f | 6 1 =⇒ |f |+ fn

2
6 1

)

fn+2−fn+1 = (fn+1−fn)
(
1− 1

2
(fn+1 + fn)

)
> fn+1−fn > 0

(
fn 6 fn+1 6 |f | 6 1 =⇒ fn + fn+1

2
6 1

)
By Monotone Convergence Theorem, fn → g pointwise for some g, where

g = g +
1

2
(f2 − g2) =⇒ g = |f |

Hence fn ↗ |f | pointwise. Since K is compact, by Dini’s Theorem, fn → |f | uniformly. Hence |f | ∈ D as
claimed.

Corollary 3.8. Weierstrass Approximation Theorem for Polynomials

Let K ⊆ Rn be a compact set. For any continuous function f : K → R, there exists a sequence of polynomials
(pn) such that pn → f uniformly in K as n→ ∞.

Proof. It is clear that the set of polynomials P ⊆ C(K) is a subalgebra of C(K). So P is dense in C(K). For f ∈ C(K)
there exists a sequence (pn) ⊆ P such that pn → f in C(K), i.e., uniformly on K.

3.2 Separability
Recall from A2 Metric Spaces that a metrix space X is said to be separable, if it has a countable dense subset.

Proposition 3.9. Linear Span and Separability

Let (X, ‖·‖X) be a normed vector space. If there exists a countable subset S ⊆ X such that spanS is dense in X,
then X is separable.
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Proof. First we consider the scalar field F = R. We enumerate S as {s1, s2, ...}. Consider

Y :=

{
N∑
i=1

qisi : qi ∈ Q, si ∈ S, N ∈ N

}
⊆ X

There exists a surjection
⋃
N∈N

QN → Y given by (q1, ..., qN ) 7→
N∑
i=1

qisi. Then

card (Y ) 6 card
( ⋃
N∈N

QN
)

= ℵ0

So Y is countable. Next we claim that Y is dense in spanS.

Fix ε > 0 and u ∈ spanS, where

u =

N∑
i=1

λiui, λi ∈ R, ui ∈ S

Since S is dense in S, for each i ∈ {1, ..., N} there exists vi ∈ S such that ‖ui − vi‖ <
ε

2N |λi|
. Since Q is dense

in R, if vi 6= 0, then there exists qi ∈ Q such that |qi − λi| <
ε

2N‖vi‖
. Let v :=

N∑
i=1

qivi ∈ Y .

‖u− v‖ =

∥∥∥∥∥
N∑
i=1

λiui −
N∑
i=1

qivi

∥∥∥∥∥ 6
∥∥∥∥∥
N∑
i=1

λi(ui − vi)

∥∥∥∥∥+
∥∥∥∥∥
N∑
i=1

(λi − qi)vi

∥∥∥∥∥ 6
N∑
i=1

(|λi|‖ui − vi‖+ |λi − qi|‖vi‖) < ε

Hence Y is dense in spanS. But spanS is dense in X. We deduce that Y is dense in X. X is separable.

If the scalar field F = C, then instead we consider

Y :=

{
N∑
i=1

qisi : qi ∈ Q[i], si ∈ S, N ∈ N

}
⊆ X

and use the fact that Q[i] is countable and dense in C.

Corollary 3.10

All finite-dimensional normed vector spaces are separable.

Next we need to determine the separability of some usual Banach spaces.

Proposition 3.11. Separability of C(K)

Let K be a compact metric space. Then K and C(K) are separable.

Proof. First we prove that K is separable. For n ∈ Z+, consider the open ball Ux,n := B(x, 1/n). Then {Ux,n}x∈K is an

open over of K. By compactness of K, there exists x1,n, ...xkn,n ∈ K such that K =

kn⋃
i=1

Uxi,n,n. Now consider

E :=

∞⋃
n=1

{x1,n, ..., xkn,n}

It is clear that E is countable. We claim that it is dense in K. Let y ∈ K and ε > 0. Pick n ∈ Z+ such that
1/n < ε. Then y ∈ B(x, 1/n) for some x ∈ E. And d(x, y) < 1/n < ε. We deduce that E is dense in K.

Next we prove that C(K) is separable. We enumerate E as {y1, y2, ...}. Let fn(x) := d(x, yn). Consider the set
of ”monomials”

S := {fα1
1 · · · fαN

N : α1, ..., αN ∈ N, N ∈ N}
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which is clearly countable. Then spanS is a subalgebra of C(K).

For p, q ∈ K with p 6= q, let n ∈ N such that d(p, q) > 2/n. There exists yi ∈ E such that p ∈ B(yi, 1/n). By
triangular inequality,

d(yi, q) > d(p, q)− d(yi, p) > 1/n > d(yi, p)

Hence fi(q) > fi(p). We deduce that spanS separables points. Now by the subalgebra form of Stone-Weierstrass
Theorem, spanS is dense in C(K). By Proposition 3.9, we conlude that C(K) is separable.

Proposition 3.12. Separability of ℓp and Lp

Let 1 6 p <∞.

1. The sequence space ℓp is separable.

2. Let Ω ⊆ Rn be a measurable set. The function space Lp(Ω) is separable.

Proof. 1. Let Y := spanS where the countable set S =
{
e(k), k ∈ N

}
consists of all sequences e(k) for which e(k)j = δjk.

Given any element x ∈ ℓp, since
∑∞
j∈N |xj |p converges, we obtain that the cut-off sequences x(k) :=

(x1, . . . , xk, 0, 0, . . .) approximate x in the sense of ℓp, namely

∥∥∥x− x(k)
∥∥∥
p
=

 ∑
j>k+1

|xj |p
1/p

→ 0

as k → ∞. We thus conclude that Y is dense in ℓp and thus obtain from Proposition 3.9 that ℓ∞ is
separable.

2. From Example 3.1 we know that Cc(Ω) is dense in Lp(Ω). So we shall prove that Cc(Ω) is separable.

Consider the set of cubes with rational vertices

𝒮 := {[p1, q1]× · · · × [pn, qn] : p1, q1, ..., pn, qn ∈ Q}

Let Y := span{1I∩Ω : I ∈ 𝒮}. Since 𝒮 is countable, it suffices to prove that Y is dense in Cc(Ω).

Fix f ∈ Cc(Ω) and ε > 0. Let K := supp f ⊆ Rn be a compact set. Then f is uniformly continuous on K.
There exists N ∈ N such that |f(x)− f(y)| < ε ·m(K)−1/p whenever ‖x− y‖∞ 6 1/N . Let

𝒯 :=

{
I :=

[
k1
N
,
k1 + 1

N

]
× · · · ×

[
kn
N
,
kn + 1

N

]
: k1, ..., kn ∈ Z, I ∩K 6= ∅

}
Then 𝒯 is a finite subset of 𝒮 because K is bounded. Consider the ”step” function

φ(x) :=
∑
I∈𝒯

f(xI)1I∩Ω ∈ Y

where xI ∈ I is some fixed points. We find that

‖f − φ‖pp =
∫
K

|f − φ|p =
∑
I∈𝒯

∫
I∩K

|f(x)− f(xI)|p dx <
εp

m(K)

∑
I∈𝒯

∫
I∩K

dx = εp

which proves the claim.

Proposition 3.13. Inseparability of ℓ∞ and L∞

1. The sequence space ℓ∞ is inseparable.

2. Let Ω ⊆ Rn be an open set. The function space L∞(Ω) is inseparable.

Proof. 1. Note that the set A := {0, 1}N ⊆ ℓ∞ is uncountable. And for any distinct a, b ∈ A, ‖a− b‖∞ = 1.
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Suppose that D ⊆ ℓ∞ is dense in ℓ∞. For each a ∈ A there exists da ∈ D such that ‖a− da‖ < 1/2. Then
da = db implies that

‖a− b‖∞ 6 ‖a− da‖∞ + ‖b− db‖∞ < 1

and hence that a = b. Therefore the map a 7→ da is an injective map from A to D. So D is uncountable
and ℓ∞ is inseparable.

2. There exists an open ball B(x,R) ⊆ Ω. Consider the uncountable set A :=
{

1B(x,r) : 0 < r < R
}
⊆ L∞(Ω)

and repeat the proof for ℓ∞,

3.3 Completeness: Baire Category Theorem
A subset D ⊆ X is said to be nowhere dense in the metric space X, if there are no open set U ⊆ X for which D ∩U
is dense in U , or equivalently, if D has an empty interior.

Theorem 3.14. Baire Category Theorem

Let X be a non-empty complete metric space.

1. X is not the countable union of nowhere dense sets.

2. The countable interchapter of dense open sets is non-empty.

3. The countable union of nowhere dense sets has empty interior.

4. The countable interchapter of dense open sets is dense.

In fact the four statements are equivalent. We shall mianly prove (1) and show that other statements are equivalent to
it.

Proof. 1. Suppose that X =

∞⋃
n=1

An where each An is nowhere dense.

Since A1 is nowhere dense, A1 6= X and so X \ A1 is non-empty. Pick x1 ∈ X \ A1. Next, since X \ A1 is
open, there is some closed ball B (x1, r1) ⊆ X \A1 with r1 < 1. Clearly B (x1, r1) ∩A1 = ∅.

Since A2 is nowhere dense, A2 6⊇ B (x1, r1) and so there is some x2 ∈ B (x1, r1) \ A2. We then inductively
choose balls B (xn, rn) ⊆ B (xn−1, rn−1) \An with rn <

1

2n−1
.

Now, (xn) is a Cauchy sequence, since if n,m > N , then xn, xm ∈ B (xN , rN ) and so d (xm, xn) 6 2rN → 0.
Since X is complete, (xn) converges to some x ∈ X. We have x ∈ B (xn, rn) ⊆ B (xn−1, rn−1) \ An for all
n, which implies that x /∈ An for any n. This is a contradiction.

2. Note that the complement of a dense open set is a nowhere dense set. The result then follows from (1) and
de Morgan’s Law.

3. Suppose that (An)∞n=1 is a sequence of nowhere dense subsets of X. Suppose that
∞⋃
n=1

An contains an open

ball B(x, r). Take a closed ball B(x, s) ⊆ B(x, r) and consider Ãn := An ∩B(x, s). Then B(x, s) =

∞⋃
n=1

Ãn

where each Ãn is nowhere dense in B(x, s). This is a contradiction.

4. It follows from (3) and de Morgan’s Law.

The following terminology explains the name of the Baire Category Theorem:

Definition 3.15. Meagre Sets, Nonmeagre Sets

Let X be a metric space and E ⊆ X.

• E is said to be of the first category or meagre, if it is the countable union of nowhere dense set.

• E is said to be of the second category or nonmeagre, if it is not of the first category.
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The Baire Category Theorem says that an open subset of a complete metric space is of the second category.

In Functional Analysis, the usual notion of the basis of a vector space is called aHamel basis, i.e., a linearly independent
subset S ⊆ X such that every vector of X is a finite linear combination of the vectors in S.

Proposition 3.16. Cardinality of Hamel Basis (Off-Syllabus)

Suppose that X is a Banach space. Then the Hamel basis of X is either finite or uncountable.

Proof. Suppose for that there exists a countable Hamel basis B = {xn : n ∈ N} for X. Let Fn = span {xk : 0 6 k 6 n} .
Then each of the spaces Fn is finite-dimensional and hence complete, and in particular each Fn is closed in X.
Since X =

⋃
n∈N

Fn, by the Baire Category Theorem, there exists n ∈ N such that Fn has non-empty interior.

Suppose that B(x, ε) ⊆ Fn. Since Fn is a vector space and in particular closed under translations, it follows that
B(0, ε) ⊆ Fn, and hence X ⊆ Fn. In particular, we have dimX 6 n, which is a contradiction.



Chapter 4

Fundamental Theorems

This chapter mainly discusses the application of Baire Category Theorem in the theory of Banach spaces. Three
fundamental theorems in functional analysis are introduced.

4.1 Uniform Boundedness Principle

Theorem 4.1. Uniform Boundedness Principle / Banach-Steinhaus Theorem

Suppose that (X, ‖·‖X) is a Banach space and (Y, ‖·‖Y ) is a normed vector space. Let ℱ ⊆ ℬ(X,Y ). If for each
x ∈ X,

sup {‖T (x)‖Y : T ∈ ℱ} <∞

Then
sup

{
‖T‖ℬ(X,Y ) : T ∈ ℱ

}
<∞

For a family of bounded linear maps from a Banach space, pointwise boundedness implies uniform boundedness.

Proof. Consider the sequence of closed subspaces of X:

An = {x ∈ X : ∀T ∈ ℱ ‖T (x)‖Y 6 n}

Then X =
⋃
n∈N

An. By Baire Category Theorem, there exists N ∈ N such that AN has non-empty interior. Let

B(x0, r0) ⊆ AN .

For any x ∈ B(0, r0) and T ∈ ℱ, x0 + x ∈ B(x0, r0). Therefore

‖T (x)‖Y 6 ‖T (x+ x0)‖Y + ‖T (x0)‖Y 6 2N

Hence for any x ∈ B(0, 1) and T ∈ ℱ, ‖T (x)‖Y 6 2N/r0. We conclude that ‖T‖ℬ(X,Y ) 6 2N/r0.

Proposition 4.2. Uniform Boundedness in Hilbert Spaces

Suppose that X is a Hilbert space and ℱ ⊆ ℬ(X). If for each x, y ∈ X,

sup {|〈y, Tx〉| : T ∈ ℱ} <∞

Then ℱ is uniformly bounded.

Proof. Fix x ∈ X. Define KT,x ∈ X∗ by KT,x(y) = 〈Tx, y〉 so that ‖Tx‖ = ‖KT,x‖∗. Since for each y ∈ X,
{|KT,x(y)| : T ∈ ℱ} is bounded, by the Uniform Boundedness Principle, {‖KT,x‖∗ : T ∈ ℱ} is bounded. We
use the Uniform Boundedness Principle again to conclude that {‖T‖ : T ∈ ℱ} is bounded.

31
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Proposition 4.3. Strong Convergence of Operators

Suppose that (X, ‖·‖X) and (Y, ‖·‖Y ) are Banach spaces. Let (Tn) ⊆ ℬ(X,Y ). The following are equivalent:

1. There exists T ∈ ℬ(X,Y ) such that for each x ∈ X, Tn(x) → T (x) as n→ ∞;

2. For each x ∈ X, (Tn(x)) is convergent,

3. There exists M > 0 and a dense subset Z ⊆ X such that supn ‖Tn‖ 6M and (Tn(z)) is convergent for each
z ∈ Z.

Proof. ”1 =⇒ 2”: Trivial.

”2 =⇒ 3”: Immediate from Uniform Boundedness Principle.

”3 =⇒ 1”: Fix ε > 0 and x ∈ X. By density of Z in X, we can choose z ∈ Z such that ‖x− z‖X < ε/4M . Since
(Tn(z)) is a Cauchy sequence, there exists N > 0 such that for m,n > N , ‖Tn(z)− Tm(z)‖Y < ε/2. Then

‖Tn(x)− Tm(x)‖Y 6 ‖Tn(x)− Tn(z)‖Y+‖Tm(x)− Tm(z)‖Y+‖Tn(z)− Tm(z)‖Y 6 2M‖x− z‖X+‖Tn(z)− Tm(z)‖Y 6 ε

Hence (Tn(x)) is a Cauchy sequence. Since Y is a Banach space, T (x) := lim
n→∞

Tn(x) exists. It is clear that T is
linear. T is bounded because

‖T (x)‖Y = lim
n→∞

‖Tn(x)‖ 6 lim sup
n→∞

‖Tn‖ℬ(X,Y )‖x‖X 6M‖x‖X

Remark. Note that in the proposition, the convergence Tn → T is a pointwise convergence, or convergence in the
strong operator topology. This should not be confused with convergence in the operator norm ‖Tn − T‖ℬ(X,Y ) → 0.

4.2 Open Mappings and Closed Graphs

Theorem 4.4. Open Mapping Theorem

Suppose that (X, ‖·‖X) and (Y, ‖·‖Y ) are Banach spaces. T ∈ ℬ(X,Y ) is surjective. Then T is an open map
(mapping open sets to open sets).

Proof. Let U ⊆ X be an open subset. To prove that T (U) ⊆ Y is open, we fix y ∈ T (U) for which T (x) = y. Since U
is open, there exists r > 0 such that B(x, r) ⊆ U . By linearity, we have

T (BX(x, r)) = y +
r

2
T (BX(0, 2))

• T (BX(0, 1)) contains an open ball BY (0, s):

Since T is surjective, we have

Y =

∞⋃
n=1

T (BX(0, n))

By Baire Category Theorem, there exists N ∈ N such that T (BX(0, N)) has non-empty interior. Let
w ∈ Y and s > 0 such that BY (Nw,Ns) ⊆ T (BX(0, N)). By linearity, BY (w, s) ⊆ T (BX(0, 1)). Since
T (BX(0, 1)) is convex and symmetric about the origin, we have BY (−w, s) ⊆ T (BX(0, 1)) and hence
BY (0, s) ⊆ T (BX(0, 1)).

• T (BX(0, 2)) contains T (BX(0, 1)):

Fix z ∈ T (BX(0, 1)). First choose u1 ∈ BX(0, 1) such that ‖z − T (u1)‖ <
1

2
s. Then

z − T (u1) ∈ BY

(
0,

1

2
s

)
=

1

2
BY (0, s) ⊆

1

2
T (BX(0, 1)) = T

(
BX

(
0,

1

2

))
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Inductively, we can choose un ∈ BX
(
0, 21−n

)
such that

∥∥∥∥∥z −
n∑
k=1

T (uk)

∥∥∥∥∥ < 2−ns, which impplies that

z −
n∑
k=1

T (uk) ∈ T (BX (0, 2−n))

Therefore
n∑
k=1

T (uk) → z in Y as n → ∞. It is clear that un → u ∈ BX(0, 2) as n → ∞. By continuity of

T , we deduce that z = T (u) ∈ T (BX(0, 2)). Hence T (BX(0, 1)) ⊆ T (BX(0, 2)).

Now
T (BX(x, r)) = y +

r

2
T (BX(0, 2)) ⊇ y +

r

2
BY (0, s) = BY

(
y,

1

2
rs

)
Hence y ∈ (T (U))◦. We conclude that T (U) is open.

Corollary 4.5. Inverse Mapping Theorem

Suppose that (X, ‖·‖X) and (Y, ‖·‖Y ) are Banach spaces. T ∈ ℬ(X,Y ) is bijective. Then T−1 ∈ ℬ(Y,X).

Proof. By Open Mapping Theorem, T is an open map, which implies that T−1 is continuous. By Proposition 1.17,
T−1 ∈ ℬ(X,Y ).

Corollary 4.6. Equivalence of Norms

Suppose that X is a Banach space with respect to the norms ‖·‖ and ‖·‖′. If there exists C > 0 such that
‖x‖ 6 C‖x‖′, then ‖·‖ and ‖·‖′ are equivalent.

Proof. Directly applying the Inverse Mapping Theorem to the identity operator id : (X, ‖·‖) → (X, ‖·‖′).

Proposition 4.7. Criterion for Closed Image

Suppose that (X, ‖·‖X) and (Y, ‖·‖Y ) are Banach spaces. Let T : X → Y be a linear map. Let T ∈ ℬ(X,Y ). If
imT has closed linear complement in Y , then imT is closed in Y .

Proof. Suppose that Y = imT ⊕ Z where Z ⊆ Y is a closed subspace of Y . Let S : X × Z → Y given by S(x, y) =
T (x) + y. It is clear that X × Z is a Banach space and S ∈ ℬ(X × Z, Y ). Since S(X × {0}) = imT , we have
S(X × (Z \ {0})) = Y \ imT . X ×{0} is closed in X ×Z. So X × (Z \ {0}) is open in X ×Z, and by the Open
Mapping Theorem, Y \ imT is open in Y . We conclude that imT is closed in Y .

Remark. The proposition has a useful corollary: If imT has finite codimension, then imT is closed in Y . It follows
from that all finite-dimensional subspaces of a Bana ch space are closed.

Proposition 4.8. Closed Images and Adjoints

Suppose that X and Y are Hilbert spaces, and T ∈ ℬ(X,Y ). Then imT is closed if and only if imT ∗ is closed.

Proof. It suffices to show only one direction, as T ∗∗ = T . Suppose that W = imT ∗ is closed in X. Let Z = imT ⊆ Y .
Let S ∈ ℬ(X,Z) such that Sx = Tx for all x ∈ X. The adjoint S∗ ∈ ℬ(Z,X). By Proposition 2.17,
Z = imS = (kerS∗)

⊥. So S∗ is injective.

Let P be the orthogonal projection from Y onto Z and compute, for x ∈ X and y ∈ Y ,

〈Tx, y〉Y = 〈Sx, Py〉Y = 〈x, S∗Py〉X

This shows that T ∗ = S∗ ◦ P , and so imS∗ = W . Now let V ∈ ℬ(Z,W ) such that V z = S∗z for all z ∈ Z. V
is bijective. By the Inverse Mapping Theorem, V has a bounded inverse V −1 ∈ ℬ(W,Z). This implies that V ∗

is invertible and (V ∗)
−1

=
(
V −1

)∗ ∈ ℬ(Z,W ).
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To conclude, we show that T ◦ (V ∗)
−1

= idZ . This implies that imT ⊇ Z and so imT = Z = imT which gives
the conclusion. Indeed, pick an arbitrary z ∈ Z, and let w = (V ∗)

−1
z. We compute, for y ∈ Y :

〈Tw, y〉Y = 〈Sw, y〉Y = 〈w, S∗y〉X = 〈w, V y〉X = 〈V ∗w, y〉Y = 〈z, y〉Y

Since this holds for all y ∈ Y , we deduce that Tw = z and so T ◦ (V ∗)
−1

= idZ as desired.

Remark. The technique in the proof is to get rid of the cokernels and to construct a bijective operator, to which we
can apply the Inverse Mapping Theorem.

Definition 4.9. Graph of an Operator

Suppose that (X, ‖·‖X) and (Y, ‖·‖Y ) are normed vector spaces. T : X → Y is a linear map. The graph of T is
defined by

Γ(T ) := {(x, T (x)) ∈ X × Y : x ∈ X}

Note that if X and Y are both Banach spaces, X × Y equipped with the 1-norm:

‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y

is also a Banach space.

Theorem 4.10. Closed Graph Theorem

Suppose that (X, ‖·‖X) and (Y, ‖·‖Y ) are Banach spaces. Let T : X → Y be a linear map. Then T ∈ ℬ(X,Y ) if
and only if Γ(T ) ⊆ X × Y is closed.

Proof.=⇒ : Suppose that T is bounded. Let (xn) ⊆ X such that xn → x ∈ X and T (xn) → y ∈ Y as n → ∞. By
continuity of T ,

y = lim
n→∞

T (xn) = T
(
lim
n→∞

xn

)
= T (x)

Hence Γ(T ) is closed.

⇐= : Consider the graph norm on X: For x ∈ X,

‖x‖T := ‖x‖X + ‖T (x)‖Y

The closedness of Γ(T ) implies that (X, ‖·‖T ) is a Banach space. It is clear that ‖x‖X 6 ‖x‖T . By Corollary
4.6, we deduce that ‖·‖X and ‖·‖T are equivalent. In particular,

‖T (x)‖Y = ‖x‖T − ‖x‖X 6 (C − 1)‖x‖X

for some constant C > 1. Hence T is bounded.

Remark. Following the Closed Graph Theorem, whem we need to prove that a linear map T : X → Y between Banach
spaces is bounded, it suffices to show that (Txn) is a Cauchy sequence in Y for every convergent/Cauchy sequence (xn)
in X.

We recall some concepts from Linear Algebra:

Suppose that U is a subspace of the vector space X. V ic called a linear complement of U in X, if X = U⊕V .

A linear map P : X → X is called a projection, if P 2 = P . Suppose that we have a direct sum decomposition
X = U ⊕V . The linear map P : X → U such that P

∣∣
U
= idU and P

∣∣
V
= 0 is called a projection of X onto U along

V .

Proposition 4.11. Existence of Closed Linear Complement

Let Y ⊆ X be a closed subspace of the Banach space X. Then Y has a closed linear complement if and only if
there exists a continuous projection operator P : X � Y .
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Proof.=⇒ : Suppose that Y, Z ⊆ X are closed subspaces and X = Y ⊕ Z. Let P : X � Y be the projection of X
onto Y along Z. Let xn → x ∈ X and P (xn) → y ∈ X as n → ∞. Since Y = P (X) is closed we have
y ∈ Y . Since Z = (id−P )(X) is closed we also have x − y = lim

n→∞
(id−P )(xn) ∈ Z. Therefore P (y) = y

and P (x− y) = 0. We deduce that P (x) = y. Hence P has closed graph. By the Closed Graph Theorem,
P is continuous.

⇐= : Let P : X � Y be a continuous projection. Then we have a direct sum decomposition:

X = Y ⊕ (id−P )(X)

We claim that (id−P )(X) is closed in X. Note that (id−P ) is also a continuous projection. For
((id−P )(xn)) ⊆ (id−P )(X) such that (id−P )(xn) → y ∈ X, we have

y = lim
n→∞

(id−P )(xn) = lim
n→∞

(id−P )2(xn) = (id−P )
(
lim
n→∞

(id−P )(xn)
)
= (id−P )(y) ∈ (id−P )(X)

Hence (id−P )(X) is closed.

In this section, we have followed the route:

Baire Category Theorem Open Mapping Theorem Inverse Mapping Theorem Closed Graph Theorem

We shall briefly discuss the equivalence of the three theorems in this section by proving:

• Inverse Mapping Theorem =⇒ Open Mapping Theorem:

Suppose that X and Y are Banach spaces. Let T : X → Y be a surjective map. Note that the quotient map
π : X � X/ kerT is continuous, surjective, and open. T descends to a bounded bijection T̃ ∈ ℬ(X/ kerT, Y ) via
the following commutative diagram:

X Y

X/ kerT

T

π
T̃

By the Inverse Mapping Theorem, T̃−1 ∈ ℬ(Y,X/ kerT ). For an open set U ⊆ X, the image is given by

T (U) = T̃ ◦ π(U) =
(
T̃−1

)−1

◦ π(U)

which is open in Y .

• Closed Graph Theorem =⇒ Inverse Mapping Theorem:

Suppose that X and Y are Banach spaces. Let T : X → Y be a bijective map. By the Closed Graph Theorem,
Γ(T ) is closed in X × Y . Γ(T−1) is just Γ(T ) swapping two coordinates, and hence is closed in Y ×X. By the
Closed Graph Theorem, T−1 ∈ ℬ(Y,X).



Chapter 5

Duality

In this chapter, we introduce the important Hahn-Banach Theorem and discuss its analytic and geometric consequences.
We also briefly discuss the weak and weak* convergence and topology.

We shall frequently use the sign function on C or R, which is given by

sgn z :=
{
z/|z| z 6= 0

0 z = 0

For function f : X → C, we can define the sign function sgn f correspondingly. The key property of sign function is
that

f · sgn f = |f |,
∣∣ sgn f ∣∣ = 1

5.1 Hahn-Banach Theorem
The scalar field F = R or C.

Definition 5.1. Sublinear Functionals

Let X be a vector space. p : X → R is called a sublinear functional, if

• (Subadditivity) ∀x, y ∈ X : p(x+ y) 6 p(x) + p(y);

• (Positive Homogeneity) ∀x ∈ X ∀λ > 0 : p(λx) = λp(x).

Theorem 5.2. Hahn-Banach Theorem, general sublinear version

Let X be a real normed vector space, Y ⊆ X be a subspace, and p : X → R be a sublinear functional. Suppose
that f : Y → R is a linear functional such that

f(y) 6 p(y) for all y ∈ Y

Then there exists a linear functional g : X → R such that

g
∣∣
Y
= f and g(x) 6 p(x) for all x ∈ X

Proof. The proof is consist of two parts.

• One-step Extension Lemma.

Suppose that U ⊆ X is a subspace. Let φ : U → R be a linear functional such that φ 6 p on U . Let
x0 ∈ X \U and V := span(U ∪ {x0}). We shall extend φ to a linear functional ψ : V → R such that ψ 6 p
on V .

Note that every element v ∈ V can be uniquely expressed as v = u + λx0 for some u ∈ U and λ ∈ R. We
consider the family of linear functional {ψc : V → R}c∈R such that ψc(v) = φ(u) + cλ. It is clear that

36
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ψc
∣∣
U
= φ. We shall prove that there exists c ∈ R such that ψc 6 p on V .

For λ = 0, trivially we have ψc 6 p on V for all c ∈ R. For λ > 0,

ψc(v) 6 p(v) ⇐⇒ φ(u) + cλ 6 p(u+ λx0) ⇐⇒ c 6 p
(u
λ
+ x0

)
− φ

(u
λ

)
We obtain a necessary condition: c 6 inf {p(a+ x0)− φ(a) : a ∈ U}. For λ < 0, similarly we have

ψc(v) 6 p(v) ⇐⇒ φ(u) + cλ 6 p(u+ λx0) ⇐⇒ c > φ

(
u

|λ|

)
− p

(
u

|λ|
− x0

)
which gives another necessary condition: c > sup {φ(b)− p(b− x0) : b ∈ U}. Now for the existence of the
extension, we need to verify that

sup
b∈U

(φ(b)− p(b− x0)) 6 inf
a∈U

(p(a+ x0)− φ(a))

But it follows from that

φ(a) + φ(b) = φ(a+ b) 6 p(a+ b) 6 p(a+ x0) + p(b− x0) =⇒ φ(b)− p(b− x0) 6 p(a+ x0)− φ(a)

which holds for any a, b ∈ U .

• Using Zorn’s Lemma.

Consider the set

𝒮 :=
{
(φ,Dφ) : Y ⊆ Dφ ⊆ X, φ : Dφ → R is a linear functional such that φ

∣∣
Y
= f and φ 6 p on Dφ

}
equipped with the partial order

(φ,Dφ) 6𝒮 (ψ,Dψ) ⇐⇒ Dφ ⊆ Dψ and ψ
∣∣
Dφ

= φ

It is clear that 𝒮 is non-empty because (f, Y ) ∈ 𝒮. We can directly verify (by taking unions) that every
chain in 𝒮 has an upper bound. Hence by Zorn’s Lemma, 𝒮 has a maximal element (g,Dg). If Dg 6= X, we
can pick x0 ∈ X\Dg and use the one-step extension lemma to construct an extension of g on span(Dg∪{x0}),
which contradicts the maximality of (g,Dg). Therefore Dg = X and g is the desired extension of f .

Corollary 5.3. Hahn-Banach Extension Theorem

Let X be a normed vector space, Y ⊆ X be a subspace, and f ∈ Y ∗. Then there exists g ∈ X∗ such that

g
∣∣
Y
= f and ‖g‖X∗ = ‖f‖Y ∗

Proof. • The scalar field F = R:

We set p(x) := ‖f‖Y ∗‖x‖X for x ∈ X. Then p is a sublinear functional on X and f 6 p on Y . By the
sublinear version of Hahn-Banach Theorem, we deduce that there exists an f -extension g : X → R such
that g 6 p on X. Note that

‖f‖Y ∗ 6 ‖g‖X∗ = sup
∥x∥=1

|g(x)| 6 sup
∥x∥=1

|p(x)| = ‖f‖Y ∗

• The scalar field F = C:

For f : Y → C, we write f = f1 + if2, where f1, f2 : Y → R are both R-linear functionals. For y ∈ Y ,

f(y) = f1(y) + if2(y), f(iy) = if(y) = if1(y)− f2(y)

Hence
f2(y) = −f1(iy) =⇒ f(y) = f1(y)− if1(iy)

We regard Y = YR as a subspace of the normed R-vector space X. And f1 ∈ Y ∗
R . By the sublinear version of

Hahn-Banach Theorem, f1 extends to a bounded R-linear functional g1 : X → R such that g1(x) 6 ‖f‖‖x‖
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on X. We claim that g(x) := g1(x) − ig1(ix) is a bounded C-linear functional on X, which is the desired
extension of g.

It is straightforward to check the C-linearity of g. For the estimate of norm, let x ∈ X. Therefore

|g(x)| = g( sgn g(x) · x) = g1( sgn g(x) · x) 6 ‖g1‖
∥∥∥ sgn g(x) · x

∥∥∥ = ‖g1‖‖x‖ 6 ‖f‖‖x‖

Proposition 5.4

Suppose that (X, ‖·‖X) is a normed vector space. For x ∈ X \ {0} there exists ℓ ∈ X∗ such that ‖ℓ‖∗ = 1 and
ℓ(x) = ‖x‖.

Proof. Define g : span{x} → F by g(λx) = λ‖x‖. Then ‖g‖ = 1 and g(x) = ‖x‖. By Hahn-Banach Theorem g extends
to ℓ ∈ X∗ such that ‖ℓ‖∗ = ‖g‖span{x}∗ = 1.

Corollary 5.5

Suppose that (X, ‖·‖X) is a normed vector space. Then

‖x‖X = sup {|ℓ(x)| : ℓ ∈ X∗, ‖ℓ‖∗ = 1}, ‖ℓ‖∗ = sup {|ℓ(x)| : x ∈ X, ‖x‖X = 1}

Remark. Note that the second supremum is in general not attained, whereas the first supremum is always attained
by the previous proposition.

Corollary 5.6. Dual Space Separates Points

Suppose that (X, ‖·‖X) is a normed vector space. For x, y ∈ X with x 6= y, there exists ℓ ∈ X∗ such that
ℓ(x) 6= ℓ(y).

Proof. Apply Proposition 5.4 to the point x− y ∈ X \ {0}.

5.2 Separation of Convex Sets
In this section we look at a geometric application of the Hahn-Banach Theorem.

Definition 5.7. Minkowski Functional (Off-Syllabus)

Suppose that X is a normed vector space and K ⊆ X is a convex subset such that 0 ∈ int(K). The Minkowski
functional on K is pK : X → R, where

pK(x) = inf
{
λ > 0 : λ−1x ∈ K

}
Remark. It is clear that pK(x) 6 1 for x ∈ K and pK(x) > 1 for x /∈ K.

Proposition 5.8. Sublinearity of Minkowski Functional (Off-Syllabus)

The Minkowski functional pK : X → R is sublinear.

Proof. The homogeneity is trivial. We prove subadditivity. Let x, y ∈ X. Consider Sx := {λ > 0 : λ−1x ∈ K} and
Sy := {µ > 0 : µ−1y ∈ K}. For λ ∈ Sx and µ ∈ Sy, by convexity of K,

x+ y

λ+ µ
=

λ

λ+ µ
λ−1x+

µ

λ+ µ
µ−1y ∈ K

Therefore pK(x + y) 6 λ + µ. Taking the infimum over λ ∈ Sx and µ ∈ Sy we deduce that pK(x + y) 6
pK(x) + pK(y).
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Remark. We say that K ⊆ X is symmetric, if x ∈ K implies that λx ∈ K for all λ ∈ F with |λ| = 1. We say
that K ⊆ X contains no infinite rays, if K contains no subset of the form {λx : λ > 0} for any x ∈ K. Besides
the conditions listed in the proposition, if K is symmetric, then pK is a seminorm on X; if in addition K contains no
infinite rays, then pK is a norm on X.

Theorem 5.9. Hahn-Banach Separation Theorem / Hyperplane Separation Theorem (Proof Off-Syllabus)

Suppose that X is a normed vector space. Let A,B ⊆ X be disjoint convex subsets of X, where A is closed and
B is compact. Then there exists ℓ ∈ X∗ such that

sup
x∈A

Re ℓ(x) < inf
x∈B

Re ℓ(x)

Proof. • The scalar field F = R (the Re can be dropped in the theorem).

Since A is closed and B is compact, from A2 Metric Spaces we know that

dist(A,B) := inf {‖x− y‖ : x ∈ A, y ∈ B} > 0

So there exists ε > 0 such that Aε ∩B = ∅ where Aε := {x ∈ X : ∃ y ∈ A ‖x− y‖ < ε}. Fix x0 ∈ Aε and
y0 ∈ B. Let z0 := x0 − y0 and

M := Aε −B + z0 := {x− y + z0 ∈ X : x ∈ Aε, y ∈ B}

It is clear that M is convex and B(0, ε) ⊆ M . Then the Minkowski functional pM is sublinear and
pM (x) 6 ε−1‖x‖.

Let g : span{z0} → R given by g(λz0) = λ for λ ∈ R. Since z0 /∈ M , pM (z0) > 1 = g(z0) and hence g 6 p
on span{z0}. By Hahn-Banach Theorem, there exists an extension ℓ : X → R of g such that ℓ 6 pM on R.
Then ℓ(x) 6 pM (x) 6 ε−1‖x‖ and hence ℓ ∈ X∗.

Let δ > 0 such that δ‖z0‖ < ε. Then for any x ∈ A and y ∈ B, x + δz0 ∈ Aε and x + δz0 − y + z0 ∈ M .
Then pM (x+ δz0 − y + z0) 6 1. We have

ℓ(x) + δ − ℓ(y) = ℓ(x+ δz0 − y + z0)− ℓ(z0) 6 pM (x+ δz0 − y + z0)− 1 6 0

Taking supremum over x ∈ A and y ∈ B we obtain that

inf
y∈B

ℓ(y)− sup
x∈A

ℓ(x) > δ > 0

• The scalar field F = C.

We first consider X as a real normed vector space and proceed as above to obtain a bounded R-linear
functional ℓ0 such that inf

x∈B
ℓ0(x) > sup

x∈A
ℓ0(x). Then we take ℓ ∈ X∗ with ℓ(x) := ℓ0(x) − iℓ0(ix), so that

ℓ0 = Re ℓ.

Remark. For ℓ ∈ X∗\{0}, {x ∈ X : ℓ(x) = λ} is an affine subspace of X of codimension 1, so it is called a hyperplane
of X. The separation theorem says that we can separate the two disjoint convex sets A and B by a hyperplane
{x ∈ X : ℓ(x) = λ}, where sup

x∈A
ℓ(x) < λ < inf

x∈B
ℓ(x).

By slightly modifying the above proof (in fact simpler) we have the following result.

Theorem 5.10. Hyperplane Separation Theorem (Proof Off-Syllabus)

Suppose that X is a normed vector space. Let A,B ⊆ X be disjoint convex subsets of X, one of which has an
interior point. Then there exists ℓ ∈ X∗ such that

sup
x∈A

Re ℓ(x) 6 inf
x∈B

Re ℓ(x)
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Definition 5.11. Annihilators

Suppose that X is a normed vector space.

• For M ⊆ X, the annihilator of M is

M◦ :=
{
ℓ ∈ X∗ : ℓ

∣∣
M

= 0
}

For N ⊆ X∗, the annihilator of N is

N◦ := {x ∈ X : ∀ ℓ ∈ N ℓ(x) = 0} =
⋂
ℓ∈N

ker ℓ

Proposition 5.12

Suppose that X is a real normed vector space and Y ⊆ X is a closed subspace. Let x0 ∈ X \Y . Then there exists
ℓ ∈ X∗ such that ‖ℓ‖∗ = 1, ℓ

∣∣
Y
= 0, and ℓ(x0) = dist(x0, Y ).

Proof. Define g : span{x0} → R by g(λx0) = λ dist(x0, Y ). It is dominated by the seminorm dist(·, Y ) : X → R.
Hence we can use Hahn-Banach Theorem to extend it to a linear functional ℓ : X → R, which is bounded, as
ℓ(x) 6 dist(x, Y ) 6 ‖x‖. We know that ℓ

∣∣
Y
6 dist(·, Y )

∣∣
Y
= 0 and ℓ(x0) = g(x0) = dist(x0, Y ).

Finally we need to show that ‖ℓ‖ > 1. For ε ∈ (0, 1), there exists y ∈ Y such that ‖x0 − y‖ < 1

1− ε
dist(x0, Y ).

Then
|ℓ(x0 − y)|
‖x0 − y‖

=
dist(x0, Y )

‖x0, y‖
> 1

1− ε

We conclude the proof by taking ε→ 0.

Corollary 5.13

Suppose that X is a real normed vector space.

1. Let M ⊆ X. spanM is dense in X if and only if M◦ = {0};

2. Let N ⊆ X∗. If spanN is dense in X∗, then N◦ = {0};

3. Let Y be a subspace of X. Then Y = (Y ◦)◦.

Proof. 1. The forward direction follows from that

M◦ = (spanM)◦ = (spanM)◦ = X◦ = 0

For the backward direction, suppose that spanM is not dense in X. Then we can take x0 ∈ X \ spanM
and use the previous proposition to find ℓ ∈ X∗ \ {0} such that ℓ ∈M◦.

2. Suppose that x0 ∈ N◦ \ {0}. By Corollary 5.6, there exists ℓ ∈ X∗ such that ℓ(x0) 6= 0. By density there
exists (ℓn) ⊆ spanN such that ℓn → ℓ in X∗. In particular ℓn(x) → ℓ(x) for any x ∈ X. Since ℓn(x0) = 0
for all n ∈ N, we have ℓ(x0) = 0, which is contradictory. Hence N◦ = {0}.

3. Note that (Y ◦)◦ is closed, because it is the interchapter of kernels of some bounded linear functionals. It is
clear that Y ⊆ (Y ◦)◦, so Y ⊆ (Y ◦)◦. On the other hand, if x /∈ Y , then by the previous proposition, there
exists ℓ ∈ Y

◦ ⊆ Y ◦ such that ℓ(x) 6= 0. Hence x /∈ (Y ◦)◦. We deduce that (Y ◦)◦ ⊆ Y .

5.3 Biduals and Reflexivity
Let X be a normed vector space. Then X∗ is a Banach space. The dual space X∗∗ of X∗ is called the bidual of
X.

From A0. Linear Algebra we know that a vector space X is naturally (linearly) isomorphic to its algebraic bidual X ′′

via the map JX : X → X ′′, given by JX(x)(ℓ) := ℓ(x) for any x ∈ X and ℓ ∈ X ′.
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It is not necessary that X is isomorphic to X∗∗. It is clear that JX : X → X∗∗ is injective. By Corollary 5.5, JX is
isometric:

‖JX(x)‖∗∗ = sup {|JX(x)(ℓ)| : ℓ ∈ X∗, ‖ℓ‖∗ = 1} = sup {|ℓ(x)| : ℓ ∈ X∗, ‖ℓ‖∗ = 1} = ‖x‖

Definition 5.14. Reflexive Normed Vector Space

Let (X, ‖·‖) be a normed vector space. We say that X is reflexive if JX : X → X∗∗ is surjective. In such case X
is isometrically isomorphic to X∗∗

Remark. The converse is NOT true! There exists a non-reflexive Banach space that is isometrically isomorphic to its
bidual.

Proposition 5.15. Reflexivity of Hilbert Spaces

Every Hilbert space is reflexive.

Proof. Immediate by Riesz-Fréchet Representation Theorem.

Recall from A2. Metric Spaces that (Y, J) is called a completion of the metric space X, if Y is a complete metric
space, and J : X → Y is a isometric embedding such that J(X) is dense in Y .

Proposition 5.16. Existence of Linear Completion

Every normed vector space X has a completion (Y, J), where Y is a Banach space and J is a linear isometric
embedding.

Proof. Following the above discussion, we choose J = JX and Y := JX(X). Since Y is a closed subspace of X∗∗, Y is
a Banach space. It is trivial that JX(X) is dense in Y .

Proposition 5.17. (Off-Syllabus)

Suppose that X and Y are isometrically isomorphic normed vector spaces. Then X is reflexive if and only if Y is
reflexive.

Proof. It follows directly from the following commutative diagram:

X∗∗ Y ∗∗

X Y

T ∗∗

T

JX JY

Proposition 5.18. (Off-Syllabus)

Let X be a normed vector space. X is reflexive if and only if X is complete and X∗ is reflexive.

Proof.=⇒ : Suppose that X is reflexive. Then X ∼= X∗∗. Since X∗∗ is complete, so is X. For ξ ∈ X∗∗∗, let ℓ = ξ ◦JX ∈
X∗. Since JX is surjective, for φ ∈ X∗∗ there exists x ∈ X such that φ = JX(x). We have

ξ(φ) = ξ ◦ JX(x) = ℓ(x) = JX(x)(ℓ) = φ(ℓ) = JX∗(ℓ)(φ)

Hence ξ = JX∗(ℓ). We deduce that JX∗ is surjective and hence X∗ is reflexive.
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⇐= : Suppose that X is complete and X∗ is reflexive. Then Y := JX(X) is complete and hence closed in X∗∗.
Since JX∗ is surjective, for ξ ∈ Y ◦ there exists ℓ ∈ X∗ such that ξ = JX∗(ℓ). We have

(∀x ∈ X : ℓ(x) = ξ ◦ JX(x) = 0) =⇒ ℓ = 0 =⇒ ξ = 0 =⇒ Y ◦ = {0}

By Corollary 5.13, Y is dense in X∗∗. But Y is closed. We have Y = JX(X) = X∗∗. X is reflexive.

Definition 5.19. Uniform Convexity (Off-Syllabus)

Let X be a normed vector space. Let SX denotes the unit sphere in X. X is said to be uniformly convex, if

∀ ε > 0 ∃ δ > 0 ∀x, y ∈ SX

(
‖x− y‖ > ε =⇒ 1

2
‖x+ y‖ 6 1− δ

)

Proposition 5.20. Uniform Convexity of Inner Product Spaces

Every inner product space is uniformly convex.

Proof. Suppose that X is an inner product space. For ε > 0 and x, y ∈ SX with ‖x− y‖ < ε, by the Parallelogram
Identity we have

‖x+ y‖2 = 2
(
‖x‖2 + ‖y‖2

)
− ‖x− y‖2 6 4− ε2

We take δ = 1−
√
4− ε2

2
. Then 1

2
‖x+ y‖ 6 1− δ.

Proposition 5.21. (Off-Syllabus)

Suppose that X is a uniformly convex Banach space. For each ℓ ∈ X∗ \ {0} there exists a unique x ∈ X such that
‖x‖ = 1 and ℓ(x) = ‖ℓ‖∗.

Proof. • Existence: Let SX denotes the unit sphere in X. Let (xn) ⊆ SX be such that f (xn) → ‖f‖ as n → ∞.
We show that (xn) is a Cauchy sequence. Suppose not. Then there exist ε > 0 and increasing sequences
of integers (nk) , (mk) such that ‖xnk

− xmk
‖ > ε for all k > 1. Let yk =

1

2
(xnk

+ xmk
). Then ‖yk‖ 6 1

for all k > 1 and f (yk) → ‖f‖ as k → ∞. It follows that ‖yk‖ → 1 as k → ∞, so by uniform convexity
‖xnk

− xmk
‖ → 0 as k → ∞, giving the required contradiction.

• Uniqueness: Suppose that x, y ∈ SX are two distinct vectors such that f(x) = f(y) = ‖f‖. By uniform
convexity we must have 1

2‖x+ y‖ < 1 and hence

‖f‖ = f

(
x+ y

2

)
6 ‖f‖‖x+ y‖

2
< ‖f‖

This contradiction completes the proof.

Remark. The proposition says that in a uniformly convex space every functional attains its norm at a unique vector
in the unit sphere. We can compare the result with Proposition 5.4.

Proposition 5.22. Convexity & Reflexivity (Off-Syllabus)

A uniformly convex Banach space is reflexive.

Remark. This is a strong result. For the proof one can refer to Question C.4 of Sheet 3 of C4.1 Further Functional
Analysis (2020-2021). We will not make use of the result subsequently.

https://courses.maths.ox.ac.uk/node/view_material/52832
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5.4 Dual of Lebesgue Spaces
Next we shall establish the dual space of some particular Banach spaces.

Example 5.23. Dual Space of ℓp

Let 1 6 p <∞. Let q be the Hölder conjugate of p, i.e. p−1 + q−1 = 1.

1. (ℓp)∗ ∼= ℓq;

2. (c0)
∗ ∼= ℓ1.

Proof. 1. We define Φp : ℓ
q → (ℓp)∗ by

Φp(x)(y) :=
∑
n∈N

xnyn

We shall show that Φp is a isometric isomorphism. It is well-defined by Hölder’s Inequality:

|Φp(x)(y)| 6
∑
n∈N

|xnyn| 6 ‖x‖q‖y‖p <∞

It is clear that Φp is linear.

Surjectivity: Suppose that f ∈ (ℓp)∗. Let e(j) be the sequence such that e(j)k = δjk. Let xj := f(e(j)) and
x = (xj)j∈N. We claim that x ∈ ℓq.

• 1 < p <∞:

Consider the sequences x(n) ∈ ℓq and y(n) ∈ ℓp given by

x(n) =

n∑
j=0

xje
(j), y(n) =

n∑
j=0

|xj |q−1 sgnxj e(j)

Then x(n)y(n) =
∑n
j=0 |xj |qe(j) and

∥∥∥y(n)∥∥∥
p
=

 n∑
j=0

|xj |pq−p
1/p

=

 n∑
j=0

|xj |q
1−1/q

=
∥∥∥x(n)∥∥∥q−1

q

And
f(y(n)) =

n∑
j=0

|xj |q−1 sgnxj f(e(j)) =
n∑
j=0

|xj |q =
∥∥∥x(n)∥∥∥q

q

We have  n∑
j=0

|xj |q
1/q

=
∥∥∥x(n)∥∥∥

q
=

∥∥x(n)∥∥q
q∥∥x(n)∥∥q−1

q

=
f(y(n))∥∥y(n)∥∥

p

6 ‖f‖p∗

Hence ‖x‖q 6 ‖f‖p∗ and x ∈ ℓq.

• p = 1:

We have
xj = f(e(j)) 6 ‖f‖p∗

∥∥∥e(j)∥∥∥
p
= ‖f‖p∗ <∞

Hence x is bounded and x ∈ ℓ∞.

We note that Φ(x)(e(j)) = xj = f(e(j)). Therefore Φ(x) = f on span{e(j)}j∈N. But span{e(j)}j∈N is dense
in ℓp. We deduce that Φ(x) = f on ℓp. Φ is surjective.

Isometry: For x ∈ ℓq, by Hölder’s Inequality, we have

‖Φp(x)‖p∗ = sup
y∈ℓp\{0}

|Φp(x)(y)|
‖y‖p

6 sup
y∈ℓp\{0}

‖x‖q‖y‖p
‖y‖p

= ‖x‖q
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For the reverse direction,

• 1 < p <∞:

We construct y = (yj)j∈N as in the proof of surjectivity:

yj = |xj |q−1 sgnxj

So ‖y‖p = ‖x‖q−1
q and hence y ∈ ℓp. Now

‖x‖q‖y‖p = ‖x‖qq = Φp(x)(y) 6 ‖Φp(x)‖p∗‖y‖p

So ‖x‖q 6 ‖Φp(x)‖p∗.

• p = 1:

Fix ε > 0. Let N ∈ N such that max
16j6N

|xj | > ‖x‖∞ − ε. Let y ∈ ℓ1 be given by

y = sgnxk e(k)

where k ∈ {1, ..., N} such that |xk| = max
16j6N

|xj |. Then

‖Φ1(x)‖1∗ = ‖Φ1(x)‖1∗‖y‖1 > Φ1(x)(y) = max
16j6N

|xj | > ‖x‖∞ − ε

Since ε is arbitrary we deduce that ‖x‖∞ 6 ‖Φ1(x)‖1∗
This completes the proof.

2. We define Ψ : ℓ1 → (c0)
∗ by

Ψ(x)(y) =
∑
n∈N

xnyn

The proof of surjectivity and isometry are exactly the same as (1), with q = 1.

The only thing to note is that span{e(j)}j∈N is dense in c0 but not in ℓ∞. Therefore we cannot prove that
Φ∞ : ℓ1 → (ℓ∞)∗ is surjective.

Example 5.24. Dual Spaces of Lp(Ω) (Proof of Surjectivity Off-Syllabus)

Let Ω ⊆ Rn be a measurable set. Let 1 6 p < ∞. Let q be the Hölder conjugate of p, i.e. p−1 + q−1 = 1. Then
Lp(Ω)∗ ∼= Lq(Ω). a

aIf we are considering the general Lp(Ω, µ), then the σ-finiteness of µ is required only for p = 1.

Proof. For simplicity we only consider the scalar field F = R.

As for the sequence spaces, we define Φp : Lq(Ω) → Lp(Ω)∗ by

Φp(f)(g) =

∫
Ω

f · g

The proof of isometry of Φp is essentially the same as for sequence spaces. When p = 1, we need to replace the
e(k) by suitable indicator functions 1Ak

. The main work is to prove surjectivity.

• First we consider the case where m(Ω) <∞.

Let ξ ∈ Lp(Ω)∗. We define ν : MLeb(Ω) → R by ν(E) := ξ(1E). This is well-defined because every
measurable set E has finite measure and hence 1E ∈ Lp(Ω). We claim that ν is a signed measure. Indeed,
let {Ek}∞k=0 be a countable disjoint collection of measurable sets and E =

⋃
k Ek. By the countable

additivity of the Lebesgue measure,

m(E) =

∞∑
k=0

m (Ek) <∞ =⇒ lim
n→∞

∞∑
k=n+1

m (Ek) = 0
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Consequently,

lim
n→∞

∥∥∥∥∥1E −
n∑
k=1

1Ek

∥∥∥∥∥
p

= lim
n→∞

( ∞∑
k=n+1

m (Ek)

)1/p

= 0)

But ξ is both linear and continuous on Lp(Ω) and hence

ξ (χE) =

∞∑
k=0

ξ (χEk
) =⇒ ν(E) =

∞∑
k=0

ν (Ek)

To show that ν is a signed measure it must be shown that the series on the right hand side converges

absolutely. We set ck = sgn ξ(1Ek
). Then arguing as above we conclude that the series

∞∑
k=0

|ν (Ek)| =

∞∑
k=0

ξ (ck1Ek
) is Cauchy and thus convergent. Thus ν is a signed measure. Moreover, it is clear that

|ν| � m.

By Radon-Nikodym Theorem (Corollary 2.29), there exists a function f : Ω → R such that

ξ(1E) = ν(E) =

∫
E

f dx

By linearity we have
ξ(φ) =

∫
Ω

fφ dx

for all simple functions φ : Ω → R.

• We claim that f ∈ Lq(Ω). Since ξ is bounded, we have∣∣∣∣∫
Ω

fφ dx
∣∣∣∣ = |ξ(φ)| 6 ‖ξ‖p∗‖φ‖p

– 1 < p <∞:

Let (φn) be a sequence of non-negative simple functions such that φn ↗ |f | pointwise. Let ψn :=
sgn f · φq−1

n . Then ψn is also a simple function with |f |φq−1
n = fψn and

‖ψn‖pp =
∫
Ω

|ψn|p =
∫
Ω

|φn|p(q−1)
= ‖φn‖qq

We have

‖φn‖qq = ‖φn‖qq =
∣∣∣∣∫

Ω

φqn

∣∣∣∣ 6 ∣∣∣∣∫
Ω

|f |φq−1
n

∣∣∣∣ = ∣∣∣∣∫
Ω

fψn

∣∣∣∣ 6 ‖ξ‖p∗‖ψn‖p = ‖ξ‖p∗‖φn‖
q/p
q

Therefore
‖φn‖q = ‖φn‖q−q/pq 6 ‖ξ‖p∗

Finally, by Fatou’s Lemma,

‖f‖qq =
∣∣∣∣∫

Ω

|f |q
∣∣∣∣ 6 lim inf

n→∞

∫
Ω

φqn 6 ‖ξ‖qp∗

We deduce that ‖f‖q 6 ‖ξ∗‖p. In particular f ∈ Lq(Ω).

– For p = 1:

Supoose that ‖f‖∞ > ‖ξ‖1∗. Then E := {x ∈ Ω : |f(x)| > ‖ξ‖1∗ + ε} has positive measure. But

m(E)‖ξ‖1∗ <
∣∣∣∣∫
E

|f |
∣∣∣∣ = ∣∣∣∣∫

Ω

f sgn f 1E
∣∣∣∣ 6 ‖ξ‖1∗

∥∥ sgn f 1E
∥∥
1
= m(E)‖ξ‖1∗

which is contradictory. Hence ‖f‖∞ 6 ‖ξ‖1∗ and f ∈ L∞(Ω).
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Now we use the fact that the set of simple functions is dense in Lp(Ω) to conclude that

ξ(g) =

∫
Ω

fg dx

for all g ∈ Lp(Ω). Φp is surjective.

• Next we consider general measurable set Ω ⊆ Rn. We use the fact the Lebesgue measure is σ-finite. So let
(Ωn) be an ascending sequence of measurable sets such that Ω =

⋃
n Ωn and m(Ωn) < ∞. From above we

have shown that there exists fn : Ωn → R such that ‖fn‖q 6 ‖ξ‖p∗, and for g ∈ Lp(Ωn) ⊆ Lp(Ω),

ξ(g) =

∫
Ωn

fng dx

From Ωn ⊆ Ωn+1 we may take fn+1

∣∣
Ωn

= fn. Let f =
⋃
n fn. Then by Fatou’s Lemma,∫

Ω

|f |q 6 lim inf
n→∞

∫
Ωn

|fn|q 6 ‖ξ‖p∗

Hence f ∈ Lq(Ω). For g ∈ Lp(Ω), we take gn := g
∣∣
Ωn

∈ Lp(Ωn). By Dominated Convergence Theorem,

lim
n→∞

∫
Ω

|gn − g|p =
∫
Ω

lim
n→∞

|g|p|1Ω − 1Ωn
|p = 0

Hence gn → g in Lp(Ω). Finally,

ξ(g) = lim
n→∞

ξ(gn) (continuity of ξ)

= lim
n→∞

∫
Ω

fngn = lim
n→∞

∫
Ω

fgn = lim
n→∞

∫
Ω

fg (Dominated Convergence Theorem)

We deduce that Φp(f) = ξ. Φp is surjective.

Corollary 5.25. Reflexive Banach Spaces

Let 1 < p <∞. Then ℓp and Lp(Ω) are reflexive.

Proof. We have shown that Φp : ℓq → (ℓp)∗ is an isometric isomorphism. Then for x ∈ ℓp and f = Φp(y) ∈ (ℓp)∗

Jℓp(x)(f) = f(x) = Φp(y)(x) =

∞∑
n=0

xnyn = Φq(x)(y) = Φq(x)(Φ
−1
p (f)) = ((Φ−1

p )′ ◦ Φq)(x)(f)

Hence Jℓp = (Φ−1
p )′ ◦ Φq is an isometric isomorphism. ℓp is reflexive. The proof for Lp(Ω) is identical.

Proposition 5.26. Dual Spaces and Separability (Off-Syllabus)

Suppose that X is a normed vector space. If X∗ is separable, then X is separable.

Proof. Let (fn) be a dense countable subset of SX∗ , the unit sphere of X∗. For each n ∈ N, since

1 = ‖fn‖∗ = sup
∥x∥61

|fn(x)|

We choose xn ∈ X with |fn(xn)| > 1/2 and ‖xn‖ 6 1. We claim that Y := span{xn}n∈N is dense in X. Suppose
not. Then by Corollary 5.13.1, Y ◦ 6= {0}. We take f ∈ SX∗ ∩Y ◦. There exists n ∈ N such that ‖f − fn‖∗ < 1/2.
But

0 < |f(xn)| > |fn(xn)| − |(f − fn)(xn)| < 1/2− ‖f − fn‖∗ < 1/2− 1/2 = 0

which is contradictory. We conclude that X is separable.
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Corollary 5.27. Non-Reflexive Banach Spaces (Proof Off-Syllabus)

(ℓ∞)∗ 6∼= ℓ1 and L∞(Ω)∗ 6∼= L1(Ω). In particular, the spaces ℓ1, ℓ∞, L1(Ω), and L∞(Ω) are non-reflexive.

Proof. We know that ℓ1 and L1(Ω) are separable, but ℓ∞ and L∞(Ω) are not. Therefore by the previous proposition
(ℓ∞)∗ 6∼= ℓ1 and L∞(Ω)∗ 6∼= L1(Ω).

If ℓ1 is reflexive, then ℓ1 ∼= (ℓ1)∗∗ ∼= (ℓ∞)∗, which is contradictory. Similarly, L1(Ω) is not reflexive. Finally,
since (ℓ1)∗ ∼= ℓ∞ and L1(Ω)∗ ∼= L∞(Ω), by Proposition 5.18, ℓ∞ and L∞(Ω) are not reflexive.

5.5 Weak and Weak* Convergence

Definition 5.28. Weak Convergence

Suppose that (X, ‖·‖) is a normed vector space. For (xn)n∈N ⊆ X, we say that xn converges weakly to x ∈ X, if
ℓ(xn) → ℓ(x) as n→ ∞ for all ℓ ∈ X∗. The weak convergence is denoted by a half arrow: xn ⇀ x.

Remark. Note that, since X∗ separates points in X, the weak limit of (xn) is necessarily unique.

Remark. To stress the difference, the usual convergence ‖xn − x‖ → 0 is called the strong convergence.

The weak convergence of sequences induces a topology on X, namely the weak topology:

Definition 5.29. Weak Topology (Off-Syllabus)

The weak topology on X is the coarsest topology on X with respect to which every ℓ ∈ X∗ is continuous. The
topology is denoted by σ(X,X∗).

Remark. More explicitly, the weak topology on X is generated by the open sets

{x ∈ X : |ℓk(x− x0)| < ε, 1 6 k 6 n}

where x0 ∈ X, n ∈ Z+, and ε > 0.

Proposition 5.30. Strong Convergence =⇒ Weak Convergence

Suppose that (X, ‖·‖) is a normed vector space. If (xn) ⊆ X such that xn → x ∈ X as n → ∞, then xn ⇀ x as
n→ ∞.

Proof. it follows directly from that
|ℓ(xn − x)| 6 ‖ℓ‖∗‖xn − x‖ → 0

as n→ ∞, for all ℓ ∈ X∗.

Remark. In finite-dimensional normed vector spaces, the strong and weak convergence are equivalent. It is not true in
general. For example, suppose that X is a separable Hilbert space with a orthonormal basis (xn). Then (xn) converges
weakly but not strongly to 0 as n→ ∞.

Proposition 5.31. Weak Convergence =⇒ Boundedness & Lower Semi-Continuity of Norm

Suppose that (X, ‖·‖) is a normed vector space. Let (xn) ⊆ X such that xn ⇀ x ∈ X. Then sup
n∈N

‖xn‖ < ∞. In

addition, we have ‖x‖ 6 lim inf
n→∞

‖xn‖.

Proof. Note that each xn defines a linear functional on X∗: Tn(ℓ) = ℓ(xn) for all ℓ ∈ X∗. Furthermore, ‖Tn‖∗∗ = ‖xn‖.
Now for each ℓ ∈ X∗, ℓ (xn) is convergent, and hence bounded. The uniform boundedness principle thus implies
that ‖Tn‖ is bounded. (Note that X∗ is complete regardless whether X is complete or not.) Hence (xn) is
uniformly bounded in norm.
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Next by Proposition 5.4, there exists ℓ ∈ X∗ such that ‖ℓ‖∗ = 1 and ℓ(x) = ‖x‖. Then

‖xn‖ = ‖ℓ‖∗‖xn‖ > |ℓ(xn)| → |ℓ(x)| = ‖x‖

as n→ ∞. Hence ‖x‖ 6 lim inf
n→∞

‖xn‖.

Example 5.32. Schur Property of ℓ1

A weakly convergent sequence (xn) ⊆ ℓ1 is strongly convergent.

Proof. Suppose that (xn) ⊆ ℓ1 converges weakly but not strongly to x ∈ ℓ1. Let yn := xn − x. Then there exists a
subsequence (zn) of (yn) such that

‖zn‖1 =
∑
j∈N

|zn(j)| > ε

for some ε > 0.

We shall construct the increasing sequences (nk) and (mk) in the following inductive way:

• Let m0 = 0 and n0 = 0.

• Suppose that we have constructed mk−1 and nk−1. We claim that there exists nk > nk−1 such that∑
j6mk−1

|znk
(j)| < ε

8

From part (a) we know that zn(j) → 0 as n→ ∞ for each n ∈ N. Then

∀ i ∈ {0, ..., k − 1} ∃Ni ∈ N ∀n > Ni |zn(i)| <
ε

8(mk−1 + 1)

Let nk := max {nk−1, N0, ..., Nk−1}. Then

∑
j6mk−1

|znk
(j)| <

mk−1∑
j=0

ε

8(mk−1 + 1)
=
ε

8

• We claim that there exists mk > mk−1 such that∑
j>mk

|znk
(j)| < ε

8

Since (znk
) ∈ ℓ1,

‖znk
‖1 =

∑
j∈N

|znk
(j)| <∞

Choose sufficiently large mk such that
mk∑
j=0

|znk
(j)| > ‖znk

‖1 −
ε

8

and the result follows.

We identify (ℓ1)∗ with ℓ∞. Consider b ∈ ℓ∞ such that b(j) = sgn znk
for mk−1 < j 6 mk.

For sufficiently large k,

〈b, znk
〉 =

∑
j∈N

b(j)znk
(j) =

mk−1∑
j=0

+

∞∑
j=mk+1

 b(j)znk
(j) +

mk∑
j=mk−1+1

|znk
(j)|
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where ∣∣∣∣∣∣
mk−1∑

j=0

+

∞∑
j=mk+1

 b(j)znk
(j)

∣∣∣∣∣∣ 6
mk−1∑
j=0

|znk
(j)|+

∞∑
j=mk+1

|znk
(j)| < ε

8
+
ε

8
=
ε

4

In addition,

ε < ‖x‖ =

mk−1∑
j=0

+

∞∑
j=mk+1

 |znk
(j)|+

mk∑
j=mk−1+1

|znk
(j)| < ε

4
+

mk∑
j=mk−1+1

|znk
(j)|

Therefore
b(znk

) >
ε

4
+
(
ε− ε

4

)
= ε

contradicting that xn ⇀ 0 weakly in ℓ1. We conclude that xn → 0 in ℓ1.

Theorem 5.33. Radon-Riesz Theorem

Suppose that X is a uniformly convex Banach space. Let (xn) ⊆ X such that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖ as
n→ ∞. Then xn → x strongly in X as n→ ∞.

Proof. Suppose that x = 0. Then ‖xn‖ → 0 directly implies that xn → 0 in X by definition. Now suppose that ‖x‖ 6= 0.
Since ‖xn‖ → ‖x‖ as n → ∞, there exists N ∈ N such that for all n > N , ‖xn‖ > 1

2
‖x‖. By discarding the

first N terms in the sequence, we assume that ‖xn‖ 6= 0 for all n ∈ N. Let yn := xn/‖xn‖ and y := x/‖x‖. For
ℓ ∈ X∗,

lim
n→∞

ℓ(yn) = lim
n→∞

ℓ(xn)

‖xn‖
=

lim
n→∞

ℓ(xn)

lim
n→∞

‖xn‖
=
ℓ(x)

‖x‖
= ℓ(y)

Hence yn ⇀ y in X. Let zn :=
1

2
(yn + y). Then zn ⇀ y in X. By Proposition 5.31,

1 = ‖y‖ 6 lim inf
n→∞

‖zn‖ =
1

2
lim inf
n→∞

‖yn + y‖ (∗)

Suppose that yn 6→ y in X. Then there exists ε > 0 such that lim sup
n→∞

‖yn − y‖ > ε. By definition of uniform
convexity, there exists δ > 0 such that ‖yn + y‖ 6 2(1− δ) whenever ‖yn − y‖ > ε. Hence

lim inf
n→∞

‖yn + y‖ 6 2(1− δ)

This contradicts the equation (∗). We deduce that yn → y in X. Finally, since ‖xn‖ → ‖x‖ in R and
xn = yn‖xn‖, by algebra of limits we conclude that xn → x in X.

Theorem 5.34. Mazur’s Theorem

Let X be a normed vector space and K ⊆ X a closed convex set. Let (xn) ⊆ K be a sequence such that
xn ⇀ x ∈ X weakly. Then x ∈ K.

Proof. Suppose that x /∈ K. Then there exists an open ball B(x, r) such that B(x, r) ∩ K = ∅. By Hyperplane
Separation Theorem (Theorem 5.10) there exists ℓ0 ∈ X∗ \ {0} and c ∈ R such that

sup
y∈K

Re ℓ0(y) 6 c 6 inf
z∈B(x,r)

Re ℓ0(z)

Therefore for w ∈ B(0, 1),

Re ℓ0(w) =
1

r
(Re ℓ0(x+ rw)− Re ℓ0(x)) >

1

r
(c− Re ℓ0(x))
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Replacing w with −w we obtain

Re ℓ0(w) = −Re ℓ0(−w) 6 −1

r
(c− Re ℓ0(x))

Hence
|Re ℓ0(w)| 6

1

r
(Re ℓ0(x)− c) (∗)

On the other hand, since xn ⇀ x, we have ℓ0(xn) → ℓ0(x). Therefore

Re ℓ0(xn) 6 c =⇒ Re ℓ0(x) = lim
n→∞

Re ℓ0(xn) 6 c (∗∗)

Substituting (∗∗) into (∗) we obtain |Re ℓ0(w)| 6 0, and hence Re ℓ0(w) = 0. Replacing w with iw we also have
Im ℓ0(w) = 0. We deduce that ℓ0 = 0, which is contradictory. We conclude that x ∈ K,

Remark. In the proof of Mazur’s Theorem, we see that in fact a sequence of finite linear convex combinations of (xn)
converges strongly to x. For uniformly convex Banach spaces, the result can be substantially improved as follows.

Theorem 5.35. Banach-Saks Theorem

Suppose that X is a uniformly convex Banach space. Any weakly convergent sequence (xn) ⊆ X has a subsequence
(xnk

) which converges strongly in the Cesàro sense:

1

m

m∑
k=1

xnk
→ x ∈ X as m→ ∞

Proof when X is a Hilbert space:

Without loss of generality we assume that xn ⇀ 0 and ‖xn‖ 6 1 for all n ∈ Z+. We construct subsequence of
(xn) inductively. Let n1 = 0. Suppose that we have nk ∈ N. Let yk :=

∑k
j=0 xnj and ‖yk‖2 6 3k (induction

hypothesis). Then we have 〈yk, xn〉 → 0 as n→ ∞. Therefore there exists nk+1 > nk such that
∣∣〈yk, xnk+1

〉∣∣ < 1.
Now we have ∥∥ynk+1

∥∥2 = ‖ynk
‖2 + 2Re

〈
ynk

, xnk+1

〉
+
∥∥xnk+1

∥∥2 6 3k + 2 + 1 = 3(k + 1)

which completes the induction. Therefore we have∥∥∥∥∥ 1

m

m∑
k=1

xnk

∥∥∥∥∥
2

=
1

m2
‖ym‖2 6 3

m
→ 0

as m→ ∞. Therefore (xnk
) converges strongly to 0 in the Cesàro sense.

Definition 5.36. Weak* Convergence

Suppose that (X, ‖·‖) is a normed vector space. For (ℓn)n∈N ⊆ X∗, we say that ℓn converges weak* to ℓ ∈ X∗, if
ℓn(x) → ℓ(x) as n→ ∞ for all x ∈ X.

Remark. Similarly we also have the notion of weak* topology. The weak* topology on X∗ is σ(X∗, JX(X)), which is
the coarsest topology on X∗ with respect to which every JX(x) ∈ X∗∗ is continuous.

There are three different modes of convergence on X∗: strong convergence, weak convergence, and weak* convergence.
If X is reflexive, then the weak and weak* convergence on X∗ are equivalent;, and the corresponding weak topology
σ(X∗�X∗∗) and weak* topology σ(X∗, JX(X)) are equal.

5.6 Weak Sequential Compactness
In Proposition 1.30, we have shown that the closed unit ball is no longer compact with respect to the strong topology for
infinite-dimensional normed vector spaces. In this section we shall establish a result asserting that in reflexive Banach
spaces the closed unit ball is compact with respect to the weak topology.
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Definition 5.37. Weak Sequential Compactness

Suppose that X is a normed vector space. K ⊆ X is called weakly sequentially compact, if every sequence in K
has a subsequence weakly convergent to a point in K.

Similarly we also have the notion of weak* sequentially compactness for subsets of X∗.

Definition 5.38. Weak Compactness (Off-Syllabus)

Suppose that X is a normed vector space. K ⊆ X is called weakly compact, if K is compact with respect to the
weak topology σ(X,X∗).

Similarly we also have the notion of weak* compactness for subsets of X∗.

Remark. For normed vector spaces (and more generally metric spaces), compactness is equivalent to sequential com-
pactness. However, it is not true in general that weak compactness and weak sequential compactness are equivalent,
as the weak topology may not be metrisable.

Theorem 5.39. Banach-Alaoglu Theorem (Off-Syllabus)

Suppose that X is a real normed vector space. The closed unit ball B∗
X ⊆ X∗ is weak* compact, i.e., compact

with respect to the weak* topology.

Proof. For each x ∈ X we associate a compact interval

Kx := [−‖x‖, ‖x‖] ⊆ R

The product space
K :=

∏
x∈X

Kx = {f : X → R | ∀x ∈ X |f(x)| 6 ‖x‖} ⊆ RX

LetX ′ ⊆ RX be the algebraic dual ofX. Then the interchapterX ′∩K is closed unit ballBX∗ := {ℓ ∈ X∗ : ‖ℓ‖∗ = 1}.
The weak* topology on BX∗ is precisely the induced topology on RX .

By Tychonoff’s Theorem1, K is compact with respect to the product topology. To show that BX∗ is compact,
it suffices to show that X ′ is closed in RX .

For x, y ∈ X and λ ∈ R, we define φx,y : RX → R and ψx,λ : RX → R by

φx,y(f) = f(x+ y)− f(x)− f(y), ψx,λ = f(λx)− λf(x)

Then
X ′ =

⋂
x,y∈X

φ−1
x,y ({0}) ∩

⋂
x∈X,λ∈R

ψ−1
x,λ ({0})

is closed with respect to the product topology. This completes the proof.

Theorem 5.40. Eberlein-Šmulian Theorem

Let X be a Banach space. Let BX ⊆ X be the closed unit ball of X. The following are equivalent:

1. X is reflexive;

2. BX is weakly sequentially compact;

3. BX is weakly compact.

Remark. The only examinable proof is the direction 1 =⇒ 2 in the special case of Hilbert spaces.

Proof.
1Tychonoff’s Theorem: The arbitrary product of compact spaces is compact with respect to the product topology.
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1 =⇒ 2: Suppose that (xn) ⊆ BX . Let Y := span{xn}n∈N.

• Y is reflexive. (trivial if X is a Hilbert space)

Let ξ0 ∈ Y ∗∗. Let RY ∗ ∈ ℬ(X∗, Y ∗) be the restriction operator and R′
Y ∗ ∈ ℬ(Y ∗∗, X∗∗) be its dual

operator . Let ξ := R′
Y ∗(ξ0) ∈ X∗∗. Since X is reflexive, there exists w ∈ X such that ξ = JX(w).

We claim that w ∈ Y ∗. Suppose not. Then by Proposition 5.12 there exists ℓ ∈ Y ◦ such that
ℓ(w) = dist(w, Y ) > 0. But

ℓ(w) = ξ(ℓ) = R′
Y ∗(ξ0)(ℓ) = ξ0 ◦RY ∗(ℓ) = ξ0(0) = 0

This is a contradiction. We have w ∈ Y . In particular ξ0 = JY (w). We deduce that Y is reflexive.

• (JY (xn))n∈N ⊆ Y ∗∗ has a weak* convergent subsequence. (diagonal argument, very important!)

Since Y is reflexive and separable, by Proposition 5.26, Y ∗ is also separable. Suppose that (ℓn)∞n=1 is
dense in Y ∗. We construct S : N× N → N inductively as follows:

First, let S(m, 0) := m. Suppose that we have constructed S(·, n) : N → N. Consider the sequence
(JX(xS(m,n))(ℓn+1))m∈N = (ℓn+1(xS(m,n)))m∈N ⊆ R, which is bounded in R, because (xn) is bounded.
By Bolzano-Weierstrass Theorem, there exists a subsequence S(m,n+1)m∈N of S(m,n)m∈N such that
(JX(xS(m,n+1))(ℓn+1))m∈N is convergent. Now we take the subsequence (xS(m,m)) of (xm). Then
(JX(xS(m,m))(ℓn))m∈N is convergent for each n ∈ Z+.

Note that (JX(xS(m,m))) is uniformly bounded by 1. Since (ℓn) is dense in Y ∗, by Proposition 4.3, we
have that (JX(xS(m,m))(ℓ)) is convergent for each ℓ ∈ Y ∗. Let ψ : Y ∗ → F such that

ψ(ℓ) := lim
m→∞

JX(xS(m,m))(ℓ)

for all ℓ ∈ Y ∗. It is straightforward to check that ψ ∈ Y ∗∗. Therefore ψ is the weak* limit of
(JX(xS(m,m))) in Y ∗∗.

• (xn)n∈N ⊆ X has a weak convergent subsequence.

Let x := J−1
X (ψ) ∈ Y . For ℓ ∈ X∗, we have ℓ(xn) = RY ∗ ◦ ℓ(xn) and ℓ(x) = RY ∗ ◦ ℓ(x). We have

lim
m→∞

ℓ(xS(m,m)) = lim
m→∞

RY ∗◦ℓ(xS(m,m)) = lim
m→∞

JX(xS(m,m))(RY ∗(ℓ)) = ψ◦RY ∗(ℓ) = RY ∗◦ℓ(x) = ℓ(x)

We deduce that xS(m,m) ⇀ x as m→ ∞. In particular, BX is weakly sequentially compact.

1 =⇒ 3: Since X is reflexive, JX : X → X∗∗ is an isometric isomorphism and hence is a homeomorphism with
respect to the weak topology of the both spaces. By Proposition 5.18, X∗ is also reflexive. Hence the weak
topology on X∗∗ agrees with the weak* topology. By the Banach-Alaoglu Theorem, BX∗∗ ⊆ X∗∗ is weakly
compact. Therefore BX ⊆ X is also weakly compact.

2 =⇒ 1: Omitted. (Too difficult for an introducotry course like this...)

3 =⇒ 1: Omitted. (Too difficult for an introducotry course like this...)

Corollary 5.41. Closest Point in a Closed Convex Subset, Reflexive Banach Space

Let X be a reflexive Banach space and K ⊆ X a non-empty closed convex set. Then

∀x ∈ X ∃ y ∈ K : ‖x− y‖ = dist(x,K)

In particular, y ∈ K is unique if X is uniformly convex.

Proof. Let (yn) ⊆ K such that ‖x− yn‖ → dist(x,K) as n→ ∞. Since (yn) is bounded and X is reflexive, by Eberlein-
Šmulian Theorem, yn ⇀ y for some y ∈ X. Since K is closed and convex, by Mazur’s Theorem y ∈ K. In
particular, ‖x− y‖ > dist(x,K). On the other hand, by the lower semi-continuity of norm,

‖x− y‖ 6 lim inf
n→∞

‖x− yn‖ = dist(x,K)

We conclude that ‖x− y‖ = dist(x,K).
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Now in addition suppose that X is uniformly convex. Without loss of generality, we assume that x /∈ K so that
dist(x,K) > 0. Suppose that y, y′ ∈ K such that ‖x− y‖ = ‖x− y′‖ = dist(x,K). Suppose for contradiction

that y 6= y′. Let z :=
x− y

dist(x,K)
and z′ := x− y′

dist(x,K)
. Then z, z′ ∈ SX and z 6= z′. By uniform convexity of X

(in fact strict convexity would suffice), there exists δ > 0 such that

1

2
‖z + z′‖ < 1− δ =⇒

∥∥∥∥x− y + y′

2

∥∥∥∥ < (1− δ) dist(x,K) < dist(x,K)

But by convexity of K, (y + y′)/2 ∈ K, which is contradictory. We deduce that y = y′.



Chapter 6

Spectral Theory
In this chapter, we discuss the spectrum of a linear operator. We categorise different types of spectra and discuss
the properties of spectra of bounded operators on Banach spaces. Then we focus on the normal operators on Hilbert
spaces.

For convenience, we shall restrict our attension to the complex scalar field (thanks to its algebraic closedness.)

6.1 Spectra and Resolvent Sets
Spectra is the generalisation of eigenvalues of linear operators in infinite-dimensional normed vector spaces. Recall from
Linear Algebra that if T is a linear operator on a finite-dimensional vector space X, then

λ is an eigenvalue of T (λ id−T ) is not injective (λ id−T ) is not invertible (λ id−T ) is not surjective

The second and the third equivalence no longer holds for infinite-dimensional spaces. We have the following defini-
tions.

Definition 6.1. Spectra, Resolvent Sets

Suppose that X is a complex normed vector space. Let T ∈ ℬ(X).

• The spectrum σ(T ) of T is the set of λ ∈ C such that λ id−T has no inverse in ℬ(X);

• The resolvent set of T is ρ(T ) := C \ σ(T ). For λ ∈ ρ(T ), Rλ(T ) := (T − λ id)−1 is called the resolvent of
T at λ.

Definition 6.2. Point Spectra, Continuous Spectra, Residual Spectra

Suppose that X is a complex normed vector space. Let T ∈ ℬ(X).

• The point spectrum σp(T ) of T : λ ∈ σp(T ) ⇐⇒ λ id−T is not injective.

The elements in σp(T ) are called eigenvalues of T ; the non-trivial elements in ker(λ id−T ) are called
eigenvectors of T .

• The continuous spectrum σc(T ) of T : λ ∈ σc(T ) ⇐⇒ λ id−T is injective and im(λ id−T ) is a proper dense
subset of X.

• The residual spectrum σr(T ) of T : λ ∈ σc(T ) ⇐⇒ λ id−T is injective and im(λ id−T ) ( X.

By definition, σ(T ) is the disjoint union σp(T ) ∪ σc(T ) ∪ σr(T ).

Definition 6.3. Approximate Point Spectra

λ ∈ C is called an approximate eigenvalue of T , if there exists a sequence (xn) ⊆ X such that ‖xn‖ = 1 and
‖λxn − T (xn)‖ → 0 as n→ ∞. The approximate point spectrum σap(T ) of T is the set of approximate eigenvalues
of T .

54



6.1. SPECTRA AND RESOLVENT SETS 55

Remark. It is clear from definition that σp(T ) ⊆ σap(T ) ⊆ σ(T ).

Proposition 6.4. σc(T ) ⊆ σap(T )

Suppose that X is a complex Banach space and T ∈ ℬ(X). Then σc(T ) ⊆ σap(T ).

Proof. Suppose for contradiction that λ ∈ σc(T ) \ σap(T ). λ /∈ σap(T ) and linearity implies that there exists c > 0 such
that

‖(λ id−T )x‖ > c‖x‖

for all x ∈ X. Let Y := im(λ id−T ). Note that λ id−T is bijective from X to Y . Hence it is invertible in
ℬ(X,Y ) and its inverse U ∈ ℬ(Y,X). Since Y is dense in X, by Proposition 3.2 there exists a unique extension
V ∈ ℬ(X,X) of U . Now pick p ∈ X \ Y and (pn) ⊆ Y such that pn → p. Then U(pn) → V (p) and therefore

(λ id−T )V (p) = lim
n→∞

(λ id−T )U(pn) = lim
n→∞

pn = p

Hence p ∈ Y , which is contradictory. We conclude that σc(T ) ⊆ σap(T ).

Proposition 6.5. Spectra of Dual Operators

Suppose that X is a complex Banach space and T ∈ ℬ(X). Then we have

1. σr(T ) ⊆ σp(T
′);

2. σc(T
′) ⊆ σc(T ).

Proof. 1. Let λ ∈ σr(T ). Let Y := λ id−T . Then Y ⊆ X. By Corollary 5.13.1, there exists ℓ ∈ Y ◦ such that
‖ℓ‖∗ = 1. For all x ∈ X,

(λ idX∗ −T ′) ◦ ℓ(x) = ℓ((λ idX −T )x) = 0

Hence (λ idX∗ −T ′)ℓ = 0 and λ ∈ σp(T
′).

2. Suppose that λ ∈ σc(T
′). By Proposition 1.35 and Corollary 5.13, ker(λ idX∗ −T ′) = {0} implies that

im(λ idX −T ) = X; im(λ idX∗ −T ′) = X∗ implies that ker(λ idX −T ) = {0}. Since λ idX −T is not
invertible, we deduce that λ ∈ σc(T ).

Corollary 6.6. σ(T ) = σap(T ) ∪ σp(T
′)

Suppose that X is a complex Banach space and T ∈ ℬ(X). Then σ(T ) = σap(T ) ∪ σp(T
′).

Hilbert spaces are reflexive and we can use the adjoints to replace the dual operators. We have the following re-
sults.

Proposition 6.7. Spectra of Operators in Hilbert Spaces

Suppose that X is a complex Hilbert space and T ∈ ℬ(X). Then we have

1. σp(T ) ⊆ σ∗
p(T

∗) ∪ σ∗
r (T

∗);

2. σc(T ) = σ∗
c (T

∗);

3. σr(T ) ⊆ σ∗
p(T

∗).

where σ∗
· (T ) := {λ : λ ∈ σ·(T )}.

Lemma 6.8

Suppose that X is a complex Hilbert space and T ∈ ℬ(X). Then σ(T ) ⊆ {〈x, Tx〉 : ‖x‖ = 1}.

Proof. Let λ ∈ σ(T ) = σap(T ) ∪ σ∗
p(T

∗). If λ ∈ σap(T ), then there exists (xn) ⊆ SX such that (λ id−T )xn → 0 as
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n→ ∞. By Cauchy-Schwarz Inequality,

|λ− 〈xn, Txn〉| =
∣∣∣λ‖xn‖2 − 〈xn, Txn〉

∣∣∣ = |〈xn, (λ id−T )xn〉| 6 ‖xn‖‖(λ id−T )xn‖ → 0

as n→ ∞. Hence λ ∈ {〈x, Tx〉 : ‖x‖ = 1}.

If λ ∈ σ∗
p(T

∗), then λ ∈ σp(T
∗) and so there exists x ∈ SX with T ∗(x) = λ(x). We have

λ =
〈
λx, x

〉
= 〈T ∗(x), x〉 = 〈x, Tx〉

Hence λ ∈ {〈x, Tx〉 : ‖x‖ = 1}.

6.2 Bounded Operators on Banach Spaces

Proposition 6.9. Properties of the Spectra of Bounded Operators on Banach Spaces

Suppose that X is a complex Banach space and T ∈ ℬ(X).

1. The resolvent set ρ(λ) is open in C. The map ρ(T ) → ℬ(X), λ 7→ Rλ(T ) is analytic, in the sense that for
any λ0 ∈ ρ(T ), there exists an open neighbourbood Ω ⊆ ρ(T ) of λ0 such that the resolvent operator is given
by

Rλ(T ) =

∞∑
n=0

(λ− λ0)
nRλ0(T )

n+1

2. σ(T ) is non-empty, compact, and bounded by ‖T‖ℬ(X).

Proof. 1. Fix λ0 ∈ ρ(T ), so Rλ0(T ) = (T − λ0 id)−1. By Corollary 1.22, T − λ0 id−S is invertible whenever ‖S‖ <∥∥Rλ0(T )

∥∥−1. The inverse is given by the Neumann series

(T − λ0 id−S)−1 = (T − λ0 id)−1
∞∑
n=0

(
(T − λ0 id)−1S

)n
= Rλ0

(T )

∞∑
n=0

(Rλ0
(T )S)n

For λ ∈ B
(
λ0,
∥∥Rλ0(T )

∥∥−1
)
, we put S := (λ−λ0) id. So T −λ id = T −λ0 id−S is invertible, with inverse

given by

Rλ(T ) = Rλ0(T )

∞∑
n=0

(λ− λ0)
nRλ0(T )

n =

∞∑
n=0

(λ− λ0)
nRλ0(T )

n+1

Hence λ 7→ Rλ(T ) is analytic. We have also shown that ρ(T ) is open.

2. σ(T ) = C \ ρ(T ) is closed. For λ ∈ C with |λ| > ‖T‖, by Lemma 1.21, id− 1

λ
T is invertible, and hence so is

λ id−T . Therefore σ(T ) ⊆ B(0, ‖T‖). Now σ(T ) is closed and bounded. So it is compact by Heine-Borel
Theorem.

Lastly we shall show that σ(T ) 6= ∅. Suppose that it is empty. The resolvent map λ 7→ Rλ(T ) is defined
on the whole C. For ℓ ∈ ℬ(X)∗, we define gℓ : C → C by

gℓ(λ) := ℓ(Rλ(T ))

We note that gℓ is analytic because

gℓ(λ) = ℓ

( ∞∑
n=0

(λ− λ0)
nRλ0(T )

n+1

)
=

∞∑
n=0

(λ− λ0)
nℓ
(
Rλ0(T )

n+1
)

We claim that gℓ is bounded. Since gℓ is continuous, it is bounded on the closed disc B(0, 2‖T‖). On the
other hand, for any λ ∈ C \B(0, 2‖T‖), we have

‖Rλ(T )‖ = |λ|−1

∥∥∥∥id− 1

λ
T

∥∥∥∥ 6 |λ|−1
∞∑
n=0

∥∥∥∥ 1λT
∥∥∥∥n =

1

|λ| − ‖T‖
6 1

‖T‖
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and hence
|gℓ(λ)| 6 ‖ℓ‖∗‖Rλ(T )‖ 6 ‖ℓ‖∗‖T‖

−1

So gℓ is bounded on λ ∈ C \B(0, 2‖T‖).

This shows that gℓ is bounded and analytic. By Liouville’s Theorem, gℓ is constant on C. From the
expansion of gℓ we deduce that ℓ(Rλ(T ))n = 0 for all n > 2 and λ ∈ C. This holds for all ℓ ∈ ℬ(X)∗. By
Proposition 5.4, Rλ(T )n = 0 for n > 2 and λ ∈ C. This is impossible, as Rλ(T ) is invertible. We conclude
that σ(T ) 6= ∅.

Definition 6.10. Spectral Radius

Suppose that X is a complex normed vector space and T ∈ ℬ(X). The spectral radius of T is defined by

radσ(T ) := sup {|λ| : λ ∈ σ(T )}

Theorem 6.11. Gelfand’s Formula

Suppose that X is a complex Banach space and T ∈ ℬ(X). Then

radσ(T ) = lim
n→∞

‖Tn‖1/n = inf
n∈N

‖Tn‖1/n

Proof. • radσ(T ) 6 inf
n∈N

‖Tn‖1/n.

For n ∈ N, consider the operator

λn id−Tn = (λ id−T )S = S(λ id−T ), S :=

n−1∑
k=1

λk−1Tn−k

For λ ∈ C with |λ|n > ‖Tn‖, by Proposition 6.9, λn /∈ σ(Tn) and hence λn id−Tn. Since S commutes
with λ id−T , we have that λ id−T is invertible. So λ /∈ σ(T ). We deduce that every λ ∈ σ(T ) satisfies
λn 6 ‖Tn‖ for all n ∈ N. Hence radσ(T ) 6 inf

n∈N
‖Tn‖1/n.

• lim sup
n→∞

‖Tn‖1/n 6 radσ(T ).

As in the proof of Proposition 6.9, for each ℓ ∈ ℬ(X)∗ we associate the function gℓ(λ) = ℓ(Rλ(T )).

Rλ(T ) = −λ−1
∞∑
n=0

λ−nTn =⇒ gℓ(λ) = −λ−1
∞∑
n=0

ℓ(λ−nTn)

As gℓ is analytic on ρ(T ),
∞∑
n=0

ℓ(λ−nTn) converges absolutely whenever |λ| > radσ(T ). Fix |λ| = radσ(T )+

ε for some ε > 0. Then the sequence (ℓ(λ−nTn))n∈N is bounded. Consider the isometric embedding
Jℬ(X) : ℬ(X) → ℬ(X)∗∗. We have (Jℬ(X)(λ

−nTn)(ℓ))n∈N is bounded for each ℓ ∈ X∗. By the Uniform
Boundedness Principle, (Jℬ(X)(λ

−nTn))n∈N is bounded in ℬ(X)∗∗ and hence (λ−nTn)n∈N is bounded in
ℬ(X). There exists M > 0 such that

∀n ∈ N : |λ|−n‖Tn‖ 6M

Therefore
lim sup
n→∞

‖Tn‖1/n 6 lim sup
n→∞

M1/n|λ| = |λ| = radσ(T ) + ε

Since ε is arbitrary, we deduce that lim sup
n→∞

‖Tn‖1/n 6 radσ(T ).

Combining the two results above:

inf
n∈N

‖Tn‖1/n 6 lim sup
n→∞

‖Tn‖1/n 6 radσ(T ) 6 inf
n∈N

‖Tn‖1/n
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So all inequalities become eqaulities. In particular the limit of ‖Tn‖1/n exists.

Proposition 6.12. Spectral Mapping Theorem for Polynomials

Suppose that X is a complex Banach space, T ∈ ℬ(X), and p ∈ C[x]. Then

σ(p(T )) = p(σ(T )) := {p(λ) : λ ∈ σ(T )}

Proof. If p = c is a constant polynomial, then σ(p(T )) = {c}. Since σ(T ) 6= ∅, we must have p(σ(T )) = {c}.

Supoose that deg p > 1. For µ ∈ C, by the Fundamental Theorem of Algebra we can factorise p(x)− µ as

p(x)− µ = α(z − β1) · · · (z − βn)

where α, β1, ..., βn ∈ C. Correspondingly,

p(T )− µ id = α(T − β1 id) · · · (T − βn id)

Since the operators on the right hand side mutually commute, we have

µ ∈ σ(p(T )) ⇐⇒ p(T )− µ id is not invertible in ℬ(X)

⇐⇒ ∃ j ∈ {1, ..., n} T − βj id is not invertible in ℬ(X)

⇐⇒ ∃ j ∈ {1, ..., n} βj ∈ σ(T )

⇐⇒ ∃λ ∈ σ(T ) µ = p(λ)

⇐⇒ µ ∈ p(σ(T ))

6.3 Normal Operators

Definition 6.13. Normal Operators

Suppose that X is a complex Hilbert space and T ∈ ℬ(X). T is called a normal operator, if TT ∗ = T ∗T .

We know that self-adjoint operators and unitary operators are normal. From Linear Algebra we have the following
elementary properties of normal operators:

• T ∈ ℬ(X) is normal if and only if ‖T (x)‖ = ‖T ∗(x)‖;

• λ ∈ σp(T ) ⇐⇒ λ ∈ σp(T
∗);

• If x, y are eigenvectors of T corresponding to different eigenvalues of T , then 〈x, y〉 = 0.

Proposition 6.14. Spectra of Normal Operators

Suppose that X is a complex Hilbert space and T ∈ ℬ(X) is a normal operator. Then

1. σr(T ) = ∅ and σ(T ) = σap(T );

2. radσ(T ) = ‖T‖.

Proof. 1. Note that λ id−T is also a normal operator. Then λ id−T is injective if and only if λ id−T ∗ is injective.
Thus σp(T ) = σ∗

p(T
∗). Since σr(T ) ⊆ σ∗

p(T
∗) and σr(T ) ∩ σp(T ) = ∅, we deduce that σr(T ) = ∅.

2. We first note that ‖(T ∗)nTn‖ = ‖Tn‖2 for all n ∈ N, because

‖(T ∗)nTn‖ = sup
∥x∥=1

〈(T ∗)nTnx, x〉 = sup
∥x∥=1

〈Tnx, Tnx〉 = sup
∥x∥=1

‖Tnx‖2 = ‖Tn‖2

Since T is normal, T ∗T and its powers are self-adjoint. By Corollary 2.21,
∥∥(T ∗T )2

n∥∥ = ‖T ∗T‖2
n

Therefore for nk = 2k,
‖Tnk‖2 = ‖(T ∗)nkTnk‖ = ‖(T ∗T )nk‖ = ‖T ∗T‖nk
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By the Gelfand’s Formula,

radσ(T ) = lim
n→∞

‖Tn‖1/n = lim
k→∞

‖Tnk‖1/nk = lim
k→∞

‖T ∗T‖1/2 = ‖T ∗T‖1/2 = ‖T‖

Lemma 6.15. Norm of Resolvent Operator

Suppose that X is a Hilbert space and T ∈ ℬ(X) is a normal operator. Let λ ∈ ρ(T ). Then

‖Rλ(T )‖ =
1

dist(λ, σ(T ))

Proof. First we claim that σ(A)−1 = σ(A−1) for invertible operator A ∈ ℬ(X). It follows from

λ ∈ σ(A)−1 ⇐⇒ λ−1 ∈ σ(A)

⇐⇒ λ−1 id−A is not invertible in ℬ(X)

⇐⇒ λ id−A−1 = −λ(λ−1 id−A)A−1 is not invertible in ℬ(X)

⇐⇒ λ ∈ σ(A−1)

Hence σ(Rλ(T )) = σ((T −λ id)−1) = (σ(T )−λ)−1. Since T is normal, so is Rλ(T ) is also normal. In particular,

radσ(Rλ(T )) = ‖Rλ(T )‖

On the other hand, we have

radσ(Rλ(T )) = sup
µ∈σ(Rλ(T ))

|µ| = sup
µ∈(σ(T )−λ)−1

|µ| = sup
µ∈σ(T )

1

|µ− λ|
=

1

inf
µ∈σ(T )

|µ− λ|
=

1

dist(λ, σ(T ))

Proposition 6.16. Spectra of Self-Adjoint Operators

Suppose that X is a complex Hilbert space and T ∈ ℬ(X) is a self-adjoint operator. Then σ(T ) ⊆ [a, b] ⊆ R,
where

a := inf
∥x∥=1

〈x, Tx〉 , b := sup
∥x∥=1

〈x, Tx〉

Furthermore, a, b ∈ σ(T ).

Proof. Since T is self-adjoint, for all x ∈ X,

〈x, Tx〉 = 〈T ∗x, x〉 = 〈Tx, x〉 = 〈x, Tx〉

Hence 〈x, Tx〉 ∈ R. By Lemma 6.8 and the fact that σ(T ) is compact, σ(T ) ⊆ [a, b] ⊆ R.

Since radσ(T ) = ‖T‖, we have ‖T‖ 6 max{|a|, |b|}. But by definition of a, b we have max{|a|, |b|} 6 ‖T‖. Hence
radσ(T ) = ‖T‖ = max{|a|, |b|}. Since σ(T ) is closed, either a ∈ σ(T ) or b ∈ σ(T ). We apply this result to the
shifted operator c id+T , where c ∈ R is chosen to be sufficiently large and sufficiently small. This shows that
both a ∈ σ(T ) and b ∈ σ(T ).

Proposition 6.17. Spectra of Unitary Operators

Suppose that X is a complex Hilbert space and U ∈ ℬ(X) is a unitary operator. Then σ(U) ⊆ S1, where S1 is
the unit circle in C.

Proof. Since ‖U‖ = 1, we have radσ(U) = 1 and hence σ(U) ⊆ B(0, 1). Suppose that λ ∈ B(0, 1)∩σ(U). Then λ id−U
is not invertible, and so is λ id−U∗. But then λU − id = (λ id−U∗)U is also not invertible. We deduce that
λ
−1 ∈ σ(U), which is a contradication because

∣∣∣λ−1
∣∣∣ > 1. We conclude that σ(U) ⊆ S1.



Chapter 7

Fourier Series

7.1 Definitions and Basic Properties

Definition 7.1. Complex Fourier Series

Suppose that f : R → C is a 2π-periodic function. We define its Fourier series by

F [f ] :=
∑
n∈Z

cn einx, cn :=
1

2π

∫ π

−π
f(x) e−inx dx

We also write f ∼
∑
n∈Z

cn einx.

Recall from A4. Integration that a function F : R → R is called absolutely continuous, if there exists f ∈ L1
loc(R)

and x0 ∈ R such that
F (x) =

∫ x

x0

f(t) dt

F is called the indefinite integral of f . Some properties of F are listed below:

• F is continuous by Dominated Convergence Theorem.

• F is differentiable almost everywhere by Lebesgue Differentiation Theorem.

• If F is periodic then so is f .

• Integration by parts: for φ ∈ C∞(R), ∫ b

a

Fφ′ = Fφ

∣∣∣∣b
a

−
∫ b

a

fφ

Proposition 7.2. Termwise Differentiation of Fourier Series

Suppose that f ∈ L1
loc(R) and let F be the indefinite integral of f . If F is 2π-periodic and F ∼

∑
n∈Z

cn einx, then

f is 2π-periodic and f ∼
∑
n∈Z

incn einx.

Proof. We have
f = F ′ = lim

h→0

F (x+ h)− F (x)

h
(a.e.)

Hence f is also 2π-periodic. The 0th Fourier coefficient of f is given by

1

2π

∫ π

−π
f(x) dx =

1

2π
(F (π)− F (−π)) = 0

60
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For other Fourier coefficients, we integrate by parts:

1

2π

∫ π

−π
f(x) e−inx dx =

in
2π

∫ π

−π
F (x) e−inx dx = incn

Proposition 7.3. Termwise Integration of Fourier Series

Suppose that f ∈ L1(−π, π) and let F be the indefinite integral of f . If f is 2π-periodic and F ∼
∑
n∈Z

cn einx, then

F (x)− c0x is 2π-periodic and F (x)− c0x ∼ C0 +
∑

n∈Z\{0}

cn
in einx, where C0 ∈ C is a suitable constant.

Proof. Let G(x) := F (x)− c0x. We have

G(x+ 2π)−G(x) =

∫ x+2π

x

f(t) dt− 2πc0 = 2πc0 − 2πc0 = 0

So G is 2π-periodic. The Fourier series of f − c0 is obtained by termwise differentiation of the Fourier series of
G. The result follows easily.

7.2 Convergence in Lp(−π, π)

We aim to study the modes of convergence of Fourier series.

Definition 7.4. Partial Fourier Sum

For a 2π-periodic function f : R → C, we define the partial Fourier sum by

(SNf)(x) :=

N∑
n=−N

cn einx =

N∑
n=−N

einx 1

2π

∫ π

−π
f(t) e−int dt = 1

2π

∫ π

−π
f(t)

N∑
n=−N

ein(x−t) dt =:

∫ π

−π
f(t)kN (x−t) dt

where

kN (x) :=
1

2π

N∑
n=−N

einx =
1

2π

sin
(
N + 1

2

)
x

sin x
2

is called the Dirichlet kernel. The partial Fourier sum can be expressed as a convolution:

SNf = f ∗ kN

The L2 theory is particular interesting. Let en(x) :=
1√
2π

einx ∈ L2(−π, π). From M5. Fourier Series & PDEs we have
already seen that

〈em, en〉 =
1

2π

∫ π

−π
einx e−imx dx = δmn

So {en}n∈Z is an orthonormal system in L2(−π, π). We shall show that it is in fact complete. The Fourier series of
f ∈ L2(−π, π) is the expansion with respect to that basis:

cn =
1

2π

∫ π

−π
f(x) e−inx dx =

1√
2π

〈en, f〉 , f ∼
∑
n∈Z

cn einx =
∑
n∈Z

〈en, f〉 en

Theorem 7.5. Completeness of Trigonometric System in L2(−π, π)

{en}n∈Z is an orthonormal basis of L2(−π, π). Equivalent, for every f ∈ L2(−π, π), the partial Fourier sum SN (f)
of f converges strongly in L2(−π, π) to f .

Proof using Stone-Weierstrass Theorem:
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Let C(R/2πZ) be the set of 2π-periodic continuous functions on R, equipped with the supremum norm. Note
that C(R/2πZ) is dense in L2(−π, π). So it suffices to show that span{en}n∈Z. Since R/2πZ is compact, the proof
can be concluded by using Stone-Weierstrass Theorem. We need to show that span{en}n∈Z forms a subalgebra.

The linear span of {en}n∈Z clearly contains constant functions and is closed under pointwise multiplication (which
is because {en}n∈Z is closed under pointwise multiplication: en(x)em(x) = en+m(x)). Hence span{en}n∈Z is a
subalgebra of C(R/2πZ). In addition, e1(x) =

1√
2π

eix is injective on R/2πZ, and hence separates points. This
proves the claim.

Proof using Projection Theorem:

By the Projection Theorem we have

L2(−π, π) = span{en}n∈Z ⊕ (span{en}n∈Z)
⊥

It suffices to show that (span{en}n∈Z)
⊥ = {0}. Let f ∈ L2(−π, π) of which all Fourier coefficients vanish. We

need to show that f = 0 a.e..

• f is continuous.

We only prove the case where f is real-valued. Suppose for contradication that f 6= 0. Since |f | is periodic
and continuous, it attains maximum value M > 0 at some x0 ∈ [−π, π]. Replacing f by −f if necessary,
we may assume that f(x0) = M > 0. Using a translation we may further assume that x0 = 0. Let δ > 0
such that |f | > M/2 in (−δ, δ). Consider the trigonometric polynomial

g(x) = 1 + cosx− cos δ

Note that

g(x)

{
> 1 x ∈ (−δ, δ)
6 1 x ∈ (−π, π) \ (−δ, δ)

Therefore ∫ π

−π
f(x)gn(x) dx >

∫ δ/2

−δ/2
f(x)gn(x) dx−

∫
(−π,π)\(−δ,δ)

|f(x)||gn(x)| dx

> M

2

(
1 + cos δ

2
− cos δ

)n
δ − 2πM → ∞

as n→ ∞. However, on the other hand, since gn is a trigonometric polynomial, that the Fourier coefficients
of f are zero implies that ∫ π

−π
f(x)gn(x) dx = 0

for all n > 0, which leads to a contradiction.

• f is only square-integrable.

Let F be an indefinite integral of f . Since 〈1, f〉 = 0,

F (x+ 2π)− F (x) =

∫ x+2π

x

f(t) dt = 0

Hence F is 2π-periodic. By termwise integration, all Fourier coefficients except for possibly the 0th are
zero. Note that F ia continuous. So by the previous result F (x) = C0 for some constant C0 ∈ C. Hence
f = 0 a.e. as desired.

The second proof above only uses the integrability of f . So we have the following corollary:

Corollary 7.6

Let f ∈ L1(−π, π). If all Fourier coefficients of f vanish, then f = 0 alomost everywhere.

The first proof above generalises to Lp easily:
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Corollary 7.7

Let 1 6 p <∞. Then span{en}n∈Z is dense in C(R/2πZ) and hence in Lp(−π, π).

Theorem 7.8. Carleson-Hunt Theorem

Let 1 < p <∞. The partial Fourier sum SN converges strongly in Lp(−π, π) to id. That is, SNf → f in Lp(−π, π)
as N → ∞ for each f ∈ Lp(−π, π).

Furthermore, the convergence SNf → f holds almost everywhere.

Proof. Omitted. This is a very difficult result.

For L1 divergence, we have the following result.

Theorem 7.9. Kolmogorov’s Theorem

There exists a function f ∈ L1(−π, π) such that (SNf)N∈N diverges everywhere. In fact, there exists a set E of
positive measure and a sequence (Nk) such that |SNk

f(x)| → ∞ as k → ∞ for x ∈ E. In particular, (SNf) does
not converge in L1(−π, π).

Proof. Omitted.

We discuss the L∞ (specifically C(R/2πZ)) divergence in the next chapter.

7.3 Pointwise Convergence and Divergence

Theorem 7.10. Riemann-Lebesgue Lemma

For f ∈ L1(−π, π), we have
lim

|n|→∞

∫ π

−π
f(x) einx dx = 0

In other words, the Fourier coefficients (cn) of f satisfies cn → 0 as |n| → ∞.

Proof. Since C(R/2πZ) is dense in L1(−π, π), we split f = g + h, where g ∈ C(R/2πZ) ⊆ L2(−π, π) and ‖h‖1 6 ε.

For the function g ∈ L2(−π, π), by Bessel’s Inequality we have

∞∑
n=−∞

|〈en, g〉| 6 ‖g‖2

and hence
lim

|n|→∞
|〈e−n, g〉| = lim

|n|→∞

∣∣∣∣∫ π

−π
g(x) einx dx

∣∣∣∣ = 0

For h we have ∣∣∣∣∫ π

−π
h(x) einx dx

∣∣∣∣ 6 ∫ π

−π
|h(x)| dx 6 ε

Since ε is arbitrary, the result follows.

Definition 7.11. Hölder Continuity

For some α ∈ (0, 1], we say that f is α-Hölder continuous at x0 ∈ R, if there exist A > 0 and δ > 0 such that
|f(x)− f(y)| 6 A|x− y|α for all x, y ∈ B(x0, δ).

We can accordingly define the left and right α-Hölder continuity of a function.



64 CHAPTER 7. FOURIER SERIES

Theorem 7.12. Dirichlet’s Theorem

Suppose that f ∈ L1(−π, π) is 2π-periodic. If f is left and right α-Hölder continuous at x0 ∈ R for some α ∈ (0, 1].
Then

lim
N→∞

SNf(x0) =
1

2

(
f(x+0 ) + f(x−0 )

)
Proof. We prove the theorem in the case where f is α-Hölder continuous at x0. The theorem holds obviously for

constant function f . Therefore we may assume that f(x0) = 0. We fix δ > 0 such that |f(x0 + h)| 6 A|h|α for
|h| < δ.

Recall that
SNf(0) =

∫ π

−π
f(t)kN (0− t) dt =

∫ π

0

(f(t) + f(−t))kN (t) dt

For 0 < t < δ, we have
sin t

2
> t

π
=⇒ |kN (t)| 6 1

2π

1

sin t
2

6 1

2t

Therefore ∣∣∣∣∣
∫ δ

0

(f(t) + f(−t))kN (t) dt
∣∣∣∣∣ 6

∫ δ

0

|f(t) + f(−t)||kN (t)| dt 6
∫ δ

0

2Atα · 1

2t
dt = Aα−1δα

It remains to consider

JN,δ : =

∫ π

δ

(f(t) + f(−t))kN (t) dt =
∫ π

δ

(f(t) + f(−t))
(
cosNt+ cot t

2
sinNt

)
dt

=

∫ π

−π
(gδ(t) cosNt+ hδ sinNt) dt

where
gδ(t) := 1(δ,π)(t)(f(t) + f(−t)), hδ(t) = 1(δ,π)(t)(f(t) + f(−t)) cot t

2

Since gδ, hδ ∈ L1(−π, π), by Riemann-Lebesgue Theorem, we have JN,δ → 0 as N → ∞. Combining the two
intervals we have

lim sup
N→∞

|SNf(0)| 6 Aα−1δα

We take δ → 0 and conclude that SNf(0) → 0 as N → ∞.

Corollary 7.13. Localisation Property of Fourier Series

Suppose that f, g ∈ C(R/2πZ) are equal in an open interval of x0 ∈ (−π, π). Then the Fourier series of f and g
either both converge at x0 or both diverge at x0.

Proof. We have f, g ∈ C(R/2πZ) ⊆ L1(−π, π) and then f − g ∈ L1(−π, π). f − g = 0 in the interval (a, b) where
a < x0 < b. In particular f − g is α-Hölder continuous at x0 for any α ∈ (0, 1]. We have

lim
N→∞

(SNf(x0)− SNg(x0)) = lim
N→∞

SN (f − g)(x0) = 0

So SNf(x0) and SNg(x0) either both converge or both diverge.

Theorem 7.14. Cesàro Convergence of Fourier Series

For f ∈ C(R/2πZ), it holds that

σNf :=
1

N + 1

N∑
n=0

Snf → f in C(R/2πZ) as N → ∞
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Proof. We write the partial Fourier sum as a convolution: SNf = f ∗ kN . Then σNf = f ∗ FN , where

FN (x) =
1

N + 1

N∑
n=0

kn(x) =
1

2π(N + 1)

1− cos(N + 1)x

1− cosx

FN is called the Féjer kernel. We can verify that it has the following good properties:

• FN > 0;

• ‖FN‖1 = 1;

• For δ < x < π, 0 6 FN (x) 6 1

π(N + 1)(1− cos δ) .

We write

|σNf(x)− f(x)| =
∣∣∣∣∫ π

−π
f(t)FN (x− t) dt− f(x)

∫ π

−π
FN (t) dt

∣∣∣∣ = ∣∣∣∣∫ π

−π
(f(x− t)− f(x))FN (t) dt

∣∣∣∣
Fix ε > 0. Since f is uniformly continuous, there exists δ > 0 such that |f(x− t)− f(x)| < ε for |t| < δ.
Therefore ∣∣∣∣∣

∫ δ

−δ
(f(x− t)− f(x))FN (t) dt

∣∣∣∣∣ < ε

∣∣∣∣∣
∫ δ

−δ
FN (t) dt

∣∣∣∣∣ < ε

For |t| > δ, we have∣∣∣∣∣
∫
(−π,π)\(−δ,δ)

(f(x− t)− f(x))FN (t) dt
∣∣∣∣∣ 6 2‖f‖∞ · 1

π(N + 1)(1− cos δ) → 0

as N → ∞. Combining the two intervals we have

lim sup
N→∞

|σNf(x)− f(x)| 6 ε

which holds for all x ∈ (−π, π) and ε > 0. We conclude that ‖σNf − f‖∞ → 0 as N → ∞.

The properties of Féjer kernels can be generalised to the so-called good kernels.

Corollary 7.15. Good Kernels and Uniform Convergence

We say that (KN )N∈N ⊆ C(R/2πZ) is a family of good kernels, if they satisfy the following properties:

1. (KN ) is uniformly bounded in L1(−π, π);

2.
∫ π

−π
KN (x) dx = 1;

3. For any δ > 0, we have lim
N→∞

∫
(−π,π)\(−δ,δ)

|KN (x)| dx = 0.

Then for f ∈ C(R/2πZ), we have f ∗KN → f in C(R/2πZ).

Next we discuss the divergence of Fourier series of continuous functions.

Proposition 7.16. Divergence of Fourier Series in C(R/2πZ)

For every x0 ∈ R, there exists f ∈ C(R/2πZ) such that (SNf(x0))N∈N is divergent. In particular SN does not
converges strongly in ℬ(C(R/2πZ)).

Proof. We define AN ∈ C(R/2πZ)∗ by
ANf := SNf(0) =

∫ π

−π
f(x)kN (x) dx

Suppose for contradiction that the Fourier series of all f ∈ C(R/2πZ) converges at 0. Then ANf is bounded for
every f . By the Uniform Boundedness Principle, (‖AN‖∗)N∈N is bounded.
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Take ε > 0. Consider the continuous function f defined by

f =

{
sgn(kN (x)) |kN (x)| > ε

linear |kN (x)| 6 ε

We have ‖f‖∞ = 1 and

ANf >
∫
{|kN (x)|>ε}

|kN (x)| dx−
∫
{|kN (x)|<ε}

|f(x)||kN (x)| dx > ‖kN‖1 − 2πε

Hence we have ‖AN‖∗ > |ANf | > ‖kN‖1 − 2πε. Taking ε→ 0 we deduce that ‖AN‖∗ > ‖kN‖1.

Finally we need to estimate ‖kN‖1:

‖kN‖1 =
1

2π

∫ π

−π

| sin
(
N + 1

2

)
x|

| sin x
2 |

dx > 1

π

∫ π

−π

| sin
(
N + 1

2

)
x|

|x|
dx =

2

π

∫ (N+ 1
2 )π

0

| sinx|
|x|

dx

> 2

π

∫
{x∈(0,(N+ 1

2 )π): | sin x|> 1
2}

| sinx|
|x|

dx > 1

π

N∑
k=0

∫ (k+ 1
2 )π

(k+ 1
3 )π

dx
|x|

=
1

π

N∑
k=0

ln
k + 1

2

k + 1
3

For large k,

ln
k + 1

2

k + 1
3

= ln
(
1 +

1

6k + 2

)
∼ 1

6k + 2

Hence

‖kN‖1 > C

N∑
k=0

1

6k + 2
∼ C lnN → ∞

as N → ∞. We deduce that ‖AN‖∗ → ∞ as N → ∞, which is contradictory.

Hence there exists a continuous function with divergent Fourier series at 0. By translation there exist continuous
functions with divergent Fourier series at any given x0 ∈ R.

The idea above can be used to construct an explicit example.

Example 7.17. Continuous Function with Divergent Fourier Series at 0

For x ∈ [0, π], we set

f(x) =

∞∑
p=1

1

p2
sin
((

2p
3

+ 1
) x
2

)
We extend the domain to R such that f is a 2π-periodic even function. Then f is continuous with Fourier series
divergent at 0.

Proof. By Weierstrass M-test, the series that defines f is uniformly convergent on R. Hence f is continuous on R. The
Fourier series of f is given by

f(x) ∼ 1

2
a0 +

∞∑
n=1

an cosnx

The coefficients are given by

an =
1

π

∫ π

−π
f(x) cosnx dx

=
2

π

∫ π

0

∞∑
p=1

1

p2
sin
((

2p
3

+ 1
) x
2

)
cosnx dx

=
2

π

∞∑
p=1

1

p2

∫ π

0

sin
((

2p
3

+ 1
) x
2

)
cosnx dx (by uniform convergence)
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=
2

π

∞∑
p=1

1

p2
α
(
2p

3−1, n
)

where α(m,n) :=
∫ π

0

sin
(
2m+ 1

2
x

)
cosnx dx =

1

2

(
1

m+ n+ 1
2

+
1

m− n+ 1
2

)
.

To show that the Fourier series of f diverges at 0, it suffices to show that
∞∑
n=0

an =

∞∑
n=0

∞∑
p=1

1

p2
α
(
2p

3−1, n
)
=

∞∑
p=1

1

p2

∞∑
n=0

α
(
2p

3−1, n
)
= ∞

For m,N > 1,

N∑
n=0

α(m,n) =
1

2

N∑
n=0

(
1

m+ n+ 1
2

+
1

m− n+ 1
2

)
=

1

2

(
1

m+ 1
2

+

m+N∑
i=m−N

1

i+ 1
2

)
> 0

When m = N ,
m∑
n=0

α(m,n) =
1

2

(
1

m+ 1
2

+

2m∑
i=0

1

i+ 1
2

)
∼ 1

2
lnm

for large m. Therefore

∞∑
p=1

1

p2

∞∑
n=0

α
(
2p

3−1, n
)
> 1

p2

2p
3−1∑
n=0

α
(
2p

3−1, n
)
∼ 1

2p2
ln
(
2p

3−1
)
=
p3 − 1

2p2
ln 2 → ∞

as p→ ∞. This completes the argument.
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