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Examinable Syllabus

B4.1 Functional Analysis I

e Brief recall of material from Part A Metric Spaces and Part A Linear Algebra on real and complex normed
vector spaces, their geometry and topology and simple examples of completeness. The norm associated with an
inner product and its properties. Banach spaces, exemplified by ¢, LP, C(K), spaces of differentiable functions.
Finite-dimensional normed spaces, including equivalence of norms and completeness. Hilbert spaces as a class of
Banach spaces having special properties (illustrations, but no proofs); examples (Euclidean spaces, £2, L?).

e Density. Approximation of functions, Stone-Weierstrass Theorem. Separable spaces; separability of subspaces.

o Bounded linear operators, examples (including integral operators). Continuous linear functionals. Dual spaces.
Hahn-Banach Theorem (proof for separable spaces only); applications, including density of subspaces and embed-
ding of a normed space into its second dual. Adjoint operators.

e Spectrum and resolvent. Spectral mapping theorem for polynomials.

B4.2 Functional Analysis II

« Hilbert spaces; examples including L2-spaces. Orthogonality, orthogonal complement, closed subspaces, projection
theorem. Riesz Representation Theorem.

e Linear operators on Hilbert space, adjoint operators. Self-adjoint operators, orthogonal projections, unitary
operators.

o Baire Category Theorem and its consequences for operators on Banach spaces (Uniform Boundedness, Open
Mapping, Inverse Mapping and Closed Graph Theorems). Strong convergence of sequences of operators.

e Weak convergence. Weak precompactness of the unit ball.
e Spectral theory in Hilbert spaces, in particular spectra of self-adjoint and unitary operators.

« Orthonormal sets, Pythagoras, Bessel’s inequality. Complete orthonormal sets, Parseval. L2-theory of Fourier
series, including completeness of the trigonometric system. Examples of other orthogonal expansions (Legendre,
Laguerre, Hermite etc.).

o Brief contextual comments on the classical theory of Fourier series and modes of convergence; exposition of failure
of pointwise convergence of Fourier series of some continuous functions.

ii



Chapter 1

Banach Spaces

In this chapter we discuss the basic concepts of normed vector spaces and bounded linear operators, and investigate
how completeness becomes a central idea in the study of linear functional analysis.

In this chapter, the scalar field F is either R or C.

1.1 Definitions and Basic Properties

(" \

Definition 1.1. Normed Vector Spaces

Suppose that X is a vector space over F. A norm |- : X — R is a map such that for z,y € X, A € F:
o (Positivity) [|z|| = 0;
o (Definiteness) ||z|]| =0 < x =0;
+ (Homogeneity) [[Az|| = |A|[[=[];
o (Triangular Inequality) ||z + y| < ||z|| + ||yl

The pair (X, ||-||) is called a normed vector space.
.

Remark. If ||-|| : X — R satisfies everything above expect for definiteness, then it is called a seminorm. It induces a
proper norm on the quotient space X /Xy by |z + Xol| := ||z||, where Xo = {z € X : |z|| = 0}.
The norm ||-|| induces a metric on X by d(z,y) := || — y||. Therefore we have the notions and properties of metric

spaces (and topological spaces) on a normed vector space.

[ Definition 1.2. Banach Spaces ]

[ A complete normed vector space is called a Banach space. J

Remark. From A2 Metric Spaces, we know that every complete subspace of a Banach space is closed.

Suppose that ||| and |-||" are two norms on X. They are called equivalent if there exists C;,Cy > 0 such that for all
reX
!/ !/
el < Cullzll, 2l < Call]]

If two norms are equivalent, then they induces the same topology.

Proposition 1.3. Banach Spaces and Absolute Convergence

(X,]|-]l) is a Banach space if and only if every absolutely convergent sequence in X is convergent.
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Proof. = 1If >°°° | ||xn|| < co then s, is a Cauchy sequence in (X, || - ||) since for m >n > N
m m oo
Isn = smll = {| D @l| < Y lzel < Y Jawl = 0as N = oo
k=n+1 k=n+1 k=N+1
As (X, || -]]) is complete we thus obtain that s,, converges to some element s € X.

<= Let (z,) be a Cauchy sequence. Select a subsequence x,; so that
||$nj Ty ” <27,

where the existence of such a subsequence is ensured by the fact that z,, is a Cauchy sequence. Then
oo
Z Hxanrl - anH Sl<oo
j=1

. o0 k_l
so by assumption > .=, (Tn,., — n,) converges. Hence &, = p, +2 i1 (Tn, .1 — Ty, ) converges, so ()
has a convergent subsequence and must thus itself converge. O

1.2 Examples of Banach Spaces

Example 1.4. (F", ||

Consider the finite dimensional vector space F” equipped with the p-norm:

n 1/p
(Zw) L<pen
Iz, ==

i=1

11£ia<xn | p =00

(F™, ||||p) is a Banach space for 1 < p < co. This is a consequence of Heine-Borel Theorem.

The p-norms on F" are equivalent in the sense that
Izl < llzll, < n'/Pllz]

In Corollary 1.24 we shall show that all norms on a finite-dimensional vector space are equivalent.

Example 1.5. Sequence Space (¢, ||-[|,,)

The infinite-dimensional analogue of (£, ||-[|,) is the sequence space (7, ||-[|,,).

{(fEi)ieNi ZI¢p<OO} 1<p<oo
P =

ieN

{(xi)ieN s osup ] < OO} p=0o0
ieN

and

1/p
(zw) L<pen
(@)l = q \ien
sup |z p =00
ieN

Proposition 1.6. Completeness of /7

2 ||]|,,) is a Banach space for 1 < p < oo.
P
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Proof.

o 1<p< o

Suppose that (") = (xz(n))ieN, (™) ,en C P is a Cauchy sequence. Then for each i € N,

xE”) — xgm)‘ < Hx(") — a:(m)Hp =0
p

(n)

%

as n,m — oo. Hence (xl(.n))neN is (pointwise) Cauchy for each i € N. x

Let x := (;)ien. We claim that z € ¢ and 2™ = 2 in P as n — oo.

— x; as n — oo for some x; € F.

Fix ¢ € (0,1). There exists N € N such that for all m,n > N, Hm(m) - x(”)H < €. For each K € N and
n> N,

K K
(n) -1 (n) (m)
1= 1=

Taking K — oo, we obtain that ||1:(") - 1:||i < P. Hence (™ — z in 2. And

|| ngWLxH +Hx(”) < 0
P p

Hence x € /P.

e p=o00: The idea is essentially the same. O

Proposition 1.7. Inclusion Relation for ¢

Suppose that 1 < p < ¢ < oco. Then P C ¢4.

Proof. For 1 < p < ¢ < oo, note that (z;) € ¢P implies trivially that (x;) is bounded, which means that (x;) € £*.

Furthermore, we must have |z;| < 1 for all but finitely many ¢ € N. And |z;|? < |z;|P for ¢ > p. Then (z;) € £9.

The opposite non-inclusions are trivial. O

An important subspace of £°° is the space of all sequences converging to 0:

co = {(ml) el lim x; = 0}

11— 00

It is a closed subspace of £ and hence a Banach space.

Example 1.8. Function Space (L7, |- )

Let 2 C R™ be a measurable set. * The function spaces £P(Q2) are defined by

{f:Q—HR‘fmeasurableand/|f|p<oo} 1<p<oo
Q
{f:Q— R | f measurable and 3IM >0 |f| < M ae} p=o0

LP =

and the (semi) p-norms are given by

1/p
£l = </Qf|p> I<p<

ess.sup |f|:=inf{M : |f|< M ae.} p=o0

[|[I,, is a seminorm on £P(R), as || f — g||, = 0 if and only if f = g almost everywhere. LP(£2) is the quotient space
of £7 on which |[-[|, becomes a proper norm.

2All discussions about LP spaces generalise naturally to the abstract LP (€2, u) with any o-finite measure p on the measurable space
Q. So the sequence spaces £P are also special cases of LP spaces.

Next we collect some important results from A8 Integration.
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Theorem 1.9. Ho6lder’s Inequality

Let 1 < p,q < oo such that p~! + ¢~! = 1. Such numbers p, ¢ are called a pair of Holder conjugates.

n 1/p 1/q
L. For w,y € ", Y " [aiyil < |l llyll, = (Z |xi|p> (Z Iyz'q>

i=1 1€EN €N

1/p 1/q
2. For (z) € 07, (yn) € 00, Y |anyn| < ||z[l,llyll, = (Z Ixn”> (Z Iynq>

neN neN neN

1/p 1/q
3. For [ € L), g € 1), [ \7ol = 1, <11, ol = ( / |f|p) ( / g|q)

Proof. See A3 Integration. The key step is to use the concavity of the function ¢ — logt¢ and Jensen’s inequality. O

Proposition 1.10. Inclusion Relation for LP(£2)

Suppose that @ C R™ has finite measure. Let 1 < p < ¢ < co. Then L?(Q2) D LY(Q).

Proof. Let m be the Lebesgue measure on R™. So m() < co. The inclusions follow from the following observation.
For 1 <p < ¢q < o0,

1/p
feL>®Q) = Hf||p: (/Q|f|p> <771(Q)1/1’||f|\Oo <oo = felP(Q)

1/p
feri@) = |fl, =( e 1)

p/q 0\ 1P/a 1/p
|f|p q/p </ 1(=p/a) ) (Holder’s Inequality)
Q

=m(Q 7"||f|| = fel”(Q)
The opposite non-inclusions are trivial. O
Remark. The proposition is not true if €2 has infinite measure!
Proposition 1.11. Completeness of LP(Q)
(LP(€), |-[[,) is a Banach space for 1 < p < oo.
Proof. See A8 Integration. O

The convergence in LP and almost everywhere convergence do not imply each other. However we have the following
proposition:

Corollary 1.12. [.? and Almost Everywhere Convergence
Suppose that (f,) C LP(Q2) such that / |fn — fI” — 0 as n — oo. Then there exists a subsequence (fy, ) of (f,)

Q
such that f,, — f almost everywhere as k — oo.

Remark. In fact we have the following more general result on the modes of convergence of measurable functions. Here
1<p <o
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finite measure
L convergence ----=---2--===-=-0 - » (strong) LP convergence weak LP convergence

! !

finite measure .
a.e. CONVErgence ------------<--—-l_- » convergence in measure

Yoo

s.ﬁb‘s'éqliér.ice
Example 1.13. Continuous Bounded Functions (Cy(), ||-||.)

Consider the space of continuous bounded function on  C R™ equipped with the supremum norm: (Cy(2), ||-||..)-
It is a Banach space by the Cauchy criterion of uniform continuity and the fact that the uniform limit of a sequence
of continuous functions is continuous.

Example 1.14. Sobolev Space W' (a,b)

The Sobolev space
WP (a,b) := {f € LP(a,b) : f € LP(a,b)}

is normed by

b 1/p
p Ip
Hf”Wl’p(a,b) = (/a (|f‘ + |f | )) 1 g p < 00
max {|| fllo» 1.0} b= oo

where f’ is the distributional derivative of f. See B4.3 Distribution Theory for definition. W'P(a,b) is a
Banach space for 1 < p < oo.

1.3 Bounded Linear Maps

( )

Definition 1.15. Bounded Linear Maps

Suppose that T : (X, ||| x) = (Y, |-[ly-) is a linear map between normed vector spaces. T' is said to be bounded if
there exists M € R such that for all x € X,

IT(@)lly < Ml x

The set of bounded linear maps from X to Y is denoted by %(X,Y).

. J

(" \

Definition 1.16. Operator Norm

Suppose that T : (X, |-[|x) = (Y, |I|ly) is a bounded linear map. We define the operator norm

|7 ()l
1Ty = s o Y= suwp [T(z)lly = sup [T(2)]y
sex\(0} [1Zlx  fally=1 =l x <1

Remark. For all z € X, [T(z)|ly < [Tl gxv)llzllx-

Proposition 1.17. Continuity and Boundedness

Suppose that T : (X, ||-[|x) = (Y, |I-[ly-) is a linear map. The following are equivalent:
1. T is bounded,;
2. T is Lipschitz continuous;
3. T is continuous;

4. T is continuous at 0.
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Proof. 1 = 2 = 3 = 4 is trivial.
74 = 17”: Suppose that T' ¢ B(X,Y). There exists a sequence (x,) C X such that | T(x,,)|ly > nl/z,||  for all

1
n € N. Let y, := so that [|yn]|y < = — 0 as n — oo. By continuity of 7" at 0 we have |T'(y,)|y — 0
n

T,
1T (z)|ly
as n — oo. However,

o - 2l

which is a contradiction. O

General procedure of proving T' € B(X,Y):
o Check that T is well-defined, or T'(x) € Y for all z € X
o Check that T is linear.
o Find M > 0 such that ||T'(z)|, < M|z| y for all z € X.

T(2n
IT@lly _,

 Additionally, if we want to prove that ||T|| = M, we need to find a sequence (x,) € X such that 2l
Zllx

as n — oQ.

Proposition 1.18. Completeness of Spaces of Bounded Linear Maps

Suppose that (X, [|-]| ) is a normed vector space and (Y, ||-||y-) is a Banach space. Then the space of bounded
linear maps (QC?(X,Y)7 (RIPT Y)) is a Banach space.
Proof. Let (T,) be a Cauchy sequence in B(X,Y). Then for every z € X we have
1Tn(2) = T (@) | < [T = Tl ||| — 0

as m,n — c0. So (T,(x)) is a Cauchy sequence in Y and, as Y is complete, thus converges to some element in
Y which we call T'(z).

We now show that the resulting map x — T(x) is an element of B(X,Y) and T,, — T in B(X,Y), ie
|T —T,| — 0. We first note that the linearity of T;, implies that also T is linear. Given any £ > 0 we now let
N be so that for m,n > N we have ||T,, — T,,|| < €. Given any x € X we thus have

IT(2) = Ta@)l| = || lim Ton(@) = Tu(@)| = lim | T(@) = Tu@)l < ello]
Hence T is bounded (as||Tz|| < (|Tn| +€) [|z|| for all ) and so an element of B(X,Y) with ||T' — T,| < ¢ for

all n > N. We obtain that T,, - T in B(X,Y). O

Proposition 1.19. Composition of Bounded Linear Maps
Suppose that T € B(X,Y) and S € B(Y,Z). Then SoT € B(X, Z), and

[|S o T”EB(X,Z) < HS”@(Y,Z)HTH@(X,Y)

Proof. Trivial. O

A bounded linear operator T' € % (X) is said to be invertible in % (X), if there exists S € %B(X) such that T o § =
SoT =idx.

T € B(X) is invertible in & (X), if it is bijective and

36>0Vz e X : |T(2)|y =0z«



1.4. FINITE-DIMENSIONAL NORMED VECTOR SPACES

Proposition 1.20. Inverse Mapping Theorem

Suppose that (X, ||-| y) is a Banach space. Then every bijective T' € %B(X) is invertible in B(X).

Proof. See the Inverse Mapping Theorem 4.5 after the Open Mapping Theorem. O
Lemma 1.21. Convergence of Neumann Series
Suppose that X is a Banach space. T' € %(X) such that ||T'|| < 1. Then id —T is invertible in %B(X) with
(id-T)"~ ZTJ € B(X
Proof. Trivial. O

Corollary 1.22

Suppose that (X, ||-||y) is a Banach space. T' € $B(X) is invertible. Then for any S € %(X) such that [|S] <
HT‘1||_1, T — S is invertible.

1.4 Finite-Dimensional Normed Vector Spaces

Now we shall study the most trivial cases of Banach spaces. They are the finite-dimensional normed vector spaces.
Here are a collection of the important results.

In a finite-dimensional normed vector space X:

all norms are equivalent;

all linear operators are bounded;

X is complete;

all bounded closed subspaces are compact;

the unit sphere is compact.

Proposition 1.23. Equivalence of |-|| and |||,

Suppose that ||-|| is a norm on R™. Then |[-|| is equivalent to ||-||,.

Proof. Let {ey,...,e,} be a basis of R". For z = Z z;e; € R™, by Cauchy-Schwarz Inequality,

i=1
n n /2 , . 1/2 n 1/2
2 2 2
lzll < D laallleall < (leil ) (Z el ) = [zl (Z el )
i=1 i=1 i=1 i=1

On the other hand, suppose for contradiction that there exists a sequence (x("))neN such that ||x(") H nHm(") H
Let y(™ := z(®)/ ||a: || Then (y™),en is a sequence in the unit sphere S, which is sequentially compact by
Bolzano-Weierstrass Theorem. There exists a subsequence (y(”k))keN such that (") — 4 € S in the 2-norm as

k — oco. But
) n 1/2
— =0 C .= i2

as k — oo, which is contradictory. Hence there exists C’ > 0 such that ||z||, < C’[|z||. We deduce that |-| and
|-, are equivalent. .

< CHy _ y(’”k)

lyll < Hy—y(”“ + Hy("’“)
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Corollary 1.24

Any two norms on the finite-dimensional vector space X are equivalent.

Proposition 1.25

Suppose that (X, |-]|y) and (Y, |-||y-) are normed vector spaces. If X is finite-dimensional, then all linear maps
T:X — Y are bounded.

Proof. We define the graph norm on X: For z € X
Izl = llzllx + IT@)]y
It is easy to check that ||| is a norm on X. Since it is equivalent to ||-|| , there exists C' > 0 such that
IT@)ly <zl < Cllzlx

Hence T' € #(X,Y). O

Corollary 1.26

Every finite-dimensional normed vector space is homeomorphic to F™.

Proof. Let X be a finite-dimensional normed vector space. Then there exists a linear isomorphism T : X — F". By
the previous theorem T and 7! are continuous. Hence X is homeomorphic to F”. O

Corollary 1.27

Every finite-dimensional vector space is a Banach space.

Corollary 1.28

Every finite-dimensional subspace of a normed vector space is complete and hence closed.

Lemma 1.29. Riesz Lemma

Let (X, ||-]|) be a normed vector space, and ¥ C X a closed subspace. Then for each € € (0,1) there exists x € S
(S is the unit sphere) such that

dist(z,Y) :=inf{flz —yl|: yeY}<1-e¢

Proof. As'Y # X is closed we know that the set X \ Y is open and non-empty, so we can choose some z* € X \ Y and
use that d := dist (z*,Y) > 0, as X \ Y must contain some ball B(x,d) which ensures that d > § > 0.

d
By the definition of the infimum, we can now select y* € Y so that d < ||z* —y*| < 1 and claim that
—€

* *

r —Yy

T = m has the desired properties. Clearly ||z|| =1, i.e. © € S as desired, and we furthermore have that
=y
: . . z" y* . * -
dist(z,Y) = inf || — y|| = inf 0 —y|| = inf || ¥
yey ev |l =yl =yl ey || lz* —y*||
-y dist (z*,Y
:Alnf x* y* = IS*(J; 7* ) >1l-¢

gev || [lz* —y*|| llz* =y

where we used twice that Y is a subspace, to replace the infimum over y € Y first by an infimum over y =

y O

Y Yy
ll* — y*||

——— +y and then an infimum over 3 which is related to y by v =
% =y
=y
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Proposition 1.30. Equivalent Characterisations of Finite-Dimensional Normed Vector Spaces
Let (X, ||||) be a normed vector space. The following are equivalent:

1. dim X < oc;

2. Every bounded closed subset of X is compact;

3. The unit sphere S C X is compact.

Proof.

1 = 2: Suppose that Y C X is bounded and closed. Let T : X — F™ be a linear isomorphism. 7 and T~! are
continuous. Then T'(Y) C F is bounded and closed, and hence compact by Heine-Borel Theorem. Therefore
Y =T~ YT(Y)) is also compact.

2 = 3: This is clear since S is bounded and closed.

3 = 1: We argue by contradiction and assume that S is compact but dim(X) = co. We may choose a sequence of
linearly independent elements y, € X, k € N. Then the subspace Y}, := span{y1,...,yx} S Y41 is finite
dimensional, and so a closed proper subspace of Yj11. Applying Riesz Lemma with ¢ = 1/2 (viewing Y} as

a subspace of Yj11 instead of X), it gives us a sequence of elements yi € Yi 1 NS with dist (yg, Yz) > 1/2.
In particular for every k > ¢ we have

llye — yel| = dist (yx, Yoq1) > dist (yx, Yi) >

N =

Therefore no subsequence of (y;) can be a Cauchy sequence. Having constructed a sequence (yi) in S C X
that does not contain a convergent subsequence, we conclude that S is not sequentially compact and hence
not compact, leading to a contradiction. ]

1.5 Dual Spaces and Dual Operators

4 \

Definition 1.31. Dual Spaces

Let (X, |-]l) be a normed vector space. The dual space X* := %B(X,F) is a normed vector space equipped with
the operator norm ||-||,, given by

. J/

The notion of dual space in functional analysis is differential from that in linear algebra. Here the dual space X* is the
set of bounded linear functionals, contrast to the set of all linear functionals, X', which is now called the algebraic
dual space (of X).

Remark. As a consequence of Proposition 1.18, the dual space X* is complete regardless of the completeness of X.

Lemma 1.32. Kernels and Linear Functionals

Suppose that (X, ||-]|) is a normed vector space and ¢ : X — F is a linear functional. Then ¢ € X* if and only if
ker £ is closed in X.

Proof. If ¢ € X*, then [ is continuous. Hence ker/ = £=1({0}) is closed. Conversely, suppose that ker ¢ is closed.
Without loss of generality, ¢ # 0. Let 29 € X such that ¢(xg) = 1. Since ker £ is closed, § := dist(zq, ker £) > 0.

For x € X \ ker/, define y := _x—éa(co)ax) € X. Then
x
o M(x) = L(x)l(z0)
So y € ker£. We have
x — xol(x x
5 < oo = ol = oo + s DL
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Hence |[((x)| < §71||z|| for all z € X. We deduce that £ € X*. O

The dual operator is the same as in linear algebra.

[ Definition 1.33. Dual Operator 1

Suppose that T : X — Y is a linear map between the normed vector spaces X and Y. The dual operator or
pull-back of Tis 7" : Y’ — X', given by T'({) = o T for all £ € Y.

In case of bounded operator we have the important proposition. The result requires a proposition which is the conse-
quence of Hahn-Banach Theorem in Section 5.1.

Proposition 1.34. Dual of Bounded Operators
Suppose that X and Y are normed vector spaces. Let T € B(X,Y). Then T’ € B(Y*, X*) is well-defined and

1T v+ x) = 1Tl x vy

Proof. We have T'(¢) € X* for £ € Y*, because

IT" Ol x- = 10 Tllx- < TNz )l flly

Hence T" : Y — X is well-defined and [|T"(| 5y« x+) < [Tl g(x,y)- Conversely, fix z € X. By Proposition 5.4
there exists ¢ € Y* such that ||{||,.. =1 and £ o T'(z) = |T(x)||. Hence

IT@)| = [te T(@)| = T (O)@)] < T lg(y- x)lelly- 2l x = 1T g x-ll2llx

Hence ||T/||@(y*,x*) 2 ||T||3§(X,Y)~ .

Proposition 1.35. Kernels and Images of the Dual Operator
Suppose that X and Y are normed vector spaces. Let T' € B(X,Y).
1. kerT = (imT")o, ker T’ = (im T)°;
2. imT = (ker T"),.
(See Definition 5.11 for the annihilators.)

Proof. 1. rekerT < T(z)=0 fekerT <= T'(f)=foT =0
= VeeY : T'{)(z)=LoT(x) =0 < VzeX: foT(x)=0
— VfeimT' : f(z)=0 <~ VyeimT: f(y)=0
< z € (imT), <~ fe(imT)°

Note that the second “ <= ” on the left hand side requires Proposition 5.4.

2. By Corollary 5.13.3, we have im T = ((im T)°)o = (ker T”),. O

Remark. It is not true in general that im 7’ = (ker T')°. In fact (ker T')° is the weak* closure of imT".



Chapter 2

Hilbert Spaces

We introduce the concept of Hilbert spaces, which generalises the inner product spaces to infinite dimensions.

2.1 Orthogonality

( N\
Definition 2.1. Inner Product Spaces

Suppose that X is a vector space over F, An inner product (-,-) : X — F is a map such that for z,y,z € X, A € F:
o (Additivity in the Second Slot) (x,y + z) = (z,y) + (, 2);
o (Homogeneity in the Second Sqgdlot) (x, Ay) = A (x,y);

e (Symmetry / Conjugate Symmetry) (z,y) = (y, z);

(Positivity) {(x,z) > 0;

o (Definiteness) (x,z) =0 < x =0.

The pair (X, (-,-)) is called an inner product space.

Remark. If F =R, then (-, -) is called bilinear; if F = C, then (-, -) is called sesquilinear.

Remark. Every inner product on X induces a norm via ||z|| := /(z, z).
We collect some results from A0. Linear Algebra which holds for general inner product spaces:

¢ Cauchy-Schwarz Inequality: For x,y € X,

[{z y)| < llllllyll

with the equality holds if x and y are linearly dependent.
e Orthogonality: We say that z,y € X are orthogonal, if (x,y) = 0.
o Pythagorean Theorem: For z,y € X,

lz)* + llyl* = e + ylI* <= Re(z,y) =0

More generally, suppose that {x1,...,2,} C X is an orthonormal set. Then for z € X

n 2

T — Z (T, T) Ty

m=1

2 2
lzl* =D e, @) +

m=1

o Parallelogram Identity: For z,y € X,

2 2 2 2
o+ > + e = ylI* =2 () + 91

11
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e Polarisation Identities: For z,y € X, if F = R, then

1 2 2
(w.y) = (lo+yl* = llz = oll°)

if F = C, then
13
. o, 12
() = 1 30+ iy
n=0
o Let (X, ||||) be a normed vector space. The norm ||-|| induces an inner product (-, -) via the polarisation identity

if and only if the parallelogram identity holds in (X ||-]]).

Lemma 2.2

Suppose that X is an inner product space and K C X is a convex subset. Let z € X and y € K. The following
are equivalent:

L e -y = dist(z, K
2. Re{(z —y,z—y) <Oforall z € K.

Proof. '« = :Fix z € K. Since K is convex, tz+ (1 — t)y € K for t € [0,1]. We have
o —yll = dist(z, K) < |lz — (tz + (1 = t)y)
= |lz —yI* <@ = y) +tly = 2)I° = & = ylI* + *lly — 2| = 2t Re (& —y,2 —y)
— ?|ly — 2| = 2tRe(z —y,z —y) >0
Let f(t) := t2||ly — z||> — 2t Re (x — y, z — y). Then f(t) > 0 for t € [0,1]. Note that f(0) = 0. Hence we

must have
'(0)= —2Re{r —y,z—y) >0

!
which implies that Re (z — y, z — y) < 0 as required.

e <« Forall z € K,
2 2 2 2 2
[z —z" =z =)+ @ —2)I" =llz —yl" +ly — 2" =2Re(z -y, 2 —y) = [z — 9|

because ||y — z|| = 0 and Re (x — y,y — z) < 0. Hence ||z — y| < in}f{ |z — z|| = dist(x, K). Since y € K,
ze

we have ||z — y[| = dist(, K). O
[ Definition 2.3. Hilbert Spaces w
l A complete inner product space is called a Hilbert space. J

It is clear that all Hilbert spaces are Banach spaces.

Example 2.4. Examples of Hilbert Spaces
We consider the scalar field F = C.

1. The finite-dimensional vector space C" is a Hilbert space with inner product

n
<$C, y) = Z TnYn
=1

2. The sequence space ¢? is a Hilbert space with inner product

o0
(@,y) =Y Tuyn
n=0
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3. The function space L?(f) is a Hilbert space with inner product

<f79>=/9?-g

4. The Sobolev space W'2(a,b) is a Hilbert space with inner product

b
<f79>=/ (f-9+F-d)

[ Definition 2.5. Orthogonal Complement ]

Suppose that X is an inner product space. Let Y C X. Then the orthogonal complement of Y is defined by

Yihi={zreX:VyeY (z,y) =0} C X

Proposition 2.6. Properties of Orthogonal Complement
Let X be an inner product space and Y C X.

L Ynyt={0}

2. Y is a closed subspace of X;

3. YCY+t,

4. f ZCY,then Y+ C Z+;

5. (spanY)* =Y,
6. fY,Z<Xsuchthat X =Y+ Zand ZCY"', then Y+ = Z.

Proof. 2. It is straightforward that Y is a subspace of X. Let (2,) C Y such that z, — 2z € X. By Cauchy-Schwarz
Inequality, we have for any y € Y

[(zn, ) = (200 = [zn — 2,9)] < [lyllllzn — 2| = 0

as n — oo. Hence (z,5) =0 and z € Y+,

6. Let c€ Y. Wewritec=y+zfory€Y and z€ Z. Theny=c—2z €Y. But Y NY+ = {0}, we have
c—z=0and hencec=z € Z. O

Proposition 2.7. Closest Point in a Closed Convex Subset, Hilbert Space

Let X be a Hilbert space and K C X a non-empty closed convex set. Then for all x € X there exists a unique
y € K such that ||z — y| = dist(z, K).

Proof. e« Existence: Let d : K — X given by d(z) := || — z||. For simplicity, write dx := dist(z, K). Then there
exists a sequence (y,) C K such that d(y,) — dx as n — oo. Applying the Parallelogram Identity to

1 1
5(1’ - yn) and 5(1’ - ym,)a

(5003 ) -+ 1l = ol = 5 () + )

1 1
Since K is convex, §(yn + Ym) € K and hence dig < d (2(yn + ym)) Taking m,n — co we have

(d(yn)? + d(ym)?) = di

DO =

1 2
di + Z”yn —ym|” <

Hence ||yn — ym|| — 0 and (y,,) is a Cauchy sequence. Let y = lim y,. Since K is closed, by the continuity
n—oo
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of the norm we have
d(y) = lim d(y,) = dk

n—oo
1
o Uniqueness: Suppose that y' € K such that d(y’') = dx. Applying the Parallelogram Identity to i(x —y)

1
and 5 (@~ 1),

(dy)* +d(y')?) = d®

| —

2 1 12 1 ; S 2

dg + Sy =v'I"<d(sw+y) | +ly=yI" =
4 2 4

This implies that ||y — 3’|| = 0 and hence y = ¢/. O

Remark. We shall show that the result can be generalised to uniformly convex Banach spaces in Corollary 5.41.

Theorem 2.8. Projection Theorem

Suppose that X is a Hilbert space and Y C X is a closed subspace. Then X =Y @ Y+,

Proof. It suffices to show that X =Y + Y. Fix # € X. By Proposition 2.7 there exists yo € Y such that ||z — yo|| =
dist(z,Y). For all y € Y and ¢t € R, we have

2 2 2 2
lz = yoll* < llz = (yo — ty)lI* = llz — yol|* + 2t Re (z — yo, y) + £*||y||

Hence 2tRe (x — yo,y) + t2||y||2 > 0 for all ¢ € R. Therefore Re (x — yo,y) = 0. By replacing y with iy € YV
we obtain Im (z — yo,y) = 0. Hence (z —yo,y) = 0 for all y € Y. We conclude that x — yo € Y+ and
r=yo+(r—yo) €Y +YL O

Corollary 2.9

Suppose that X is a Hilbert space and Y € X. Then X =spanY ¢ Y and Y+ =spanY.

Lemma 2.10. Bessel’s Inequality

Suppose that X is an inner product space. Let (2, )neny € X be an orthonormal sequence. Then for z € X,

o0
> @, @) <l
n=0
Proof. By Pythagorean Theorem we have

m m m 2

S )P < S [ww a)P + o = @,y an|| = 2]

n=0 n=0 n=0

The result follows as we take m — oo. O

Theorem 2.11. Parseval’s Identity

Suppose that X is a Hilbert space. Let (z,,)neny € X be an orthonormal sequence. Then

00
Span{xn}nEN = {Z‘ = Z AnTp - (an)"EN € Z2}

n=0

Furthermore, for € span{z, }nen, we have a,, = (x,,z) and

oo
2 2
z* =D wn, z)|
n=0
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Proof. Let Y := span{z, }nen and Z := {ZZOZO Ty (Gp)nen € 62}.
 For (a,) € £2, by Pythagorean Theorem,

2 n

= al* =0

k=m

n
E AT

k=m

as m,n — oo. Hence (3_}_, arz)nen is a Cauchy sequence. The sum Y a,z, converges in norm and
hence Z C Y.

o Let z € Y. Put a,, := (z,,,z). By Bessel’s Inequality, (a,) € (2. Let 2’ =3 7 anz, € Z. Now

oo oo
(T, 2') = <xn, Z amxm> = Z U (Tny Tm) = An = (T, T)
m=0 m=0

Hence z — 2’ € Y1. But also z — 2’ € Y. We deduce that z = 2’ € Z and hence Y C Z.

In summary, Y = Z. Finally, by the Pythagorean Theorem,

n

T — Z (T, )

m=0

= > Wam o)’

m=0

n
2 2
21" =Y [(@m, 2)|* +
m=0

as n — 0o. O

[ Definition 2.12. Orthonormal Basis ]

Suppose that X is a Hilbert space. A subset S C X is called an orthonormal basis of X, if (x,y) = 0, for all
z,y € S and span S = X.

Remark. An orthonormal basis of X is not a Hamel basis (i.e. the usual definition of basis for a vector space) because
we are taking closure of span .S.

Theorem 2.13. Existence of Orthonormal Basis
Every inner product space contains an orthonormal basis.

Proof. Let X be a inner product space. Let & be the set of all orthonormal subsets of X, partially ordered by set
inclusion. By Zorn’s Lemma, & has a maximal element, which is an orthonormal basis of X. O

Remark. It is clear that a Hilbert space has a countable orthonormal basis if and only if it is separable. The backward
direction follows from applying the Gram-Schmidt orthonormalisation process to a dense countable subset of the
Hilbert space.

2.2 Adjoints

Theorem 2.14. Riesz-Fréchet Representation Theorem

Suppose that X is a Hilbert space. For each ¢ € X*, there exists a unique xz, € X such that ||z.| = ||¢||, and
L(x) = (xp,x) for all x € X.

Proof. Without loss of generality assume that £ # 0. Let Y := ker /. Since ¢ is bounded, Y is closed by Lemma 1.32.
By the Projection Theorem, X =Y @Y+, As Y+ 3 {0}, we can take y= € Y\ {0} and assume that ||y*|| = 1.
Note that £(y1) # 0, For any x € X, let

{(z)
£(y+)

wi=x — y* € ker/?
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We have

0= (y" w)=(y" )

Hence we can take x, := £(y+)y*.

The uniqueness is clear: if ¢(x) = (zy,x) = (z},z) for all x € X, then (z;, — ), z) = 0 for all z € X, which
implies that z, = .

It remains to prove that ||z¢|| = ||€||,. On one hand, by Cauchy-Schwarz Inequality,
[e(@)] = (e, ©)] < [lzell]]]
which gives |||, < ||x¢]|. On the other hand,
2
[zell™ = (2o, we) = [€(ze)| < (€], ||l
which gives ||z¢]| < ||4]], O

Remark. In the case where F = R, the theorem establishes a cannonical isometric isomorphism 7 : X* — X by
m(z)(y) = (x,y). Therefore for real Hilbert spaces we have the natural identification X = X*. For complex Hilbert
spaces, the map = is an antilinear bijection, because 7(Az) = Aw(x) for A € C.

Similar to the dual operators on Banach spaces, we have the notion of adjoint operators on Hilbert spaces:

[ Definition 2.15. Adjoint Operators 1

Suppose that (X, (-,-) ) and (Y, (:,-), ) are Hilbert spaces. Let T € B(X,Y). There exists a unique operator
T € B(Y,X) such that [T 5xy) = [T gy x)> and (y,Tz)y = (I"y,x)y forallz € X and y € Y. T" is
called the adjoint of T

Proof. For each y € Y, the map T}, :  — (y,T'z) is a bounded linear functional on X by Cauchy-Schwarz Inequality:
Ty ()] = [(y, Ta)y | < Nyl Tzl < 1Tyl = 1Tyl x. < ITlllylly

Hence by Riesz-Fréchet Representation Theorem there exists a unique 7%y € X* such that (y,Tz)y, = (T"y, z)
and

1Tyl x = 1Tyl x. < ITNylly
The map y — T*y is clearly linear. We have ||T*|| < ||T'|| and hence T* € (Y, X).
Conversely, by definition we have T** = T. Hence ||T|| = | T**|| < ||T*||. We conclude that |T|| = || 7| O
Remark. The Riesz-Fréchet Representation Theorem gives two isometric antilinear bijections 7x : X* — X and
my 1 Y* = Y. We see that the adjoint and the dual operators are related via the following commutative diagram:

y 1" . x

Wy[ WX/{
T!

Y  — X~

Proposition 2.16. Properties of Adjoint Operators
Suppose that (X, (-,-) y) and (Y, (-,-), ) are Hilbert spaces. Let T' € &B(X,Y).
1. T* =T
2. 1 Tlgx,vy = 1Tl g (v, x93
3. Taking adjoint is antilinear: For T, S € B(X,Y) and \,n € C, we have (\T + nS)* = A\T* +1S*;
4. For T € B(X,Y) and S € B(Y, Z), we have (ST)* = T*5*;
5. T € B(X) is invertible in B(X) if and only if T* € % (X) in invertible in B (X).
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Proof. 5. Suppose that T* € %B(X) is invertible in & (X). Let S := ((T*)~1)*. We have
(TSx,y) = (x, 5" T*y) = (z,(A") 7 A%y) = (z,y)

which is true for all y € X. We have STz = z for all x € X and hence ST = idx. Hence T is invertible
with bounded inverse 77! = S. O

Proposition 2.17. Kernels and Images of Adjoint Operators
Suppose that (X, (-,-) ) and (Y, (-, -),-) are Hilbert spaces. Let T' € #(X,Y).
1. ker T = (im T*)+;
2. imT = (ker T*)+.

Proof. Similar to Proposition 1.35. O

e

Definition 2.18. Self-Adjoint Operators

Suppose that X is an inner product space. T € %B(X) is called a self-adjoint operator, if T = T*.¢

oIf T is a continuous unbounded operator on X, the domain D(T') is a proper dense subset on X. T is said to be symmetric
if T =T* on D(T) N D(T*); T is said to be self-adjoint, if T is symmetric and D(T") = D(T*). For bounded operators, the two
concepts are equivalent.

.

Proposition 2.19. Polarisation Identities for Self-Adjoint Operators

Let X be a Hilbert space and T' € % (X) a self-adjoint operator. For z,y € X,

(z+y,T(@+y) —(r—y,T(x—y)))

R

(y, Tx) =

Proof. This is a direct computation. O

Remark. In comparison, if F = C, then every linear operator T : X — X satisfies the following Polarisation Identity:

3
1 n n n
(y7Tx>:ZZ1 (x +1"y, T(x +1i"y))

n=0

Proposition 2.20. Norm of Operators on Hilbert Spaces
Let X be a Hilbert space.

1. If T € #(X), then
170l x) = supf (g, )] < [l = llyll = 1}

2. In particular, if T is self-adjoint, then

1705 x) = supf{|{a, )] : 2] = 1}

Proof. 1. Let k = sup{|{y, Tx)| : ||z|| = |ly|l| = 1}. When ||z|| = ||y|| = 1, by Cauchy-Schwarz Inequality,
[y, To)| < T |[llyll < NTHl ]yl = 1T

Hence k < ||T.
For the other direction, we fix € > 0 and aim to show that ||T|| < k 4+ . We pick = € X such that ||z|| =1
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T
and [|[Tz|| > |T]| —e. Let y = HT%H Therefore

[y, To)| = lylITe)| = |1 Tx]| > [|T]| — e
Hence ||T|| < k + €. Since ¢ is arbitrary, we deduce that ||T|| < k.
2. Let K =sup{[{z,Tz)|: ||z|| =1}. By (1) we have |T|| =k > K.

For the other direction, by (1) we can select z,y € X with ||z|| = ||y|]| = 1 such that |T|| — e < [{y, Tz)|.
Replacing y by Ay with a suitable scalar |A| = 1, we may assume that

|(y, Tx)| = (y, Tz) = Re (y, T'z)

We have
4Re(y,Tx) =z +y,T(x +y)) — (x —y,T(x — y)) (Polarisation Identity 2.19)
<Kl +yl* + Kl -y
=2K (||217H2 + Hy||2) (Parallelogram Identity)
=4K

Putting things together:
[T —e < [{y, Tx)| = Re (y, Tx) < K

Since € is arbitrary, we deduce that ||T] < K. O

Corollary 2.21

Let X be a Hilbert space and T' € %(X). Then | T*T|| = | T||>. In particular, if T is self-adjoint, then HT2|| =
I

Proof. Note that T*T is self-adjoint. By the previous proposition we have

* * 2 2
17T = S (T*Tx,z)| = Sup (T2, Tx)| = S [ T]|” = [T O
z||=1 z||=1 z||=1

Proposition 2.22. Self-Adjointness of Orthogonal Projections

Let X be a Hilbert space. Let Y,Z < X be closed subspaces such that X =Y & Z. Let P : X — Y be the
projection onto Y along Z. Then the following are equivalent:

1. Z=v*;
9. P* = P;
3. ||P|| €1 (and in such case either |[P|| =1 or P = 0).

Proof. The direct sum projection P satisfies ker P =7 and imP =Y.
2 = 1: By Proposition 2.17, Z = ker P = (im P*)* = (im P)* = Y.

1=>3: Forz € X, let = y + z, where y € Y and z € Z = Y. By Pythagoras’ Theorem, ||z||> = ||y||* + || z|*.

Then we have
2 2
[1Pzll = [[P(y + )|l = llyll =/ lzlI” = [Iz]I” < l|l=]]
We deduce that ||P|| < 1.

3= 2: Let z € im P and u € im(id —P). Note that we have Pu = 0 and Px = z. Then
]l = [[P(u—2)[ < [|Pllllu — 2| < [lu—

which holds for all z € im P and u € im(id —P). By Lemma 2.2, we have Re (z,u) < 0 for all € im P
and v € im(id—P). But v € im(id —P) implies that —u € im(id —P). So we also have Re (z,u) =



2.3. ISOMETRIES 19
—Re(xz,—u) > 0. Hence Re(z,u) = 0. If the scalar field is C, we may replace u by iu to obtain that
Im (z,u) = 0. Hence (z,u) =0 for all z € im P and u € im(id —P).
Finally, for z,y € X,
(y, Pz) = (y — Py, Px) + (Py, Px) = (Py, Px) = (Py,z — Px) + (Py, Pz) = (Py,z) = (y, P"x)
Hence P = P*.
Now suppose that all of the above conditions holds. Suppose that P # 0. Let « € im P. Then Px = z. So

Pzl _
El

1Pl >

But we also have ||P|| < 1. Hence ||P|| = 1. O

2.3 Isometries
Let (X,dx) and (Y,dy) be metric spaces. A map T : X — Y is called isometric, if dy (T(z),T(y)) = dx(z,y) for all
z,y € X. In particular an isometry is injective and continuous.

Now we consider X and Y to be normed vector spaces. Let T : X — Y be a linear map. T is isometric if and only if
IT(x)| = ||=| for all z € X.

Now we consider X and Y to be inner product spaces. Let T': X — Y be a linear map. By polarisation identities we
note that T is isometric if and only if (T'(z),T(y)) = (z,y) for all z,y € X.

Proposition 2.23. Properties of Linear Isometries

Suppose that X and Y be Hilbert spaces. Let T' € B(X,Y). The following are equivalent:
1. T is isometric;

T (@) = ||z|| for all z € X;

(T(@), () = [, yl| for all 2,y € X;

4. T*T =idx.

W N

Theorem 2.24. Mazur-Ulam Theorem

Suppose that X and Y are normed vector spaces. If T : X — Y is a surjective isometry, and T(0) = 0, then T is
R-linear.

1
Proof. Fix x,y € X. We shall show that T(x;y> =3 (T(x) + T(y)). Without loss of generality assume that x # y.
z+y
Let z := .
et z 5

Construct a descending sequence of sets (H,,(z,y))nen as follows: Let
1
Ho(z,y) = yw e X |lw—z| = Jlw-yl = lz -yl
and, inductively,
1.
H,pi(z,y) :=<4p€H,: Ywe Hy(z,y) ||lp— w| < §dlamHn(x,y)

We shall prove by induction that each H,(x,y) is symmetric about z. We claim that z € H,(z,y) and that
w € Hy,(x,y) implies 2z —w € H,(z,y). The base case is trivial. For the induction case, suppose that H, (z,y)
has the desired properties.
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For w € H,(x,y), since 2z —w € H,(x,y), we have
1 1.
2wl = 3122 —w) — wll < J dinm Hy(r,y) = = € Hoga(2,)
For p € Hy,41(x,y), since w,2z —w € Hy(z,y), we have
1.
122 = p) —wl| = [[(22 —w) = pll < g diam Hy, = 22— p € Hypa(2,y)

which completes the induction. Now we have

r+y =
{ 5 }:DOH"(x’y>:nli_>H§oH"(“’y)

Since T is surjective and isometric, T'(H,(z,y)) = H,(T(x),T(y)). Since T is continuous, it preserves the limits
of those sets. We have

{1(T(x)+T(y))} = lim H,(T(2). () = lim T(H,(e.y) = 7( lim H,(2.5)) = {T(Hy»

2 n— 00 n— 00 2
1
which gives T<x;y) =3 (T'(x) + T(y)) as claimed.

Fix 29 € X. Taking = x¢ and y = —xg we obtain T'(—zg) = —T(x¢); taking x = 227 and y = 0 we obtain
T(2z9) = 27T (x0). Inductively we have T'(2"zq) = 2"T(x¢) for all n € Z. For k € Z, we expand it in base 2 and
inductively we have T'(kxo) = kT (x¢). Hence T(axg) = oI (xg) for all & € S := {2"k : n,k € Z}. But S is
dense in R, by continuity of T' we obtain that T'(Azg) = AT(x¢) for all A € R.

Fix zg,y0 € X. Taking z = 2z and y = 2yy we obtain

T +y0) = 5 (T(2z0) +T(2u0)) = 5 (2T (o) +2T(u0)) = T(wo) + Tlyo)

We conclude that T is R-linear. O

Remark. Note that the surjectivity condition can be dropped in the context of inner product spaces.

Proposition 2.25. Linearity of Isometry between Inner Product Spaces

Suppose that X and Y are inner product spaces. If T': X — Y is a isometry, and T(0) = 0, then T is R-linear.

1
Proof. By the previous proof it suffices to show that T'(z) = i(T(a:) + T(y)) for z,y € X, where z := xT_Fy
y—x z—y
1T () =Tl = llz =yl = |\ =5—|[ + ||| = Iz — 2l + Iz =yl = IT(z) = T(@)I| + [IT(=) = T(y)ll

Squaring both sides and expanding into inner products:
Re(T(z) = T(x), T(z) = T(y)) = |T(2) = T(@)[[[|T(z) = T(y)|

Hence T'(z) — T(x) and T(z) — T(y) are linearly dependent. There exists A € F such that T(z) — T(z) =
A(T(z) —T(y)). We have

IT(2) = T(@)[| = IT(z) =TIl = A =1
IT(z) =T = IT(z) = T@) |+ T(2) =Tyl = [A+1]=2

Hence A=1. T(z) = %(T(m) +T(y)) as claimed. O
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( Definition 2.26. Unitary Operators ]

Suppose that X and Y are inner product spaces. T' € %B(X,Y) is called a unitary operator, if 7" is isometric and
surjective.

Proposition 2.27. Properties of Unitary Operators
Suppose that X and Y are Hilbert spaces. Let U € B(X,Y). U is unitary if any of the following holds:
1. U is surjective and isometric;
2. Both U and U* are isometric;
3. U*U =idx and UU* = idy;
4. U =U™.

2.4 Radon-Nikodym Theorem*

We outline a proof of Radon-Nikodym Theorem by von Neumman as a consequence of Riesz-Fréchet Representation
Theorem.

Let (2, %) be a measurable space. A measure p on §Q is said to be o-finite, if there exists a sequence (F,) C % such
that u(E,) < oo for each n € N and Q = J{E, : n € N}

Let p and v be two measures on Q. For any F € %, u(F) = 0 implies v(E) = 0. In such case we say that v is
absolutely continuous with respect to p and write v < p.

Theorem 2.28. Radon-Nikodym Theorem

Suppose that (2, F) is a meaurable space. Let p and v be o-finite measures on € such that ¥ < p. Then there
exists a F-measurable function f : Q — [0, 00) such that

oE) = [ rau

for all E € &. Moreover, f is unique up to a p-null set. We say that f is the Radon-Nikodym derivative and

dv
write f = —.
dp

Proof. e The uniqueness of the Radon-Nikodym derivative is obvious. Suppose tht f; and f; are such functions.
Then

[ (5= ydu=o
E
for all measurable E C ), and hence fi; = fo almost everywhere with respect to u.
o Now we prove existence. We assume that p and v are finite measures.
J]
o) = [ fau
Q

By Cauchy-Schwarz Inequality,

Af@{g(@ﬁﬁw)(Ll@)<(Luﬁau+w)<élw)—umfmum

Hence ¢ € X*. By Riesz-Fréchet Representation Theorem, there exists g € X such that

(NI =

/fdu:1/f(f):<g,f>:/fgd(u+l/)
Q Q
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for all f € X. For a meaurable set £ C Q, we have

M(E)=/91Edu:/Egd(u+V)

As g is measurable, the set A := g~!(—o0, 0] is meaurable, and we have

0<M(A)=/gdu+/ng<0

A A

Hence pu(a) = 0. Since v < u, we have (u+v)(A) = 0. In particular, g > 0 almost everywhere with respect
to (u 4+ v) on Q.

Now, for each n € Z, and F € &, define fg, : Q0 — R by

1g

Pl = Sy + 17m

Note that fg, > 0 a.e.. Then

1 fonl% = /Q 2 d(utv) < /E 2+ v) = n2(u + v)(E)

Hence fg, € X. We have

IR S P S CON 9@
/E o(0) 1 1/n W= /E OEST /E o() + 1jn

Taking the limit n — oo we obtain
1
v(E) :/ < - 1> dp
E\Y

d 1
So we take the Radon-Nikodym derivative d—y =--1

Kwog
o Now we extend the result to o-finite measures p and v.

Let {My}nen be a sequence of disjoint measurable sets such that |J, M, = © and p(M,) < oco. Let
(Nn)nen be a sequence of disjoint measurable sets such that (J,, N,, = Q and v(N,,) < oo. Taking Qp,,, 1=
M, N N,, and relabelling, we obtain a sequence of disjoint measurable sets €, such that |J, Q, = Q and
#(), 1(9) < .

For E € &, let un(E) := u(Qy, N E) and v, (E) := v(2, N E). Then uy,, v, are finite measures on 2 and
Un <& ftn. Then there exist non-negative functions f,, :  — [0, 00) such that

u(B) = [ fud,

where f,, is unique up to a p,-null set. But p,(2\ Q) = 0 by definition. We may hence replace f, by
fnla,. Weput f = Z fnla, . Therefore

neN
V(E):ZV(QnﬁE):ZVn(E):Z/fndun:Z/ fndﬂz/fdu
neN neN neN’E neN’ Nk E
The last equality follows from Monotone Convergence Theorem. O

Let (92, %) be a measurable space. We say that v : F — RU {—o00,+o0} is a signed measure, if
o v(@) =0;
e 1 assumes at most one of —oo and +o00;

o For any countable collection {E,, },cn of disjoint measurable sets,

I/(U En> => v(En)

neN neN
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where the series on the right hand side converges absolutely if the left hand side is finite.

From Measure Theory, the Jordan Decomposition Theorem tells us that any signed measure has a unique decom-
position v = v+ — v~ where vt and v~ are mutually singular (positive) measures, and one of which is finite. We say
that v is absolutely continuous respect to y, if |v| := v+ + v~ is absolutely continuous respect to p.

Combining the result with Radon-Nikodym Theorem, we have the following corollary, which is utilised in Example 5.24
to determine the dual spaces of L.

Corollary 2.29. Radon-Nikodym Theorem for Signed Measures

Suppose that (£, %) is a meaurable space. Let u be a o-finite measure and v be a o-finite signed measure on 2
such that |v| < u. Then there exists a F-measurable function f:  — R such that for all E € &,

v(E) = [ fan



Chapter 3

Metric Spaces

In this chapter we collect three important properties of metric spaces and introduce theorems which is essential to linear
functional analysis.

3.1 Density: Stone-Weierstrass Theorem

Recall from A2 Metric Spaces that a subset D C X is said to be dense in the metric space X, if D = X. Equivalently,
D is dense in X if
VeeXVe>03yeD: dx,y)<e

First we have an extremely useful example.

Example 3.1. Approximation of LP Functions by Test Functions
Let © € R™ be an open set, and 1 < p < co. Then the space of compactly supported smooth functions C°(Q) is
dense in LP(2).

Proof. Non-examinable. See B4.3 Distribution Theory for detail. The central idea is to mollify the LP functions by
convolving them with the standard mollifiers. O

Remark. Note that the result does not hold when p = co as one can easily see when trying to approximate step
functions by continuous functions.

Proposition 3.2. Unique Extension of Bounded Linear Maps

Suppose that (X, ||-|| y) is a normed vector space and (Z, ||| ;) is a Banach space. Let Y C X be a dense subspace.
Then every bounded linear operator T' € & (Y, Z) has a unique extension T e % (X, Z) such that T| =T and
Y

1Tl g(v,z) = HTH@(X z)

Proof. Fix x € X. Since Y is dense in X, there exists a sequence (y,) C Y such that y,, — x. Let

T(z) :=z:= lim T(yn)

n— oo

The limit exists because the (T'y,,) is a Cauchy sequence in the Banach space Z:

1T (yn) = T(ym) | < I T[llyn = ymll = 0

as n,m — 0o. It is not hard to show that the limit is unique. Hence the map T : X — Z is well-defined. It is
linear by the algebra of limits. Furthermore

T = 1 < i =
|7@) = i 17l < 171 Yimflgall = 1T 2]

24
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Hence HTH < |IT)|. Since T|Y =T we must have HTH = ||T. O

In order to present the central theorem of Stone-Weierstrass, we need to introduce some definitions. From now on and
till the end of this section, K denotes a compact metric space’ and C(K) denotes the set of real-valued continuous
functions on K.

' N\
Definition 3.3. Linear Lattices

A subspace D C C(K) is called a linear sublattice of C(K), if
frg€e D = max{f,g} € D

or equivalently
feD = |fleD

Definition 3.4. Separation of Points

We say that D C C(K) separates points in K, if

Vp,qe K(p#q = 3feD f(p) # f(q))

Definition 3.5. Algebras

A subspace D C C(K) is called a subalgebra of C(K), if D contains the constant functions and is closed under
pointwise multiplication:
f,geD = fgeD

Theorem 3.6. Stone-Weierstrass Theorem, Lattice Form

Let K be a compact metric space. A subspace D C C(K) is dense in (C(K), ||-||.), if
e D is a linear sublattice;
e D contains the constant functions;

e D separates points in K.

Proof. Fix f € C(K) and € > 0. For p,q € K, we construct f, , € D as follows:

If p = g, simply set f,, = f(p) to be the constant function. Then f,, € D by assumption. If p # ¢, since D
separates points, there exists g € D such that g(p) = 0 and g(q) = 1. We define

fra(@) = f(p) + (f(2) = f(p)) 9(=)
Then in either case, we have f,, € D such that f, (p) = f(p) and f, 4(q) = f(g). Consider
Upq = (f— fp,q)_1 (B(0,e)) € K
Then U, 4 is an open subset of K containing p and ¢q. Now {Upyq}qu is an open cover of K. By compactness

of K there exists g1, ...,¢m € K such that K = | J U, 4,. Define

i=1
gp =min{fpq, s fpgm}

Since D is a linear sublattice, g, € D. We have g,(p) = f(p). Furthermore, as |f(z) — fp4(z)| < € for x € Uy, 4,
we have g, < f 4+ ¢ on all of K.

IMore generally, K could be a compact Hausdorff space.
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Next, consider the open neighbourbood of p:
Vo= (f —gp) 7 (B(0,6)) C K

k
Now {Vp}pEK is an open cover of K. Again by compactness of K there exists p1, ..., pr € K such that K = U Vi,

i=1
Define

g :=max{gp, .., Ipi }

Then g € D. As |f(z) — gp(x)| < € for x € V,, we have g > f — ¢ on all K. But since g, < f +¢ forall p € K,
we also have g < f +econ K.

Now we have constructed g € D such that || f — g|| ., <e. We conclude that D is dense in C(K). O

Theorem 3.7. Stone-Weierstrass Theorem, Subalgebra Form

Let K be a compact metric space. A subspace D C C(K) is dense in (C(K), ||-||.), if D is a subalgebra that
separates points in K.

Proof. Sinci D is a subalgebra, so is D. By the previous theorem it suffices to show that D is a linear sublattice. Fix
f € D. We need to show that |f| € D.

Without loss of generality we assume that || f||, < 1. Consider the sequence (f,) C D, where fo =0 and

fn+1 = fn + %(fQ - fﬁ)

We shall prove that f,, / |f| pointwise by induction. The base case is trivial. For the induction case,

ngn<fn+1:frb+%(|f|+fn)(|f|_fn)<f7z+(‘f|_fn):‘f| (fnglﬂgl — ‘f|_2|_fn §1)

fn +fn+1 < 1)

fnre—fnr1r = (fay1—fn) (1 - %(fn+1 + fn)) 2 foy1—fn =0 (fn <fapn <|fIS1 = 5 <

By Monotone Convergence Theorem, f,, — g pointwise for some g, where
Lo o
9=9+5(/"=9) = g=1/|

Hence f,, ' |f| pointwise. Since K is compact, by Dini’s Theorem, f, — |f| uniformly. Hence |f| € D as
claimed. O

Corollary 3.8. Weierstrass Approximation Theorem for Polynomials

Let K C R™ be a compact set. For any continuous function f : K — R, there exists a sequence of polynomials
(pn) such that p, — f uniformly in K as n — oc.

Proof. Tt is clear that the set of polynomials P C C(K) is a subalgebra of C(K). So P is dense in C(K). For f € C(K)
there exists a sequence (p,) C P such that p, — f in C(K), i.e., uniformly on K. O

3.2 Separability
Recall from A2 Metric Spaces that a metrix space X is said to be separable, if it has a countable dense subset.

Proposition 3.9. Linear Span and Separability

Let (X, |||l x) be a normed vector space. If there exists a countable subset S C X such that span S is dense in X,
then X is separable.
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Proof. First we consider the scalar field F' = R. We enumerate S as {s1, s2, ...}. Consider

i=1

N
Yi{ZQiSi: 2 €Q, s, €85, NEN}QX

N
There exists a surjection U QN = Y given by (q1,...,qn) — Z ¢;8;- Then
NeN i=1

card (Y) < card ( U QN> = Ng
NeN
So Y is countable. Next we claim that Y is dense in span S.
Fix € > 0 and v € span S, where

N
u:Z)\iui, A €ER, uieg
i=1

Since S is dense in S, for each i € {1,..., N} there exists v; € S such that |lu; —v;|| < Since Q is dense

_c
2N|A|

N
in R, if v; # 0, then there exists ¢; € Q such that |¢; — A\;| < QNE Tk Let v := Z%‘Ui eY.
Vi ‘
=1
N N N N N
Ju = ol = > Xiwi =D qavi|| < [ D0 Aiwi = o) || + (D = @)vil| < D (Nilllws = vill + 1A = aallvil]) < &
i=1 i=1 i=1 i=1 i=1

Hence Y is dense in span S. But span S is dense in X. We deduce that Y is dense in X. X is separable.
If the scalar field F' = C, then instead we consider

N
Y (= {Zqisii qiEQ[i], SZ‘ES, NEN} cX

i=1

and use the fact that Q[i] is countable and dense in C. O

Corollary 3.10

All finite-dimensional normed vector spaces are separable.

Next we need to determine the separability of some usual Banach spaces.

Proposition 3.11. Separability of C(K)

Let K be a compact metric space. Then K and C(K) are separable.

Proof. First we prove that K is separable. For n € Z,, consider the open ball U, ,, := B(z,1/n). Then {ULn}meK is an
kn
open over of K. By compactness of K, there exists =1 ,...Tk, » € K such that K = U Uz, .n- Now consider

i=1

)
£im () i)
n=1

It is clear that E is countable. We claim that it is dense in K. Let y € K and € > 0. Pick n € Z4 such that
1/n <e. Then y € B(x,1/n) for some x € E. And d(z,y) < 1/n < e. We deduce that E is dense in K.

Next we prove that C(K) is separable. We enumerate E as {y1,y2,...}. Let fn(x) := d(x,y,). Consider the set
of "monomials”
S={f"f: aq,...,an €N, N e N}
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which is clearly countable. Then span .S is a subalgebra of C(K).

For p,q € K with p # ¢, let n € N such that d(p,q) > 2/n. There exists y; € F such that p € B(y;,1/n). By
triangular inequality,
d(yi,q) > d(p,q) — d(yi,p) > 1/n > d(yi, p)

Hence fi(q) > fi(p). We deduce that span S separables points. Now by the subalgebra form of Stone-Weierstrass
Theorem, span S is dense in C(K). By Proposition 3.9, we conlude that C(K) is separable. O

Proposition 3.12. Separability of /# and LP
Let 1 < p < o0.
1. The sequence space £P is separable.

2. Let Q C R™ be a measurable set. The function space LP(Q) is separable.

Proof. 1. Let Y := span S where the countable set S = {e(’“), ke N} consists of all sequences e(®) for which egk) = k-
Given any element z € /¢P since Z;»ZN |z;|” converges, we obtain that the cut-off sequences z®) =
(z1,...,25,0,0,...) approximate x in the sense of 7 namely

1/p
A
T—x = x| -0
p k1

as k — oo. We thus conclude that Y is dense in ¢ and thus obtain from Proposition 3.9 that £*° is
separable.

2. From Example 3.1 we know that C.(Q2) is dense in L”(2). So we shall prove that C.(Q2) is separable.

Consider the set of cubes with rational vertices

S ={p,q1] X X [P qn] : P1,G1, -, P an € Q}

Let Y :=span{l;nq: I € §}. Since & is countable, it suffices to prove that Y is dense in C.(€2).

Fix f € C.(Q) and € > 0. Let K := supp f C R™ be a compact set. Then f is uniformly continuous on K.
There exists N € N such that |f(z) — f(y)| < & - m(K)~'/? whenever ||z — y||,, < 1/N. Let

ki k1 +1 kyn kn+1
9‘;:{[:: |:]\][" lN :|><"'><|: :|Z kl,,kHEZ,IﬂK#Q}

N N
Then T is a finite subset of & because K is bounded. Consider the ”step” function

p(r) =Y fla)ling €Y

Ieg
where z; € I is some fixed points. We find that
&P
1=l = [ 1 =olr =3 [ If@) - sanPde< S5 [ de—er
P K I%; INK m(K) ;‘ INK

which proves the claim. O

Proposition 3.13. Inseparability of />° and L°
1. The sequence space £*° is inseparable.

2. Let Q CR™ be an open set. The function space L*°(2) is inseparable.

Proof. 1. Note that the set A := {0, 1} C ¢*° is uncountable. And for any distinct a,b € A, |ja —b|| = 1.

oo
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Suppose that D C £ is dense in £>°. For each a € A there exists d, € D such that ||a — d,|| < 1/2. Then
d, = dp implies that
la =blle < lla = dallyg + b= dbllo <1

and hence that a = b. Therefore the map a — d, is an injective map from A to D. So D is uncountable
and £°° is inseparable.

2. There exists an open ball B(z, R) C 2. Consider the uncountable set A := {150,y : 0<r < R} CL>(Q)
and repeat the proof for £°°, O

3.3 Completeness: Baire Category Theorem

A subset D C X is said to be nowhere dense in the metric space X, if there are no open set U C X for which DN U
is dense in U, or equivalently, if D has an empty interior.

Theorem 3.14. Baire Category Theorem
Let X be a non-empty complete metric space.
1. X is not the countable union of nowhere dense sets.
2. The countable interchapter of dense open sets is non-empty.
3. The countable union of nowhere dense sets has empty interior.

4. The countable interchapter of dense open sets is dense.

In fact the four statements are equivalent. We shall mianly prove (1) and show that other statements are equivalent to
it.

o0
Proof. 1. Suppose that X = U A,, where each A,, is nowhere dense.
n=1
Since A; is nowhere dense, A; # X and so X \ A; is non-empty. Pick x; € X \ A;. Next, since X \ 4; is
open, there is some closed ball B (x1,71) € X \ A; with 71 < 1. Clearly B (z1,71) N A} = ().
Since A, is nowhere dense, A, 2 B (z1,71) and so there is some 2o € B (z1,71) \ A2. We then inductively

choose balls B (z,,7,) € B (2p—1,mn—1) \ A, with r, <

on—1"

Now, (z,) is a Cauchy sequence, since if n,m > N, then x,,,z,, € B(xn,rn) and 8o d (T, Tn) < 2ry — 0.
Since X is complete, (z,,) converges to some z € X. We have x € B (zy,,rn) C B(Zn—_1,7n—1) \ 4, for all
n, which implies that « ¢ A,, for any n. This is a contradiction.

2. Note that the complement of a dense open set is a nowhere dense set. The result then follows from (1) and
de Morgan’s Law.

3. Suppose that (A4,,)22, is a sequence of nowhere dense subsets of X. Suppose that U A,, contains an open
n=1
ball B(z,r). Take a closed ball B(z,s) C B(x,r) and consider A, := A, N B(z,s). Then B(z,s) = U A,
n=1
where each A,, is nowhere dense in B(x, s). This is a contradiction.
4. Tt follows from (3) and de Morgan’s Law. O
The following terminology explains the name of the Baire Category Theorem:

Definition 3.15. Meagre Sets, Nonmeagre Sets

Let X be a metric space and F C X.

e F is said to be of the first category or meagre, if it is the countable union of nowhere dense set.

e F is said to be of the second category or nonmeagre, if it is not of the first category.
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The Baire Category Theorem says that an open subset of a complete metric space is of the second category.

In Functional Analysis, the usual notion of the basis of a vector space is called a Hamel basis, i.e., a linearly independent
subset S C X such that every vector of X is a finite linear combination of the vectors in S.

Proposition 3.16. Cardinality of Hamel Basis (Off-Syllabus)

Suppose that X is a Banach space. Then the Hamel basis of X is either finite or uncountable.

Proof. Suppose for that there exists a countable Hamel basis B = {z,, : n € N} for X. Let F,, = span{z; : 0 < k < n}.
Then each of the spaces F,, is finite-dimensional and hence complete, and in particular each F,, is closed in X.
Since X = U F,,, by the Baire Category Theorem, there exists n € N such that F, has non-empty interior.

neN
Suppose that Bx,e) C F,. Since F, is a vector space and in particular closed under translations, it follows that

B(0,¢) C F,,, and hence X C F,,. In particular, we have dim X < n, which is a contradiction. O



Chapter 4

Fundamental Theorems

This chapter mainly discusses the application of Baire Category Theorem in the theory of Banach spaces. Three
fundamental theorems in functional analysis are introduced.

4.1 Uniform Boundedness Principle

Theorem 4.1. Uniform Boundedness Principle / Banach-Steinhaus Theorem

Suppose that (X, ||-|| y) is a Banach space and (Y, ||-||-) is a normed vector space. Let # C % (X,Y). If for each
xz e X,
sup {|T(@)lly : T € F} < oo

Then
sup{||T||k%(Xﬁy) : T e 9‘7} < oo

For a family of bounded linear maps from a Banach space, pointwise boundedness implies uniform boundedness.
Proof. Consider the sequence of closed subspaces of X:
A, ={z e X : VT € F |T(z)|ly <n}
Then X = U A,,. By Baire Category Theorem, there exists N € N such that Ay has non-empty interior. Let

neN
B(Io,’f‘o) g AN.

For any x € B(0,79) and T € &, zp + x € B(xo,ro). Therefore
1T (@)ly < T(z+20)lly + T (xo)lly <2N

Hence for any x € B(0,1) and T' € &, ||T(z)|ly- < 2N /ro. We conclude that || T']|gx 3y < 2N /7o. O

Proposition 4.2. Uniform Boundedness in Hilbert Spaces

Suppose that X is a Hilbert space and & C B(X). If for each z,y € X,
sup{[(y, Tx)|: TE€F} <

Then & is uniformly bounded.

Proof. Fix x € X. Define Kr, € X* by Kr,(y) = (T'z,y) so that [|[Tz| = |[Kr||,. Since for each y € X,
{|[Krz(y)| : T € #} is bounded, by the Uniform Boundedness Principle, {|Kr .||, : T € F} is bounded. We
use the Uniform Boundedness Principle again to conclude that {||T]| : T € %} is bounded. O

31
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Proposition 4.3. Strong Convergence of Operators
Suppose that (X, ||-||x) and (Y, ||-||y) are Banach spaces. Let (T;,) C %(X,Y’). The following are equivalent:
1. There exists T € B(X,Y) such that for each x € X, T,,(z) — T(x) as n — oo;
2. For each z € X, (T,,(z)) is convergent,
3. There exists M > 0 and a dense subset Z C X such that sup,, [|T,,|| < M and (7, (z)) is convergent for each
z € Z.
Proof. 71 = 2”: Trivial.
72 — 3”7: Immediate from Uniform Boundedness Principle.

"3 = 1": Fix e > 0 and € X. By density of Z in X, we can choose z € Z such that ||z — z||y < e/4M. Since
(Th.(2)) is a Cauchy sequence, there exists N > 0 such that for m,n > N, || T,,(2) — T (2)|ly < €/2. Then

1T (2) = T (2) |y < Tn(z) = Tn(2)ly +1Tm (2) = T (2)lly + 1T (2) = T (2)ly < 2M |z — 2l x +[|Tn(2) = T (2)]ly < €

Hence (T),(z)) is a Cauchy sequence. Since Y is a Banach space, T'(z) := lim T, (x) exists. It is clear that T is
n— oo

linear. 7" is bounded because

1T (@)lly = Jim [|Tn(@)] < linsup [Tnflg x v o)l < Mll2]x [

Remark. Note that in the proposition, the convergence T,, — T is a pointwise convergence, or convergence in the
strong operator topology. This should not be confused with convergence in the operator norm || T, — T g x yy = 0.

4.2 Open Mappings and Closed Graphs

Theorem 4.4. Open Mapping Theorem

Suppose that (X, ||| ) and (Y, ||-||y) are Banach spaces. T' € B(X,Y) is surjective. Then T is an open map
(mapping open sets to open sets).

Proof. Let U C X be an open subset. To prove that T(U) C Y is open, we fix y € T(U) for which T'(z) = y. Since U
is open, there exists r > 0 such that B(z,r) C U. By linearity, we have

T(Bx(z,7)) =y + gT(BX(O, 2))

o T(Bx(0,1)) contains an open ball By (0, s):
Since T is surjective, we have

Y = | T(Bx(0,n))
n=1

By Baire Category Theorem, there exists N € N such that T(Bx(0,N)) has non-empty interior. Let
w €Y and s > 0 such that By (Nw,Ns) C T(Bx(0,N)). By linearity, By (w,s) C T(Bx(0,1)). Since
T(Bx(0,1)) is convex and symmetric about the origin, we have By (—w,s) C T(Bx(0,1)) and hence
By (0,s) C T(Bx(0,1)).

o T(Bx(0,2)) contains T(Bx(0,1)):

1
Fix z € T(Bx(0,1)). First choose u; € Bx(0,1) such that ||z — T(u1)| < 35 Then

z—T(u1) € By (O’ ;S> N %BY(O’S) < %T(T(O’l)): ! (BX <07 D)
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n

z— > T(uy)

k=1

Inductively, we can choose u,, € Bx (O, 21*") such that < 27™s, which impplies that

n

2= 3 T(u) € T(Bx (0,2°7))
k=1

Therefore ZT(uk) — zinY as n — oo. It is clear that u, — v € Bx(0,2) as n — co. By continuity of
k=1
T, we deduce that z = T'(u) € T(Bx(0,2)). Hence T(Bx(0,1)) C T'(Bx(0,2)).

Now

T(Bx(z,r))=y+ gT(BX(O,Q)) Dy+ gBY(Ovs) = By (y’ ;rs>

Hence y € (T(U))°. We conclude that T'(U) is open. O

Corollary 4.5. Inverse Mapping Theorem
Suppose that (X, ||| x) and (Y, ||-|ly-) are Banach spaces. T € #(X,Y) is bijective. Then T~ € B(Y, X).

Proof. By Open Mapping Theorem, T is an open map, which implies that T~ is continuous. By Proposition 1.17,
T-'e B(X,Y). O

Corollary 4.6. Equivalence of Norms

Suppose that X is a Banach space with respect to the norms ||| and [|-|'. If there exists C' > 0 such that
||| < C|lz||’, then ||-|| and ||-||" are equivalent.

Proof. Directly applying the Inverse Mapping Theorem to the identity operator id : (X, ||-||) = (X, ||]|"). O

Proposition 4.7. Criterion for Closed Image

Suppose that (X, |-||y) and (Y, ]||y) are Banach spaces. Let T : X — Y be a linear map. Let T' € #(X,Y). If
im T has closed linear complement in Y, then im 7T is closed in Y.

Proof. Suppose that Y = imT @ Z where Z C Y is a closed subspace of Y. Let S : X x Z — Y given by S(z,y) =
T(x)+y. It is clear that X x Z is a Banach space and S € B(X x Z,Y). Since S(X x {0}) =im T, we have
S(X x(Z\{0})) =Y \imT. X x {0} is closed in X x Z. So X x (Z\ {0}) is open in X x Z, and by the Open
Mapping Theorem, Y \ im 7T is open in Y. We conclude that im T is closed in Y. O

Remark. The proposition has a useful corollary: If im 7" has finite codimension, then im T is closed in Y. It follows
from that all finite-dimensional subspaces of a Bana ch space are closed.

Proposition 4.8. Closed Images and Adjoints
Suppose that X and Y are Hilbert spaces, and T' € B(X,Y). Then im T is closed if and only if im 7™ is closed.
Proof. 1t suffices to show only one direction, as T** = T'. Suppose that W =imT* is closed in X. Let Z =imT C Y.

Let S € %(X,Z) such that Sz = Tz for all x € X. The adjoint S* € A(Z,X). By Proposition 2.17,
Z =1m S = (ker §*)*. So S* is injective.

Let P be the orthogonal projection from Y onto Z and compute, for x € X and y € Y,
<T$,y>y = <S$7PZ/>Y = <x7S*Py>X

This shows that T* = S* o P, and so im S* = W. Now let V € %(Z, W) such that Vz = S*z forall 2z € Z. V
is bijective. By the Inverse Mapping Theorem, V has a bounded inverse V! € % (W, Z). This implies that V*
is invertible and (V*)™' = (Vﬁl)* € B(Z,W).
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To conclude, we show that T "o (V*)f1 =idz. This implies that imT O Z and so imT = Z = im T which gives
the conclusion. Indeed, pick an arbitrary z € Z, and let w = (V*)™' z. We compute, for y € Y :

(Tw, y)y = (Sw,y)y = (w,5"y)x = (0, Vy)x = (V7 w,y)y = (z,9)v
Since this holds for all y € Y, we deduce that Tw = z and so T o (V*) ™' = idy as desired. O

Remark. The technique in the proof is to get rid of the cokernels and to construct a bijective operator, to which we
can apply the Inverse Mapping Theorem.

( Definition 4.9. Graph of an Operator W

Suppose that (X, ||| x) and (Y, []-|ly-) are normed vector spaces. T': X — Y is a linear map. The graph of T is
defined by
I(T):={(z,T(z)) e X xY: z € X}

Note that if X and Y are both Banach spaces, X x Y equipped with the 1-norm:

1@ Pl x oy = llllx + llylly

is also a Banach space.

Theorem 4.10. Closed Graph Theorem

Suppose that (X, [|-||y) and (Y, |-||y-) are Banach spaces. Let T': X — Y be a linear map. Then T' € B(X,Y) if
and only if I'(T") C X x Y is closed.

Proof.—>: Suppose that T is bounded. Let (z,) C X such that z, — € X and T(x,) = y € Y as n — co. By
continuity of T,

= Jlim 7o) =T (Jim z0) =T

Hence I'(T) is closed.

<= Consider the graph norm on X: For z € X,

[2llp = llell x + 1T @)y

The closedness of I'(T") implies that (X, ||-||,) is a Banach space. It is clear that ||z|| y < ||z|,. By Corollary
4.6, we deduce that |||y and ||| are equivalent. In particular,

IT@)ly =zl = llzllx < (€ =Dlzllx

for some constant C > 1. Hence T is bounded. O

Remark. Following the Closed Graph Theorem, whem we need to prove that a linear map 7' : X — Y between Banach
spaces is bounded, it suffices to show that (T'z,,) is a Cauchy sequence in'Y for every convergent/Cauchy sequence (x.,)
in X.

We recall some concepts from Linear Algebra:
Suppose that U is a subspace of the vector space X. V ic called a linear complement of U in X,if X =U®V.

A linear map P : X — X is called a projection, if P2 = P. Suppose that we have a direct sum decomposition
X =U@®V. The linear map P : X — U such that P|, = idy and P’V = 0 is called a projection of X onto U along
V.

Proposition 4.11. Existence of Closed Linear Complement

Let Y C X be a closed subspace of the Banach space X. Then Y has a closed linear complement if and only if
there exists a continuous projection operator P: X — Y.
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Proof.—> : Suppose that Y, Z C X are closed subspaces and X =Y & Z. Let P: X — Y be the projection of X
onto Y along Z. Let z, — = € X and P(z,) - y € X asn — oo. Since Y = P(X) is closed we have
y €Y. Since Z = (id —P)(X) is closed we also have x —y = 1i_>m (id—P)(zn) € Z. Therefore P(y) =y

n o)

and P(xz — y) = 0. We deduce that P(z) = y. Hence P has closed graph. By the Closed Graph Theorem,

P is continuous.

<=: Let P: X — Y be a continuous projection. Then we have a direct sum decomposition:
X =Y (d-P)(X)

We claim that (id —P)(X) is closed in X. Note that (id —P) is also a continuous projection. For
((id =P)(xyp)) C (id —P)(X) such that (id —P)(x,) — y € X, we have

y = lim (id —P)(zn) = lim (id—P)%(z,) = (id —P) ( lim (id —P)(xn)) = (id —P)(y) € (id —P)(X)

n— oo n—oo n—oo

Hence (id —P)(X) is closed. O

In this section, we have followed the route:

Baire Category Theorem —— Open Mapping Theorem ——> Inverse Mapping Theorem ——= Closed Graph Theorem
We shall briefly discuss the equivalence of the three theorems in this section by proving:
o Inverse Mapping Theorem —> Open Mapping Theorem:

Suppose that X and Y are Banach spaces. Let T': X — Y be a surjective map. Note that the quotient map
7m: X — X /kerT is continuous, surjective, and open. T descends to a bounded bijection T' € B (X /ker T,Y) via
the following commutative diagram:

x—T .y

i
Lﬂ -
0T
X/kerT
By the Inverse Mapping Theorem, T-'e %B(Y,X/kerT). For an open set U C X, the image is given by

TWU)=Ton(U) = (f_1)71 on(U)

which is open in Y. O
o Closed Graph Theorem =—> Inverse Mapping Theorem:

Suppose that X and Y are Banach spaces. Let T : X — Y be a bijective map. By the Closed Graph Theorem,
['(T) is closed in X x Y. I'(T~1) is just I'(T") swapping two coordinates, and hence is closed in Y x X. By the
Closed Graph Theorem, T-! € &(Y, X). O



Chapter 5
Duality

In this chapter, we introduce the important Hahn-Banach Theorem and discuss its analytic and geometric consequences.
We also briefly discuss the weak and weak* convergence and topology.

We shall frequently use the sign function on C or R, which is given by

z/|z| z#0
sgn z :=
0 z=0

For function f : X — C, we can define the sign function sgn f correspondingly. The key property of sign function is
that
fosenf =|fl, |sgnf|=1

5.1 Hahn-Banach Theorem

The scalar field F =R or C.

( A
Definition 5.1. Sublinear Functionals

Let X be a vector space. p: X — R is called a sublinear functional, if
o (Subadditivity) Vz,y € X : p(z +y) < p(z) + p(y);
o (Positive Homogeneity) Vo € X VA > 0: p(Ax) = Ap(z).

Theorem 5.2. Hahn-Banach Theorem, general sublinear version

Let X be a real normed vector space, Y C X be a subspace, and p : X — R be a sublinear functional. Suppose
that f:Y — R is a linear functional such that

fly) <ply) forally € Y
Then there exists a linear functional g : X — R such that

g‘y = f and g(x) < p(z) for all x € X

Proof. The proof is consist of two parts.
e One-step Extension Lemma.

Suppose that U C X is a subspace. Let ¢ : U — R be a linear functional such that ¢ < p on U. Let
xo € X\ U and V :=span(U U {zo}). We shall extend ¢ to a linear functional ¢ : V' — R such that ) <p
on V.

Note that every element v € V' can be uniquely expressed as v = u 4+ Az for some u € U and A € R. We
consider the family of linear functional {t¢). : V' — R}.cr such that t.(v) = ¢(u) + c\. It is clear that

36
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1/)C|U = . We shall prove that there exists ¢ € R such that ¢ <pon V.
For A = 0, trivially we have ¢, < p on V for all ¢ € R. For A > 0,

Yelv) <p(v) = lu) + oA < plutrao) <= e<p(5 +a0) —¢(3)

We obtain a necessary condition: ¢ < inf{p(a + x¢) — ¢(a) : a € U}. For A < 0, similarly we have

Ye(v) < p(v) < @(u) + A < plu+Azg) = > w(&) _p(IUAI —xo)

which gives another necessary condition: ¢ > sup {¢(b) — p(b— zg) : b € U}. Now for the existence of the
extension, we need to verify that

sup (i2(b) —p(b — x0)) < inf (p(a+ z0) ~ ()
beU ac

But it follows from that
p(a) +¢(b) = pla+b) < pla+b) <pla+z0) +p(b—20) = @(b) —p(b—0) < pla+zo)—pla)
which holds for any a,b € U.
Using Zorn’s Lemma.
Consider the set
§:={(¢,D,): Y CD,CX, ¢o:D, — Ris a linear functional such that @’Y = fand o <pon D,}
equipped with the partial order

(¢, Dy) <s (1, Dy) <= Dy C Dy and [, =

It is clear that & is non-empty because (f,Y) € &. We can directly verify (by taking unions) that every
chain in & has an upper bound. Hence by Zorn’s Lemma, & has a maximal element (g, Dg). If Dy # X, we
can pick g € X\ D, and use the one-step extension lemma to construct an extension of g on span(DyU{zo}),
which contradicts the maximality of (g, D). Therefore D, = X and g is the desired extension of f. O

Corollary 5.3. Hahn-Banach Extension Theorem

Let X be a normed vector space, Y C X be a subspace, and f € Y*. Then there exists g € X* such that

Proof.

gly = f and llgllx. = [ f]y-

o The scalar field F = R:

We set p(x) := ||flly-llz|lx for z € X. Then p is a sublinear functional on X and f < p on Y. By the
sublinear version of Hahn-Banach Theorem, we deduce that there exists an f-extension g : X — R such
that g < p on X. Note that

£ lly- <llgllx- = sup |g(z)[ < sup |p(x)] = [|flly-
lell=1 lel=1

The scalar field F = C:
For f:Y — C, we write f = f1 +1if2, where f1, fo : Y — R are both R-linear functionals. For y € Y,

fy) = fily) +ifa(y), fly) =if(y) =ifi(y) — f2(v)
Hence
fo(y) = = filly) = f(y) = fi(y) —ifi(iy)

We regard Y = Yg as a subspace of the normed R-vector space X. And f; € Yg. By the sublinear version of
Hahn-Banach Theorem, f; extends to a bounded R-linear functional g; : X — R such that gq(z) < || f]|]|z]]
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on X. We claim that g(z) := ¢1(z) — ig1(iz) is a bounded C-linear functional on X, which is the desired
extension of g.

It is straightforward to check the C-linearity of g. For the estimate of norm, let x € X. Therefore

9(@)| = g(sn9(@) @) = g1(sen9(@) - ) < lgnll|[seng(@) - || = llgall2ll < I/l O

Proposition 5.4

Suppose that (X, ||-||y) is a normed vector space. For € X \ {0} there exists £ € X* such that [|¢||, = 1 and
U(z) = ||

Proof. Define g : span{x} — F by g(Az) = A||z||. Then ||g|| =1 and g(z) = ||z||. By Hahn-Banach Theorem g extends
to £ € X* such that ||¢]|, = ||g]| =1. O

span{z}*

Corollary 5.5

Suppose that (X, ||-||y) is a normed vector space. Then

el x = sup {|¢(x)] = €€ X7, [lell, =1}, [Ie]], = sup {|(2)] : =€ X, [zflx =1}

Remark. Note that the second supremum is in general not attained, whereas the first supremum is always attained
by the previous proposition.

Corollary 5.6. Dual Space Separates Points

Suppose that (X, ||-||y) is a normed vector space. For z,y € X with x # y, there exists £ € X* such that
U(z) # Uy).

Proof. Apply Proposition 5.4 to the point z —y € X \ {0}. O

5.2 Separation of Convex Sets

In this section we look at a geometric application of the Hahn-Banach Theorem.

( )

Definition 5.7. Minkowski Functional (Off-Syllabus)

Suppose that X is a normed vector space and K C X is a convex subset such that 0 € int(K). The Minkowski
functional on K is px : X — R, where

pi(x) = inf{)\ >0: Mlze K}

Remark. It is clear that pg(x) < 1for z € K and px(z) > 1 for x ¢ K.

Proposition 5.8. Sublinearity of Minkowski Functional (Off-Syllabus)
The Minkowski functional pg : X — R is sublinear.

Proof. The homogeneity is trivial. We prove subadditivity. Let x,5 € X. Consider S, := {\ > 0: A7lz € K} and
Sy:={u>0:pu"'ye K}. For A\ € S, and u € S, by convexity of K,

Tty A oo
=—— + — eK
Adp A+p * )\+uu Y

Therefore px(z +y) < A+ p. Taking the infimum over A € S, and p € S, we deduce that pg(z + y) <
pi(2) + pr(y)- 0
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Remark. We say that K C X is symmetric, if + € K implies that Az € K for all A € F with |A\| = 1. We say
that K C X contains no infinite rays, if K contains no subset of the form {Az : A > 0} for any z € K. Besides
the conditions listed in the proposition, if K is symmetric, then py is a seminorm on X; if in addition K contains no
infinite rays, then px is a norm on X.

Theorem 5.9. Hahn-Banach Separation Theorem / Hyperplane Separation Theorem (Proof Off-Syllabus)

Suppose that X is a normed vector space. Let A, B C X be disjoint convex subsets of X, where A is closed and
B is compact. Then there exists ¢ € X* such that

sup Re/(z) < inf Rel(z)
€A zEB
Proof. e The scalar field F = R (the Re can be dropped in the theorem).

Since A is closed and B is compact, from A2 Metric Spaces we know that
dist(A, B) := inf{||lz —y||: v € A,y € B} >0

So there exists € > 0 such that A. N B =@ where A, :={x € X: Jyc A ||z —y| <e}. Fix g € A and
yo € B. Let 29 := x¢ — yo and

M:=A.—B+z={x—y+20€X: z€ A, ye€ B}
It is clear that M is convex and B(0,e) € M. Then the Minkowski functional pjs is sublinear and
par(z) < e Hzl.

Let g : span{zp} — R given by g(Azp) = A for A € R. Since zg ¢ M, papr(z0) = 1 = g(20) and hence g < p
on span{zp}. By Hahn-Banach Theorem, there exists an extension ¢ : X — R of g such that ¢ < pps on R.
Then ¢(x) < par(x) < e t|z|| and hence £ € X*.

Let 6 > 0 such that §||zg]] < e. Then for any x € Aand y € B, x+ 2z € A. and z + 529 —y + 20 € M.
Then pp(z + dz0 —y + 2z0) < 1. We have
L)+ —Ly)=Llx+ 20 —y+20) —£(20) <pu(xr+d20—y+20)—1<0

Taking supremum over € A and y € B we obtain that

inf £(y) —supl(x) >0 >0
yeB z€A

e The scalar field F = C.

We first consider X as a real normed vector space and proceed as above to obtain a bounded R-linear
functional ¢y such that in}fg lo(z) > sup £o(z). Then we take £ € X* with ¢(x) := lo(x) — ily(iz), so that
z€< z€A

ZO:ZREE. O

Remark. For £ € X*\{0}, {x € X : £(x) = A} is an affine subspace of X of codimension 1, so it is called a hyperplane
of X. The separation theorem says that we can separate the two disjoint convex sets A and B by a hyperplane

{r € X: {(x) = A}, where sup ¢(x) < A < inf {(x).
T€EA reB

By slightly modifying the above proof (in fact simpler) we have the following result.

Theorem 5.10. Hyperplane Separation Theorem (Proof Off-Syllabus)

Suppose that X is a normed vector space. Let A, B C X be disjoint convex subsets of X, one of which has an
interior point. Then there exists £ € X* such that

sup Re4(z) < inf Ref(x)
€A reB



40 CHAPTER 5. DUALITY

e N
Definition 5.11. Annihilators

Suppose that X is a normed vector space.

e For M C X, the annihilator of M is
M° = {EEX*: €|M:0}
For N C X*, the annihilator of N is

No:={z€X: VleN l(z)=0}= () kert
LeN

Proposition 5.12

Suppose that X is a real normed vector space and Y C X is a closed subspace. Let 29 € X \' Y. Then there exists
¢ € X* such that ||¢||, =1, E’Y =0, and #(zg) = dist(xo,Y).

Proof. Define g : span{zp} — R by g(Azg) = Adist(z,Y). It is dominated by the seminorm dist(-,Y) : X — R.
Hence we can use Hahn-Banach Theorem to extend it to a linear functional £ : X — R, which is bounded, as
£(z) < dist(z,Y) < ||z||. We know that €|Y < dist(~,Y)|Y =0 and £(x¢) = g(xo) = dist(xg,Y).

1
Finally we need to show that ||£|| > 1. For ¢ € (0, 1), there exists y € Y such that ||zo — y|| < 1% dist(x,Y).
—€

Then
U — )| _ distlzo,Y) _ 1

lzo =yl llzo,yll ~ 1-¢
We conclude the proof by taking e — 0. O

Corollary 5.13

Suppose that X is a real normed vector space.
1. Let M C X. span M is dense in X if and only if M° = {0};
2. Let N C X*. If span N is dense in X*, then N, = {0};
3. Let Y be a subspace of X. Then Y = (Y°)s.

Proof. 1. The forward direction follows from that
M° = (span M)° = (span M)° = X° =0
For the backward direction, suppose that span M is not dense in X. Then we can take xg € X \ span M
and use the previous proposition to find £ € X* \ {0} such that £ € M°.

2. Suppose that g € N, \ {0}. By Corollary 5.6, there exists ¢ € X* such that ¢(xg) # 0. By density there
exists (£,) C span N such that ¢, — ¢ in X*. In particular £,(x) — £(z) for any = € X. Since £, (xg) =0
for all n € N, we have £(x¢) = 0, which is contradictory. Hence N, = {0}.

3. Note that (Y°), is closed, because it is the interchapter of kernels of some bounded linear functionals. It is
clear that Y C (Y°)o, so Y C (Y°),. On the other hand, if z ¢ Y, then by the previous proposition, there
exists £ € Y~ C Y° such that ¢(z) # 0. Hence = ¢ (Y°),. We deduce that (Y°), CY. O

5.3 Biduals and Reflexivity

Let X be a normed vector space. Then X* is a Banach space. The dual space X** of X* is called the bidual of
X.

From A0. Linear Algebra we know that a vector space X is naturally (linearly) isomorphic to its algebraic bidual X"
via the map Jx : X — X" given by Jx(z)(¢) := £(z) for any 2 € X and £ € X'.
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It is not necessary that X is isomorphic to X**. It is clear that Jx : X — X** is injective. By Corollary 5.5, Jx is
isometric:

1 7x (@)l = sup {|Jx (2)(€)| = €€ X7, |||, = 1} = sup {|[¢()] : €€ X7, [|€]], =1} = [|=]

[ Definition 5.14. Reflexive Normed Vector Space ]

Let (X,]|-]|) be a normed vector space. We say that X is reflexive if Jx : X — X** is surjective. In such case X
is isometrically isomorphic to X**

Remark. The converse is NOT true! There exists a non-reflexive Banach space that is isometrically isomorphic to its
bidual.

Proposition 5.15. Reflexivity of Hilbert Spaces

Every Hilbert space is reflexive.

Proof. Immediate by Riesz-Fréchet Representation Theorem. O

Recall from A2. Metric Spaces that (Y, J) is called a completion of the metric space X, if Y is a complete metric
space, and J : X — Y is a isometric embedding such that J(X) is dense in Y.

Proposition 5.16. Existence of Linear Completion

Every normed vector space X has a completion (Y, J), where Y is a Banach space and J is a linear isometric
embedding.

Proof. Following the above discussion, we choose J = Jx and Y := Jx(X). Since Y is a closed subspace of X**| Y is
a Banach space. It is trivial that Jy (X) is dense in Y. O

Proposition 5.17. (Off-Syllabus)

Suppose that X and Y are isometrically isomorphic normed vector spaces. Then X is reflexive if and only if YV is
reflexive.

Proof. 1t follows directly from the following commutative diagram:

W]

X——Y

Proposition 5.18. (Off-Syllabus)

Let X be a normed vector space. X is reflexive if and only if X is complete and X* is reflexive.

Proof.— : Suppose that X is reflexive. Then X = X**. Since X** is complete, so is X. For £ € X*** let f ={oJx €
X*. Since Jx is surjective, for ¢ € X** there exists € X such that ¢ = Jx(z). We have

§(p) =0 Jx(x) = l(z) = Jx(x)() = o(l) = Jx-(()(¢)

Hence £ = Jx~(¢). We deduce that Jx~ is surjective and hence X* is reflexive.
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<= Suppose that X is complete and X* is reflexive. Then Y := Jx(X) is complete and hence closed in X**.
Since Jx~ is surjective, for £ € Y° there exists £ € X* such that £ = Jx«(¢). We have

VeeX l(z)=E(odx(z)=0) = (=0 = £=0 = Y° ={0}

By Corollary 5.13, Y is dense in X**. But Y is closed. We have Y = Jx(X) = X**. X is reflexive. O

( )

Definition 5.19. Uniform Convexity (Off-Syllabus)

Let X be a normed vector space. Let Sx denotes the unit sphere in X. X is said to be uniformly convex, if

1
Ve>036>0Va,yc Sy (|xy||>s = 2||x+y||<15>

Proposition 5.20. Uniform Convexity of Inner Product Spaces

Every inner product space is uniformly convex.

Proof. Suppose that X is an inner product space. For ¢ > 0 and z,y € Sx with ||z — y|| < €, by the Parallelogram
Identity we have

2 2 2 2
o+ gl =2 (l2l* + Iyl1*) = llo = yl* <4 - &

V4 — g2 1
Wetakedzl—Te. Then §||1:+y||§1—5. O

Proposition 5.21. (Off-Syllabus)
Suppose that X is a uniformly convex Banach space. For each £ € X*\ {0} there exists a unique 2 € X such that
[z[| = 1 and £(z) = [|€]],.

Proof. e Existence: Let Sx denotes the unit sphere in X. Let (z,) € Sx be such that f(z,) — ||f]] as n — oo.
We show that (x,,) is a Cauchy sequence. Suppose not. Then there exist € > 0 and increasing sequences

1
of integers (ng), (my) such that ||z,, — xm, || = € for all k > 1. Let y;, = 3 (Tn, + Tm,, ). Then |yl < 1

forall k > 1 and f (yx) — |||l as k — oo. It follows that ||yx|| — 1 as k — oo, so by uniform convexity
|€n, — Tm, || = 0 as k — oo, giving the required contradiction.

o Uniqueness: Suppose that z,y € Sx are two distinct vectors such that f(z) = f(y) = ||f]|- By uniform
convexity we must have |z + y|| < 1 and hence

I =1 (552) < it < gy

This contradiction completes the proof. O

Remark. The proposition says that in a uniformly convex space every functional attains its norm at a unique vector
in the unit sphere. We can compare the result with Proposition 5.4.

Proposition 5.22. Convexity & Reflexivity (Off-Syllabus)

A uniformly convex Banach space is reflexive.

Remark. This is a strong result. For the proof one can refer to Question C.4 of Sheet 3 of C4.1 Further Functional
Analysis (2020-2021). We will not make use of the result subsequently.


https://courses.maths.ox.ac.uk/node/view_material/52832

5.4. DUAL OF LEBESGUE SPACES 43

5.4 Dual of Lebesgue Spaces

Next we shall establish the dual space of some particular Banach spaces.

Example 5.23. Dual Space of /P

Let 1 < p < co. Let ¢ be the Holder conjugate of p, i.e. p~! +¢7 1 = 1.
1. (eP)* = (9,
2. (co)* =1L

Proof. 1. We define &, : {2 — (¢7)* by
®p(z)(y) = Z LnYn

neN

We shall show that @, is a isometric isomorphism. It is well-defined by Hélder’s Inequality:
1By (2)()] < D [2nyal < Iz, llyll, < oo
neN
It is clear that @, is linear.

Surjectivity: Suppose that f € (#7)*. Let eU) be the sequence such that e,(cj) = §jk. Let z; := f(eV)) and
x = (x)jen. We claim that z € £9.

e 1 <p<oc:
Consider the sequences (™) € ¢9 and y(™) € (P given by
2(n) — ije(j), Y™ = Z |$j|q71 sgnixje(j)
§=0 j=0

Then z(My(™ = > =0 |z;|9€9) and

N 1/p " 1-1/q
qg—1
Hym) — [ S Jay e — [yl :Hzm
p ) ) q
And
n ) n q
) =3 fay | s £eD) = 3 Jay 7 = [[o
j=0 j=0 4
We have y
s =1,
n Fly™)
Slalt| =[] = St = <1171,

a Haj(n)HZ_l ly™]],
Hence ||z[|, < [ fll,. and = € £9.
e p=1:

‘We have 4
zj = f(eD) <|fl,.

D = 11fll,. < o0
p

Hence z is bounded and x € £°°.

We note that ®(x)(eV)) = x; = f(e\?)). Therefore ®(z) = f on span{e(},cn. But span{e(},cy is dense
in . We deduce that ®(x) = f on ¢P. ® is surjective.

Isometry: For x € 7, by Holder’s Inequality, we have

x
||‘I>p($)||p*: sup M< - M

s = ||z
yerrrfoy Yl veernfoy |yl !
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For the reverse direction,
e 1<p<oo:

We construct y = (y;);jen as in the proof of surjectivity:
y; = |z;]97" sgn;
So |y, = ||;10H371 and hence y € ¢P. Now

2]l llyll, = llzllg = @p(x)(y) < 12p(2)],. ¥,
So [|zll, < [[@p()]],..-
e p= 1:

Fix € > 0. Let N € N such that 1I<HP2XN|$J‘| > ||z||,, — &. Let y € ! be given by
SYAS

y = sgzye®

where k € {1, ..., N} such that |zy| = 1r<na£XN\xj|. Then
SYAS

191(@) 11, = [22@)llylly > P2} (W) = max ] > |2, — e

Since ¢ is arbitrary we deduce that ||z < [[®1(2)]];,
This completes the proof.

2. We define ¥ : /1 — (co)* by

neN
The proof of surjectivity and isometry are exactly the same as (1), with ¢ = 1.

The only thing to note is that span{e(j)}jeN is dense in ¢y but not in £*°. Therefore we cannot prove that
D : 01— (£2°)* is surjective. O

Example 5.24. Dual Spaces of L?(Q) (Proof of Surjectivity Off-Syllabus)

Let 2 C R™ be a measurable set. Let 1 < p < oc. Let ¢ be the Hélder conjugate of p, i.e. p~' + ¢! = 1. Then
LP(Q)* =2 Li(Q). @

oIf we are considering the general LP (2, u), then the o-finiteness of p is required only for p = 1.

Proof. For simplicity we only consider the scalar field F = R.
As for the sequence spaces, we define @, : LY(Q) — LP(Q2)* by

<1>p(f)(g)=/ﬂf-g

The proof of isometry of ®, is essentially the same as for sequence spaces. When p = 1, we need to replace the
e(®) by suitable indicator functions 1 A,- The main work is to prove surjectivity.

 First we consider the case where m(2) < co.

Let & € LP(Q)*. We define v : Mpep(2) = R by v(E) := &(1g). This is well-defined because every
measurable set F has finite measure and hence 15 € LP(£2). We claim that v is a signed measure. Indeed,
let {E)}re, be a countable disjoint collection of measurable sets and E = |J, Ex. By the countable
additivity of the Lebesgue measure,
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Consequently,

n
1g— > 1g,

k=1

lim
n—oo

o 1/p
= lim ( > m(E@) =0)
k

But £ is both linear and continuous on LP(Q2) and hence

p

§xp) =Y &(xm) = v(B)=> v(E)
k=0 k=0

To show that v is a signed measure it must be shown that the series on the right hand side converges
(o]

absolutely. We set ¢ = sgné(1g,). Then arguing as above we conclude that the series Z lv(E)| =

k=0
(o)
Z{ (cklg,) is Cauchy and thus convergent. Thus v is a signed measure. Moreover, it is clear that
k=0
lv| < m.

By Radon-Nikodym Theorem (Corollary 2.29), there exists a function f :  — R such that

£(1p) = (E) = /E fda

By linearity we have

£(p) = /Q fods

for all simple functions ¢ : 2 — R.

o We claim that f € LI(Q). Since & is bounded, we have

/Q foda

Let (p,) be a sequence of non-negative simple functions such that ¢, ' |f| pointwise. Let v, :=
sgn f - 9= Then 1, is also a simple function with |f|p?=1 = fi,, and

lall? = /Q P = /Q [onlP@D = 2

< ] [ iner| - | [ 0.

lonll, = llenll ™" < €],

1Al = ]/qu

We deduce that | f[|, < [[€7[],- In particular f € LI(Q2).

= @) < [l llell,

—1l<p<oo:

‘We have

loull? = loullt = \ [

Therefore

< el llonll, = Nl leon 2

Finally, by Fatou’s Lemma,

< lifgg.}f/(f% < |I€l15.

— Forp=1:
Supoose that || f||,, > |€]l;,- Then E :={x € Q: |f(z)| > |[£]|,, + €} has positive measure. But

< Il | sen F1ell, = m(E) ;.

m(B)el, < \/Em] _ ‘/QfsgnflE

which is contradictory. Hence | f||,, < [£]],, and f € L>(Q).
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Now we use the fact that the set of simple functions is dense in LP(Q)) to conclude that

o) = [ foda

for all g € LP(Q2). @, is surjective.

o Next we consider general measurable set 0 C R™. We use the fact the Lebesgue measure is o-finite. So let
(€2,,) be an ascending sequence of measurable sets such that Q = (J,, 2, and m(Q,) < co. From above we

have shown that there exists f, : 2, — R such that |||, < [[]],.. and for g € LP(Q,) C LP(Q),

£(g) = /Q fagda

From 2, C Q,4+1 we may take fn+1|9 = fn. Let f = Un fn. Then by Fatou’s Lemma,

/ 1717 < liminf / [ Fal® < L€
Q n—oo Q,

Hence f € L1(Q). For g € L?(Q)), we take g, := g’Q € LP(Q,). By Dominated Convergence Theorem,

lim / |gn—g|p:/ lim |g|’|1lq — 1, [P =0

Hence g, — g in L?(Q). Finally,

&(g) = lim &(gn) (continuity of £)
n—roo
= lim [ f,g, = lim / fogn = lim / fa (Dominated Convergence Theorem)
We deduce that @,(f) =&. P, is surjective. O

Corollary 5.25. Reflexive Banach Spaces

Let 1 < p < co. Then ¢F and LP(§2) are reflexive.

Proof. We have shown that ®, : 7 — (¢P)* is an isometric isomorphism. Then for x € /7 and f = ®,(y) € (/7)*
o (2)(f) = f(2) = Qp(y)(z) = Z TpYn = Pg(z)(y) = q’q(-x)(q);l(f)) = ((q);l)/ 0 ®y)(z)(f)
n=0

Hence Jpp = (®,') o ®, is an isometric isomorphism. £ is reflexive. The proof for L?(£2) is identical. O

Proposition 5.26. Dual Spaces and Separability (Off-Syllabus)

Suppose that X is a normed vector space. If X* is separable, then X is separable.

Proof. Let (f,) be a dense countable subset of Sx~, the unit sphere of X*. For each n € N, since

L= fall. = sup |fu()]
llzll<1
We choose z,, € X with |f,(z,)| > 1/2 and ||z, || < 1. We claim that YV := span{z;, },en is dense in X. Suppose
not. Then by Corollary 5.13.1, Y° # {0}. We take f € Sx~NY°. There exists n € N such that ||f — f,||, < 1/2.
But
0 <[f(@n)l = [fnlzn)l = [(f = fu)(@n)| <1/2=[If = ful, <1/2-1/2=0

which is contradictory. We conclude that X is separable. O
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Corollary 5.27. Non-Reflexive Banach Spaces (Proof Off-Syllabus)
(0>°)* 2 ¢1 and L>(Q)* 2 LY(Q). In particular, the spaces ¢!, £, L}(Q2), and L>°(f) are non-reflexive.
Proof. We know that ¢! and L'(Q2) are separable, but £ and L>°(Q) are not. Therefore by the previous proposition
(£>°)* 2 01 and L*°(Q)* 2 LY(Q).

If ¢ is reflexive, then ¢! = (¢})** = (¢>°)* which is contradictory. Similarly, L(Q) is not reflexive. Finally,
since (£1)* 2 (> and L'(Q)* 2 L>°(Q), by Proposition 5.18, £>° and L>°(2) are not reflexive. O

5.5 Weak and Weak* Convergence

[ Definition 5.28. Weak Convergence ]

Suppose that (X, ||]|) is a normed vector space. For (z,)nen C X, we say that x,, converges weakly to x € X, if
l(xy) — £(x) as n — oo for all £ € X*. The weak convergence is denoted by a half arrow: =, — x.

Remark. Note that, since X* separates points in X, the weak limit of (x,,) is necessarily unique.

Remark. To stress the difference, the usual convergence ||z, — x|| — 0 is called the strong convergence.

The weak convergence of sequences induces a topology on X, namely the weak topology:

( Definition 5.29. Weak Topology (Off-Syllabus) ]

The weak topology on X is the coarsest topology on X with respect to which every ¢ € X* is continuous. The
topology is denoted by o (X, X*).

Remark. More explicitly, the weak topology on X is generated by the open sets
{reX: [ly(xr—mz0)| <e, 1<k<n}

where g € X, n € Z4, and € > 0.

Proposition 5.30. Strong Convergence —> Weak Convergence
Suppose that (X, ||-]|) is a normed vector space. If (z,,) C X such that z, — = € X as n — oo, then z,, — z as
n — oo.
Proof. it follows directly from that
[l(zn —2)| < [l Nlzn — 2l| =0
asn — oo, for all £ € X*. O
Remark. In finite-dimensional normed vector spaces, the strong and weak convergence are equivalent. It is not true in

general. For example, suppose that X is a separable Hilbert space with a orthonormal basis (x,). Then (z,) converges
weakly but not strongly to 0 as n — oo.

Proposition 5.31. Weak Convergence —> Boundedness & Lower Semi-Continuity of Norm

Suppose that (X, ||-]|) is a normed vector space. Let (x,) C X such that x,, = x € X. Then sup||z,| < co. In
neN

addition, we have [|z|| < liminf ||z, ||.
n—oo

Proof. Note that each x,, defines a linear functional on X*: T;,(¢) = {(z,,) for all £ € X*. Furthermore, ||T,,, = |lzn]|-
Now for each ¢ € X*, ¢ (x,,) is convergent, and hence bounded. The uniform boundedness principle thus implies
that ||7,] is bounded. (Note that X* is complete regardless whether X is complete or not.) Hence (z,) is
uniformly bounded in norm.
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Next by Proposition 5.4, there exists £ € X™* such that ||¢||, =1 and ¢(z) = ||z||. Then
[zl = €]l [lznll = €(zn)] = |€(2)] = ]|

as n — oco. Hence ||z| < 11m1nf||wn|| O

Example 5.32. Schur Property of /!

A weakly convergent sequence (x,,) C ¢! is strongly convergent.

Proof. Suppose that (x,) C ¢! converges weakly but not strongly to € ¢!. Let y, := x, — 2. Then there exists a
subsequence (z;,) of (y,) such that
lznlly =Yzl > ¢
JEN

for some € > 0.
We shall construct the increasing sequences (ny) and (my) in the following inductive way:

e Let mp =0 and ng = 0.

e Suppose that we have constructed my_; and ni_;. We claim that there exists ng > ng_1 such that

> el <2

JSmp-1

From part (a) we know that z,(j) — 0 as n — oo for each n € N. Then

3

Vie{0,..,k—1}3IN, eNVn>N; |z(i)] < —
? { } n |Z (Z)| S(mk_1+1)

Let ng := max {ng_1, No, ..., Ny—1}. Then

9
Z |an Z mk 1 _|_1 §

J<me—1 j=0

e We claim that there exists mj > mj_1 such that

Z|an |<7

j=my

Since (zp, ) € £1,

[2nlly = Z|an )| < o0

jeN

Choose sufficiently large my such that

Zm N> lznelly — =
k k1 8

and the result follows.
We identify (¢1)* with £>°. Consider b € £>° such that b(j) = 5gnz,, for myp_; < j < my.

For sufficiently large k,

mg—1 mpg

(b 2ni) = D 0(i)z0, () = Z Z b(Neme()+ D, |2 ()]

JEN j=mp+1 j=mp_1+1
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where
Mg —1 oo Mk —1 oo € € €
Do+ D MmO < D DI+ Y )< g+ g =7
j=0  j=mp+1 j=0 j=mp+1
In addition,
M1 oo mg c Mg
e<lall={ >+ > Jlem@l+ D lmG)l< Rl DOENE)]
j=0 j=mp+1 Jj=mp—_1+1 j=mp_1+1
Therefore
€ €
b(zn,, ) > 14— (8_1) =¢
contradicting that z, — 0 weakly in ¢'. We conclude that z,, — 0 in £. O

Theorem 5.33. Radon-Riesz Theorem

Suppose that X is a uniformly convex Banach space. Let (z,) C X such that z,, = z € X and ||z,| — ||z| as
n — 0o. Then x,, — x strongly in X as n — oo.

Proof. Suppose that © = 0. Then ||z, | — 0 directly implies that x,, — 0 in X by definition. Now suppose that ||z|| # 0.
Since ||z,|| — |||l as n — oo, there exists N € N such that for all n > N, ||z,|| > §||x\| By discarding the

first N terms in the sequence, we assume that ||z,|| # 0 for all n € N. Let y,, := z,,/||z,|| and y := z/||x||. For

te X7,
lim 4(z,,)
lim 4(y,) = lim fan) = nFOO = Ha) = ((y)
ne nooe flagll  tim Jlan]l o]

1
Hence y,, — y in X. Let z, := §(yn +y). Then 2, — y in X. By Proposition 5.31,

. ...
1= [jy|l <liminf|[z,| = 5 liminf [y, + y|| (%)
n—o00 2 n—ooco
Suppose that y, 4 y in X. Then there exists € > 0 such that limsup|ly, — y|| = . By definition of uniform
n—oo
convexity, there exists ¢ > 0 such that ||y, + y|| < 2(1 — ) whenever ||y, — y|| > . Hence
liminf [y, + y[| < 2(1 —0)
n—oo

This contradicts the equation (x). We deduce that y, — y in X. Finally, since ||z,| — |[|z|| in R and
Zn, = Ynllzn||, by algebra of limits we conclude that z,, — z in X. O

Theorem 5.34. Mazur’s Theorem

Let X be a normed vector space and K C X a closed convex set. Let (x,) C K be a sequence such that
xn, — ¢ € X weakly. Then z € K.

Proof. Suppose that @ ¢ K. Then there exists an open ball B(x,r) such that B(z,r) N K = @. By Hyperplane
Separation Theorem (Theorem 5.10) there exists {o € X* \ {0} and ¢ € R such that

sup Refp(y) <c < inf Rely(z)
yeEK z€B(z,r)

Therefore for w € B(0,1),

Re fo(w) = % (Re fo(z + rw) — Relo(x)) > % (c — Re lo())
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Replacing w with —w we obtain
1
Rely(w) = —Relp(—w) < - (¢ — Rely(x))

Hence
|Re £p(w)| <

S| =

(Rely(x) —¢) (%)

On the other hand, since x,, — x, we have {y(z,) — lo

—~

x). Therefore

Rely(zn) < ¢ = Relp(z) = lim Rely(z,) < ¢ (%)

n—oo

Substituting (xx) into (%) we obtain |Re {y(w)| < 0, and hence Re o(w) = 0. Replacing w with iw we also have
Im ¢p(w) = 0. We deduce that ¢g = 0, which is contradictory. We conclude that = € K, O

Remark. In the proof of Mazur’s Theorem, we see that in fact a sequence of finite linear convex combinations of (zy,)
converges strongly to x. For uniformly convex Banach spaces, the result can be substantially improved as follows.

Theorem 5.35. Banach-Saks Theorem

Suppose that X is a uniformly convex Banach space. Any weakly convergent sequence (z,,) C X has a subsequence
(2, ) which converges strongly in the Cesaro sense:

1 m

—E Tp, > €X asm— o0
m

k=1

Proof when X is a Hilbert space:

Without loss of generality we assume that x,, — 0 and ||z, || < 1 for all n € Z;. We construct subsequence of
(z5,) inductively. Let ny = 0. Suppose that we have ny € N. Let y;, = Z?:o Tp; and lykll> < 3k (induction
hypothesis). Then we have (yx, z,) — 0 as n — oo. Therefore there exists ny; > ny such that |<y;€7 xnk+1>‘ < 1.
Now we have

[z H2 = [y I* + 2Re Y Trpeia ) + || H2 S3k+2+1=3(k+1)

which completes the induction. Therefore we have

2

m

1
m 2
k=1

as m — oco. Therefore (z,,,) converges strongly to 0 in the Cesaro sense. O

1 s 3
= —llyml"<—=—0
m m

[ Definition 5.36. Weak* Convergence W

Suppose that (X, ||]|) is a normed vector space. For (£,,)nen € X*, we say that £,, converges weak* to £ € X*, if
lp(z) = £(z) asn — oo for all z € X.

Remark. Similarly we also have the notion of weak* topology. The weak* topology on X* is o(X™*, Jx (X)), which is
the coarsest topology on X* with respect to which every Jx(z) € X** is continuous.

There are three different modes of convergence on X*: strong convergence, weak convergence, and weak* convergence.
If X is reflexive, then the weak and weak* convergence on X* are equivalent;, and the corresponding weak topology
o(X* X**) and weak* topology o(X*, Jx(X)) are equal.

5.6 Weak Sequential Compactness

In Proposition 1.30, we have shown that the closed unit ball is no longer compact with respect to the strong topology for
infinite-dimensional normed vector spaces. In this section we shall establish a result asserting that in reflexive Banach
spaces the closed unit ball is compact with respect to the weak topology.
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Definition 5.37. Weak Sequential Compactness

Suppose that X is a normed vector space. K C X is called weakly sequentially compact, if every sequence in K
has a subsequence weakly convergent to a point in K.

Similarly we also have the notion of weak™ sequentially compactness for subsets of X*.

Definition 5.38. Weak Compactness (Off-Syllabus)

Suppose that X is a normed vector space. K C X is called weakly compact, if K is compact with respect to the
weak topology o(X, X*).

Similarly we also have the notion of weak™ compactness for subsets of X*.

Remark. For normed vector spaces (and more generally metric spaces), compactness is equivalent to sequential com-
pactness. However, it is not true in general that weak compactness and weak sequential compactness are equivalent,
as the weak topology may not be metrisable.

Theorem 5.39. Banach-Alaoglu Theorem (Off-Syllabus)

Suppose that X is a real normed vector space. The closed unit ball BY, C X* is weak® compact, i.e., compact
with respect to the weak™ topology.

Proof. For each x € X we associate a compact interval
Ko = [=[lafl, =[] € R

The product space
K= ][ K. ={f: X > R|VzeX |f(x)] < ||} CRY
rzeX

Let X’ C RX be the algebraic dual of X. Then the interchapter X’NK is closed unit ball Bx~ := {£ € X* : ||{||, = 1}.
The weak* topology on Bx- is precisely the induced topology on RX.

By Tychonoff’s Theorem', K is compact with respect to the product topology. To show that Bx- is compact,
it suffices to show that X’ is closed in R¥.

For z,y € X and A € R, we define ¢, , : R¥X — R and Y RX — R by

pay(f) = fle+y) = f@) = fy),  Yor=FfA2) = Af(2)

Then
X'= ) ery0h)n [ wii({op
z,yeX z€X,AeR
is closed with respect to the product topology. This completes the proof. O

Theorem 5.40. Eberlein-Smulian Theorem

Let X be a Banach space. Let Bx C X be the closed unit ball of X. The following are equivalent:
1. X is reflexive;
2. By is weakly sequentially compact;

3. Bx is weakly compact.

Remark. The only examinable proof is the direction 1 = 2 in the special case of Hilbert spaces.

Proof.

1Tychonoff’s Theorem: The arbitrary product of compact spaces is compact with respect to the product topology.
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1 = 2: Suppose that (z,) C Bx. Let Y := span{z, }nen.

1= 3:

2=1:

3= 1:

o Y is reflexive. (trivial if X is a Hilbert space)

Let & € Y**. Let Ry~ € B(X*,Y™*) be the restriction operator and Ry.. € B(Y**, X**) be its dual
operator . Let £ := R}..(&) € X**. Since X is reflexive, there exists w € X such that £ = Jx(w).
We claim that w € Y*. Suppose not. Then by Proposition 5.12 there exists { € Y° such that
(w) = dist(w,Y) > 0. But

U(w) = &£(0) = Ry (€0)(£) = &o 0 Ry« (£) = &(0) =0
This is a contradiction. We have w € Y. In particular {; = Jy (w). We deduce that Y is reflexive.
(Jy (zn))nen C Y** has a weak® convergent subsequence. (diagonal argument, very important!)

Since Y is reflexive and separable, by Proposition 5.26, Y* is also separable. Suppose that (£,)5 is
dense in Y*. We construct S : N x N — N inductively as follows:

First, let S(m,0) := m. Suppose that we have constructed S(-,n) : N — N. Consider the sequence
(Jx (X 5(m,n)) Uns1))men = (Un1(Zs(m,n)))men € R, which is bounded in R, because () is bounded.
By Bolzano-Weierstrass Theorem, there exists a subsequence S(m,n + 1),,en of S(m,n)m,en such that
(Jx (T 5(m,n+1))(nt1))men is convergent. Now we take the subsequence (og(m,m)) of (Zm). Then

(Jx (T 5(m,m))(ln))men is convergent for each n € Z.

Note that (Jx (Zg(m,m))) is uniformly bounded by 1. Since (£,,) is dense in Y*, by Proposition 4.3, we
have that (Jx (Zg(m,m))(£)) is convergent for each £ € Y*. Let ¢ : Y* — F such that

m—r 00

for all ¢ € Y*. It is straightforward to check that ¢ € Y**. Therefore v is the weak* limit of
(JX (-rS(m,m))) in Y**.

(zn)nen € X has a weak convergent subsequence.

Let z := J'(¢) € Y. For £ € X*, we have £(z,,) = Ry+ 0 {(x,) and {(x) = Ry~ o {(z). We have

lim g(xS(NL,m)) = Tr}ll)noo RY* Og(zS(m,m)) = n}gnoo ‘]X (xS(m,’m))(RY* (6)) = 7/}ORY* (6) = RY*OK(I) = f(l‘)

m—r0o0

We deduce that xg(, m) — = as m — oo. In particular, Bx is weakly sequentially compact.

Since X is reflexive, Jxy : X — X** is an isometric isomorphism and hence is a homeomorphism with
respect to the weak topology of the both spaces. By Proposition 5.18, X* is also reflexive. Hence the weak
topology on X** agrees with the weak* topology. By the Banach-Alaoglu Theorem, By« C X** is weakly
compact. Therefore Bx C X is also weakly compact.

Omitted. (Too difficult for an introducotry course like this...)
Omitted. (Too difficult for an introducotry course like this...) O

Corollary 5.41. Closest Point in a Closed Convex Subset, Reflexive Banach Space

Let X be a reflexive Banach space and K C X a non-empty closed convex set. Then

Vee X dye K : ||z —y| = dist(z, K)

In particular, y € K is unique if X is uniformly convex.

Proof. Let (y,) C K such that |z — y,| — dist(z, K) as n — oco. Since (y,,) is bounded and X is reflexive, by Eberlein-
Smulian Theorem, y, — y for some y € X. Since K is closed and convex, by Mazur’s Theorem y € K. In
particular, ||z — y|| > dist(z, K). On the other hand, by the lower semi-continuity of norm,

|z — y|| < liminf|z — y,|| = dist(z, K)
n—oo

We conclude that ||z — y|| = dist(z, K).
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Now in addition suppose that X is uniformly convex. Without loss of generality, we assume that = ¢ K so that
dist(z, K) > 0. Suppose that y,y’ € K such that ||z — y|| = ||z — ¢'|| = dist(z, K). Suppose for contradiction
/!
r—y r—y
that ' Let z:= ——— and 2/ == ———
y#y dist(z, K) ? dist(z, K)
(in fact strict convexity would suffice), there exists ¢ > 0 such that

. Then 2,2’ € Sx and z # 2’. By uniform convexity of X

/

1
sle+2l<1-6 = Hx—yz‘”

< (1 =4)dist(x, K) < dist(z, K)

But by convexity of K, (y +v')/2 € K, which is contradictory. We deduce that y = 1/. O



Chapter 6

Spectral Theory

In this chapter, we discuss the spectrum of a linear operator. We categorise different types of spectra and discuss
the properties of spectra of bounded operators on Banach spaces. Then we focus on the normal operators on Hilbert
spaces.

For convenience, we shall restrict our attension to the complex scalar field (thanks to its algebraic closedness.)

6.1 Spectra and Resolvent Sets

Spectra is the generalisation of eigenvalues of linear operators in infinite-dimensional normed vector spaces. Recall from
Linear Algebra that if T' is a linear operator on a finite-dimensional vector space X, then

A is an eigenvalue of T <——= (\id —T) is not injective <= (Aid —T) is not invertible <= (\id —T') is not surjective

The second and the third equivalence no longer holds for infinite-dimensional spaces. We have the following defini-
tions.

( )
Definition 6.1. Spectra, Resolvent Sets

Suppose that X is a complex normed vector space. Let T € B(X).
o The spectrum o(T') of T is the set of A € C such that \id —7 has no inverse in % (X);

o The resolvent set of T'is p(T) := C\ o(T). For \ € p(T), R\(T) := (T — Aid)~! is called the resolvent of
T at A

Definition 6.2. Point Spectra, Continuous Spectra, Residual Spectra

Suppose that X is a complex normed vector space. Let T € B(X).
o The point spectrum o,(T) of T: A € 0p(T) <= Aid —T is not injective.

The elements in o,(T) are called eigenvalues of T'; the non-trivial elements in ker(Aid —T") are called
eigenvectors of T'.

o The continuous spectrum o.(T") of T: X € 0.(T) <= Aid —T is injective and im(Aid —T") is a proper dense
subset of X.

o The residual spectrum o,(T) of T: X € 0.(T) < Aid —T is injective and im(Aid =T ¢ X.
By definition, ¢(T') is the disjoint union o, (T") U o.(T) U o, (T).

Definition 6.3. Approximate Point Spectra

A € C is called an approximate eigenvalue of T, if there exists a sequence (z,) C X such that ||z,| = 1 and
Az, — T'(z,)|| = 0 as n — co. The approximate point spectrum o, (7") of T' is the set of approximate eigenvalues
of T.

. J
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Remark. It is clear from definition that o, (1) € 0ap(T') € o(T).

Proposition 6.4. 0.(T') C 0.,(T)
Suppose that X is a complex Banach space and T' € B(X). Then o.(T') C 0ap(T).

Proof. Suppose for contradiction that A € 04(T") \ 0ap(T'). A ¢ 0ap(T) and linearity implies that there exists ¢ > 0 such
that
[(Aid =T)z[| > ¢f| =]

for all z € X. Let Y := im(Aid —T'). Note that Aid —T is bijective from X to Y. Hence it is invertible in
%(X,Y) and its inverse U € H(Y, X). Since Y is dense in X, by Proposition 3.2 there exists a unique extension
VeRB(X,X)of U. Now pick p € X \Y and (p,) CY such that p,, — p. Then U(p,) — V(p) and therefore

MNd-T)V(p) = lim (N\id -T)U(p,) = li_>m DPn =D

n—r oo

Hence p € Y, which is contradictory. We conclude that o.(T") C 0,,(T). O

Proposition 6.5. Spectra of Dual Operators
Suppose that X is a complex Banach space and T € %(X). Then we have
1. 0o(T) Cop(T');
2. 0.(T") C o.(T).
Proof. 1. Let A\ € 0,(T). Let Y := Aid—T. Then Y C X. By Corollary 5.13.1, there exists £ € Y° such that

[I4]], = 1. For all x € X,
(Nidx~ =T") o l(z) = L((Nidx —T)x) =0

Hence (Aidx+ —T")¢ =0 and X € o,(T").

2. Suppose that A € 0.(T"). By Proposition 1.35 and Corollary 5.13, ker(Aidx+ —7") = {0} implies that
im(Aldx =7) = X; im(Aidx« —7") = X* implies that ker(Aidx —T) = {0}. Since Aidx —T is not
invertible, we deduce that A € o.(T). O

Corollary 6.6. 0(T') = 0ap,(T) U 0, (T")
Suppose that X is a complex Banach space and T' € B(X). Then o(T) = 0,p(T) U op(T7).
Hilbert spaces are reflexive and we can use the adjoints to replace the dual operators. We have the following re-
sults.
Proposition 6.7. Spectra of Operators in Hilbert Spaces
Suppose that X is a complex Hilbert space and T' € %(X). Then we have
1. op(T) C O’;(T*) Uol(T*);
2. 0o(T) = oe(T7);
3. 0(T) Cop(T).
where o*(T) := {A: A€o (T)}.

Lemma 6.8

Suppose that X is a complex Hilbert space and T' € %B(X). Then o(T) C {(z,Tx) : ||z| = 1}.

Proof. Let A € o(T) = 0up(T) Uopy(T™). If X € 0ap(T), then there exists (z,) C Sx such that (A\id —T)z, — 0 as
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n — 00. By Cauchy-Schwarz Inequality,

A= (o Tan)] = [Al@all® = (o0, Tan)

= [(@n, Md =T)zn)| < [ln[[[(Xid =T)znl| — 0

as n — 0o0. Hence A € {(z,Tz) : |z|| =1}.
If X € o(T™), then A € o, (T*) and so there exists € Sx with T*(x) = A(z). We have

A=z, z) = (T"(z),x) = (z,Tx)

Hence A € {(z,Tz) : |z| = 1}. O
6.2 Bounded Operators on Banach Spaces

Proposition 6.9. Properties of the Spectra of Bounded Operators on Banach Spaces
Suppose that X is a complex Banach space and T € % (X).

1. The resolvent set p(\) is open in C. The map p(T') — B(X), A — R (T) is analytic, in the sense that for
any A\g € p(T), there exists an open neighbourbood Q C p(T') of Ag such that the resolvent operator is given
by

o0

RA(T) = Z()\ —X0)" Ry, (T)"H
n=0
2. o(T) is non-empty, compact, and bounded by ||T'| g -

Proof. 1. Fix \g € p(T), so Rx,(T) = (T — X\gid)~!. By Corollary 1.22, T — \gid —S is invertible whenever ||S|| <
HRAo(T) H_l. The inverse is given by the Neumann series

(T — Xoid —S)™ = (T — Ngid) ! f: (T = Xoid)™1S)" = Ry, (T) i(RM (T)S)"
n=0 n=0

For A € B ()\0, | R (1) ||’1), we put S := (A—Xp)id. So T —Xid = T — X id —S is invertible, with inverse

given by
RA(T) = Rag(T) D (A= 0)" R (T)" = Y (A = Xo)" R (1)
n=0 n=0

Hence A — R (T) is analytic. We have also shown that p(T') is open.

1
2. o(T) =C\ p(T) is closed. For A\ € C with |A] > ||T||, by Lemma 1.21, id fXT is invertible, and hence so is

Aid —T. Therefore o(T) C B(0,||T||). Now o(T) is closed and bounded. So it is compact by Heine-Borel
Theorem.

Lastly we shall show that o(T) # @. Suppose that it is empty. The resolvent map A — Ry (T) is defined
on the whole C. For ¢ € B(X)*, we define g, : C — C by
ge(A) = L(RA(T))

We note that gy is analytic because

ge(A) = ¢ (i(/\ = Ao)" Ry, (T)"“> = i(A = X0)™0 (R, (T)" 1)

n=0 n=0

We claim that gy is bounded. Since g, is continuous, it is bounded on the closed disc B(0,2[/T||). On the
other hand, for any A € C\ B(0,2||T|), we have

o1 e
1d)\TH<|)\| >

n=0

S S
A= 1T 11Tl

1

IRA(T)I| = A~ 7
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and hence
-1
lgeM)] < [N NBRADI < N1N1LIT]

So g¢ is bounded on A € C\ B(0, 2||T)).

This shows that gy is bounded and analytic. By Liouville’s Theorem, g, is constant on C. From the
expansion of g, we deduce that ¢(R)(T))" = 0 for all n > 2 and A € C. This holds for all £ € B(X)*. By
Proposition 5.4, Rx(T)™ =0 for n > 2 and A € C. This is impossible, as Ry (T") is invertible. We conclude
that o(T) # @. O

[ Definition 6.10. Spectral Radius 1

Suppose that X is a complex normed vector space and T' € %B(X). The spectral radius of T is defined by

rado(T) :=sup{|\|: A€ a(T)}

Theorem 6.11. Gelfand’s Formula

Suppose that X is a complex Banach space and T € %(X). Then

rado(T) = lim ||T"|"™ = inf | T/
n— o0 neN

Proof. + rado(T) < inf | 1['/".
ne

For n € N, consider the operator
n—1
Aid =T" = (Mid =T)§ = S(\id =T),  §:=» A7k
k=1

For A € C with |A|™ > ||T™||, by Proposition 6.9, A" ¢ o(T™) and hence A" id —T"™. Since S commutes
with Aid —T', we have that Aid —7T is invertible. So A ¢ o(T"). We deduce that every A € o(T) satisfies
A" < ||T™| for all n € N. Hence rad o(T) < ingHT”Hl/n.

ne

o limsup ||T"|"" < rad (7).

n— oo

As in the proof of Proposition 6.9, for each ¢ € %(X)* we associate the function g¢(A) = £(Rx\(T)).

RA(T) = =A"'D AT = go(\) = -A"' D (A1)
n=0

n=0

oo

As gy is analytic on p(T), Z L(AT™T™) converges absolutely whenever |A| > rad o(T'). Fix |A| = rado(T)+

n=0
¢ for some € > 0. Then the sequence (¢(A™"T™))nen is bounded. Consider the isometric embedding
Ja(x) : B(X) = B(X)™. We have (Jgx)(A™"T")({))nen is bounded for each £ € X*. By the Uniform
Boundedness Principle, (Jgx)(A™"T"))nen is bounded in B (X)** and hence (A™"T™),cn is bounded in
%B(X). There exists M > 0 such that

VneN: N7 < M

Therefore
limsup | 77" < limsup MY\ = || = rad o(T) + ¢
n—oo

n—roo

Since ¢ is arbitrary, we deduce that lim sup ||T”||1/" < rado(T).
n—oo

Combining the two results above:

inf 77" < limsup |T"|Y" < rad o(T) < inf || 77"
neN n—00 neN
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So all inequalities become eqaulities. In particular the limit of ||T”H1/ " exists. O

Proposition 6.12. Spectral Mapping Theorem for Polynomials

Suppose that X is a complex Banach space, T € B(X), and p € C[z]. Then
o(p(T)) =p(a(T)) :=={p(A) : A€ o(T)}

Proof. If p = c is a constant polynomial, then o(p(T")) = {c}. Since o(T) # @, we must have p(c(T')) = {c}.
Supoose that degp > 1. For 4 € C, by the Fundamental Theorem of Algebra we can factorise p(z) — p as
p(@) —p=alz—p1)-- (2= Bn)
where «, 51, ..., B, € C. Correspondingly,
p(T) — pid = a(T = Byid) -+ (T — B, id)
Since the operators on the right hand side mutually commute, we have

w€o(p(T)) < p(T)— pid is not invertible in B (X)
< 3Jje{l,..,n} T — B;id is not invertible in B(X)
<~ 3j€{l,..,n} B €a(T)
< Irea(T) p=p\)
> pep(o(T)) O

6.3 Normal Operators

[ Definition 6.13. Normal Operators w

l Suppose that X is a complex Hilbert space and T' € %B(X). T is called a normal operator, if TT* = T*T. J

We know that self-adjoint operators and unitary operators are normal. From Linear Algebra we have the following
elementary properties of normal operators:

o T € B(X) is normal if and only if [|T'(z)|| = ||T™*(x)|];
e Neo,(T) & X ap(T*);

o If 2,y are eigenvectors of T' corresponding to different eigenvalues of T, then (z,y) = 0.

Proposition 6.14. Spectra of Normal Operators
Suppose that X is a complex Hilbert space and T' € %(X) is a normal operator. Then
1. 0o(T) =@ and o(T') = 0ap(T);
2. rado(T) = ||IT|.
Proof. 1. Note that Aid —T is also a normal operator. Then \id —T is injective if and only if Aid —T* is injective.
Thus o, (T) = o,(T™). Since 0,(T) C o (T*) and o, (T) N0, (T) = @, we deduce that o.(T) = @.
2. We first note that ||(T%)"T"| = ||[T"||* for all n € N, because

1(T™)"T"| = Sup (T*)"T"x, x) = Sup (T2, T"x) = Sup 1T ||* = |7
z||=1 z||=1 z||=1

Since T' is normal, T*T and its powers are self-adjoint. By Corollary 2.21, |(T*T)2n H = ||T*T||2"

Therefore for ng = 2%,
N (|2 *\ T n *\ M * n
[T )7 = ()™ T || = [(TT)™* || = [[T°T||™
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By the Gelfand’s Formula,

rado(T) = lim [T = lim |77|Y™ = lim |T*T|"* = |T*T||"* = |T| O
n—o00 k—oo k—oo

Lemma 6.15. Norm of Resolvent Operator
Suppose that X is a Hilbert space and T' € %B(X) is a normal operator. Let A € p(T). Then

1

[ BA(T)]| = dist(h, o(T))

Proof. First we claim that o(A)~! = g(A™1) for invertible operator A € &(X). It follows from

Aeo(A)™ = Aleo(d)
<= A"'id —A is not invertible in & (X)
= Aid—A7' = —A(A"tid —A)A™! is not invertible in B (X)
= Aeco(A™

Hence o (R (T)) = o((T — Xid)™1) = (o(T) — X\)~*. Since T is normal, so is R(T) is also normal. In particular,
rado(R(T)) = [|[BA(T)]|

On the other hand, we have

1 1
rado(RA\(T)) = sup [u|=  sup  |u[= sup O

pea(R(T)) pe(o(T)—A)~1 peo(T) |1 = Al ueig(fT) lu—Al - dist(A, o(T))

Proposition 6.16. Spectra of Self-Adjoint Operators

Suppose that X is a complex Hilbert space and T' € %(X) is a self-adjoint operator. Then o(7T) C [a,b] C R,
where

a:= | iﬁlfl (z,Tx), b:= sup (z,Tz)
zl|l= llzl=1

Furthermore, a,b € o(T).

Proof. Since T is self-adjoint, for all x € X,

(¢, Tx) = (T"z,z) = (Tz,z) = (z,Tx)

Hence (z,Tz) € R. By Lemma 6.8 and the fact that o(T) is compact, o(T) C [a,b] C R.

Since rad o(T') = ||T||, we have ||T'|| < max{|al, |b|}. But by definition of a,b we have max{|al,|b|} < ||T||. Hence
rado(T) = ||T|| = max{]al,|b|}. Since o(T) is closed, either a € o(T) or b € o(T). We apply this result to the
shifted operator cid +7', where ¢ € R is chosen to be sufficiently large and sufficiently small. This shows that
both a € o(T) and b € o(T). O

Proposition 6.17. Spectra of Unitary Operators

Suppose that X is a complex Hilbert space and U € % (X) is a unitary operator. Then o(U) C S*, where S! is
the unit circle in C.

Proof. Since ||U]| = 1, we have rad 0(U) = 1 and hence o(U) C B(0,1). Suppose that A € B(0,1)No(U). Then Aid —U
is not invertible, and so is Aid —U*. But then AU — id = (Aid =U*)U is also not invertible. We deduce that

Y le o(U), which is a contradication because ‘Xﬁl’ > 1. We conclude that o(U) C S*. O



Chapter 7

Fourier Series

7.1 Definitions and Basic Properties

( )
Definition 7.1. Complex Fourier Series

Suppose that f: R — C is a 2w-periodic function. We define its Fourier series by

.F[f] = ch einw’ (e 2];.(_/7; f((E) e~ inT qp

neEZ

We also write f ~ E cpe™.

nez
\\ J/

Recall from A4. Integration that a function F': R — R is called absolutely continuous, if there exists f € Li .(R)
and xy € R such that

Fla) = / " r)
Zo
F is called the indefinite integral of f. Some properties of F' are listed below:
e Fis continuous by Dominated Convergence Theorem.
o F is differentiable almost everywhere by Lebesgue Differentiation Theorem.
e If F' is periodic then so is f.
o Integration by parts: for p € C*°(R),

b b b
/FsO':Fso */f@
a a a

Proposition 7.2. Termwise Differentiation of Fourier Series

Suppose that f € L{ (R) and let F be the indefinite integral of f. If F is 27-periodic and F ~ Z ¢, €, then
nez

f is 2m-periodic and f ~ E inc, e,
nez

Proof. We have

(a.e.)

Hence f is also 27-periodic. The 0" Fourier coefficient of f is given by

1 (7 1
g/_ﬂf(m)dxzg(F(W)—F(_W))ZO

60



7.2. CONVERGENCE IN L? (—, ) 61

For other Fourier coefficients, we integrate by parts:

1 s . : T X
) fl@)e ™ do = % F(x)e™ ™ dx = inc, O

—T

Proposition 7.3. Termwise Integration of Fourier Series

Suppose that f € L'(—m, ) and let F be the indefinite integral of f. If f is 27-periodic and F ~ Z ¢ €% then
nez

F(z) — cox is 2m-periodic and F(z) — cox ~ Co + g C—n e where Cy € C is a suitable constant.
in
n€zZ\{0}

Proof. Let G(x) := F(x) — cox. We have
r+27

Gz +2r)— G(x) = / f(®)dt — 2mweq = 2meg — 2meg =0

x

So G is 2w-periodic. The Fourier series of f — ¢q is obtained by termwise differentiation of the Fourier series of
G. The result follows easily. O

7.2 Convergence in LP(—m, )

We aim to study the modes of convergence of Fourier series.

Definition 7.4. Partial Fourier Sum

For a 2w-periodic function f : R — C, we define the partial Fourier sum by

N N N -

o inr __ inx 1 " —int _ 1 T in(x—t) .
(Snf@) = Y cpe™= Y e o _ﬂf(t)e dt = _ﬂf(t) d e dt =: _Trf(t)kN(x—t)dt
n=—N n=—N n=—N
where N
1 inx ]' SIH(N—‘r%)J}
v () := o n—z;]ve T on sin

is called the Dirichlet kernel. The partial Fourier sum can be expressed as a convolution:

\ Snf=fxkn )

1
V2

The L? theory is particular interesting. Let e, () := e"® € L?(—m, ). From M5. Fourier Series & PDEs we have

already seen that

1 L .
<€ma en> = 27\/ e e dx = Opn,
™ —1Tr

So {en}nez is an orthonormal system in L?(—n, 7). We shall show that it is in fact complete. The Fourier series of
f € L2(—m,7) is the expansion with respect to that basis:

1 ™ ) 1 )
Cn = ﬂ[ﬂf(x)e_lnz dr = \/ﬁ@n,fﬁ fwécne’"rZ%@mﬁen

Theorem 7.5. Completeness of Trigonometric System in L?(—r, )

{en}nez is an orthonormal basis of L2(—m, w). Equivalent, for every f € L2(—x,7), the partial Fourier sum Sy (f)
of f converges strongly in L2(—m, ) to f.

Proof using Stone- Weierstrass Theorem:
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Let C(R/2nZ) be the set of 2m-periodic continuous functions on R, equipped with the supremum norm. Note
that C(R/27Z) is dense in L2(—m, ). So it suffices to show that span{e, },ez. Since R/27Z is compact, the proof
can be concluded by using Stone-Weierstrass Theorem. We need to show that span{e, } ez forms a subalgebra.

The linear span of {e,, },cz clearly contains constant functions and is closed under pointwise multiplication (which
is because {e, }nez is closed under pointwise multiplication: e, (z)e,, () = epim(x)). Hence span{e, }nez is a
subalgebra of C(R/27Z). In addition, e;(z) =

ix

e
V2T

proves the claim. O

is injective on R/27Z, and hence separates points. This

Proof using Projection Theorem:

By the Projection Theorem we have
L?(=m,m) = span{en Jnez @ (span{enfnez)
It suffices to show that (span{e, }nez)t = {0}. Let f € L2(—m,7) of which all Fourier coefficients vanish. We
need to show that f =0 a.e..
e f is continuous.

We only prove the case where f is real-valued. Suppose for contradication that f # 0. Since |f] is periodic
and continuous, it attains maximum value M > 0 at some z € [—m,7]. Replacing f by —f if necessary,
we may assume that f(z¢) = M > 0. Using a translation we may further assume that zo = 0. Let 6 > 0
such that |f| > M /2 in (—0,d). Consider the trigonometric polynomial

g(x) =14 cosz — cosd

>1 xz€(=6,0)
9(@) {g 1 ze(=mm)\ (=58

Note that

Therefore

T 6/2
/ f(iv)gn(w)dx>/ f(iv)gn(w)dx—/ [/ ()]lg" (z)| da

— —46/2 (—m,m)\(—96,0)
M ) "
> - <1+005200s5> 0 —2mM — o0
as n — oo. However, on the other hand, since ¢g” is a trigonometric polynomial, that the Fourier coefficients
of f are zero implies that
™
f(2)g" (z)dz =0
—T

for all n > 0, which leads to a contradiction.
e f is only square-integrable.

Let F be an indefinite integral of f. Since (1, f) =0,
427
F(m+27r)—F(m):/ f@dt=0

Hence F is 27m-periodic. By termwise integration, all Fourier coefficients except for possibly the 0" are
zero. Note that F' ia continuous. So by the previous result F'(z) = Cj for some constant Cy € C. Hence
f =0 a.e. as desired. O

The second proof above only uses the integrability of f. So we have the following corollary:

Corollary 7.6

Let f € LY(—n, 7). If all Fourier coefficients of f vanish, then f = 0 alomost everywhere.

The first proof above generalises to LP easily:
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Corollary 7.7

Let 1 < p < co. Then span{e;, }nez is dense in C(R/27Z) and hence in LP(—m, 7).

Theorem 7.8. Carleson-Hunt Theorem

Let 1 < p < oo. The partial Fourier sum Sy converges strongly in L?(—m, 7) to id. That is, Sy f — f in LP(—m, 7)
as N — oo for each f € LP(—m, ).

Furthermore, the convergence Sy f — f holds almost everywhere.

Proof. Omitted. This is a very difficult result.

For L' divergence, we have the following result.

Theorem 7.9. Kolmogorov’s Theorem

There exists a function f € L'(—x,7) such that (Syf)nen diverges everywhere. In fact, there exists a set E of
positive measure and a sequence (Ny) such that |Sn, f(z)] — oo as k — oo for € E. In particular, (Sx f) does
not converge in L!(—m, 7).

Proof. Omitted.

We discuss the L (specifically C(R/277Z)) divergence in the next chapter.

7.3 Pointwise Convergence and Divergence

Theorem 7.10. Riemann-Lebesgue Lemma

For f € LY(—n, ), we have
lim f(z)e™ dz =0

[n|—oco J_ 1

In other words, the Fourier coefficients (c,,) of f satisfies ¢, — 0 as |n| — oco.

Proof. Since C(R/27Z) is dense in L!(—m, ), we split f = g + h, where g € C(R/27Z) C L*(—m,n) and ||h[|; < e.
For the function g € L?(—m, ), by Bessel’s Inequality we have

oo

> Kewa)l < llglls

n=—oo

and hence

lim [{e_n,g)] = lim ’/ g(x)e™ dz| =0

For h we have

< / Ih(z)|dz < e

—T

‘ h(z)e™ dx

Since ¢ is arbitrary, the result follows.

( Definition 7.11. Holder Continuity

For some a € (0, 1], we say that f is a-Holder continuous at oy € R, if there exist A > 0 and § > 0 such that
|f(z) = f(y)] < Alz — y|* for all 2,y € B(xo, ).

We can accordingly define the left and right a-Ho6lder continuity of a function.
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Theorem 7.12. Dirichlet’s Theorem

Suppose that f € L'(—n, ) is 27-periodic. If f is left and right a-Hélder continuous at 29 € R for some « € (0, 1].
Then

(fad) + f(zg))

DN | =

lim SNf(l‘o) =

N—o0

Proof. We prove the theorem in the case where f is a-Holder continuous at xp. The theorem holds obviously for
constant function f. Therefore we may assume that f(zg) = 0. We fix § > 0 such that |f(zg + k)| < A|h|* for
|h] <.

Recall that . .
Sxf0) = [ 1Ok =0t = [ (0 + kv ()

For 0 < t < §, we have

inl> ! = |kn(t)] < !
sin - > — —
27 7 N " 2msin i

Therefore

§ é
</ |f(t)+f(—t)||kN(t)|dt</ 2At°‘~%dt:Aa_15“
0 0

)
/0 (F(t) + F(—0))k (£)

It remains to consider

JN,(;::/;(f(t)—kf(—t))kN(t)dt:/;(f(t)—kf(—t)) <cosNt+cot;smNt> dt

:/ (9s(t) cos Nt + hgsin Nt) dt

—Tr
where

95() = 1m0 + F(=1),  hs(t) = 1.0 ()(f () + (1)) cot %

Since gs,hs € L*(—m,7), by Riemann-Lebesgue Theorem, we have Jy s — 0 as N — oo. Combining the two

intervals we have
limsup |Sy f(0)] < Ao~ 15

N —o0

We take § — 0 and conclude that Sy f(0) — 0 as N — oo. O

Corollary 7.13. Localisation Property of Fourier Series
Suppose that f,g € C(R/27Z) are equal in an open interval of zyp € (—m, 7). Then the Fourier series of f and g

either both converge at xy or both diverge at x.

Proof. We have f,g € C(R/27Z) C L!(—,7) and then f — g € L'(—m, 7). f — g = 0 in the interval (a,b) where
a < zg < b. In particular f — g is a-Holder continuous at g for any o € (0,1]. We have

Jim (Sn f(wo) = Sng(wo)) = lim Sn(f = g)(xo) =0

So Sy f(xo) and Sng(zo) either both converge or both diverge. O

Theorem 7.14. Cesaro Convergence of Fourier Series

For f € C(R/2nZ), it holds that

N
onf = ! > Suf = fin C(R/27Z) as N — o0
=0

N+1
n
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Proof. We write the partial Fourier sum as a convolution: Sy f = fxky. Then on f = f * Fy, where

N
1 1—cos(N + 1)z
F = k =

w (@) N—l—lnz:;J n(®) 2n(N +1) 1 —cosz

F is called the Féjer kernel. We can verify that it has the following good properties:
o Iy 20;

o ENl =1

1
. For§ < Fnv(z) < '
ord <x <m0 ~(z) (N +1)(1 — cos )

We write

owf@) = 1@ =| [ s0pvte-nar- @) [ rvea=| [ -0 - senmoa

Fix € > 0. Since f is uniformly continuous, there exists § > 0 such that |f(z —t) — f(z)] < e for || < 6.

Therefore 5 5
|/ (f(z—t) — f(z))Fn(t)dt| < 5/ Fn(t)dt| <e
-5 _5
For |t| > §, we have
1
s G = FE RN <20 s 0

as N — oo. Combining the two intervals we have

limsup | £ (x) — £(2)] < =
N—o0
which holds for all € (—m,7) and € > 0. We conclude that ||lonf — f||., — 0 as N — oo. O

The properties of Féjer kernels can be generalised to the so-called good kernels.

Corollary 7.15. Good Kernels and Uniform Convergence
We say that (Ky)yen € C(R/27Z) is a family of good kernels, if they satisfy the following properties:
1. (Ky) is uniformly bounded in L!(—m,7);

2. Ky(z)dx =1,

—T

3. For any 6 > 0, we have lim |Kn(z)|dz = 0.
N=00 J(=mm\(=6,0)

Then for f € C(R/27Z), we have f x Ky — f in C(R/27Z).
Next we discuss the divergence of Fourier series of continuous functions.

Proposition 7.16. Divergence of Fourier Series in C(R/27Z)
For every gy € R, there exists f € C(R/27Z) such that (Syf(x0))nen is divergent. In particular Sy does not
converges strongly in B(C(R/27Z)).
Proof. We define Ay € C(R/27Z)* by
Anfi=5nf(0) = [ [flo)ky(z)dx

Suppose for contradiction that the Fourier series of all f € C(R/27Z) converges at 0. Then Ay f is bounded for
every f. By the Uniform Boundedness Principle, (||An||,)nen is bounded.
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Take € > 0. Consider the continuous function f defined by

_ {sgn(lw(x)) [k ()

|
linear |k ()]

We have || f||, = 1 and

Anf >/ |kN<x>|dx—/ F(@)le ()] dz > [k, — 27
{lkn (z)|Ze} {lkn (z)|<e}

Hence we have ||An||, = |Anf| = |kn||; — 2me. Taking ¢ — 0 we deduce that ||An|, = ||kn]l;-

Finally we need to estimate ||kn||;:

1 (7 [sin(N +3)w 1 (™ |sin(N+ 1)z o [INTHT |
il = o [ Ry L7 e a2 O fina
0

2 J_ . |sin & | T . || T |z]
g/ | sin z| o > 1§:/(k+é)w da
T J{ze(0,(N+3)m): |sinz|>3} |£L’| m k—0 (k+3)m ‘Z|

1Y +1
:;kz:

+ 1

+3
For large k,

k+3 1 1

1 2 _-In(1 N

Ykl n<+6k+2> 6k + 2
Hence

AR
> —_—
”kNHl/CkE:OGkJrQ CInN — oo

as N — co. We deduce that ||Ay]||, — o0 as N — oo, which is contradictory.
Hence there exists a continuous function with divergent Fourier series at 0. By translation there exist continuous

functions with divergent Fourier series at any given zy € R. O

The idea above can be used to construct an explicit example.

Example 7.17. Continuous Function with Divergent Fourier Series at 0

For x € [0, 7], we set
=1 3 T
fz) = —sin((QP +1) f)

We extend the domain to R such that f is a 2w-periodic even function. Then f is continuous with Fourier series
divergent at 0.

Proof. By Weierstrass M-test, the series that defines f is uniformly convergent on R. Hence f is continuous on R. The
Fourier series of f is given by
1

flx) ~ 300+ ) ancosnz
n=1
The coefficients are given by
1
an = — f(m) cosnx dx
= / Z—sm 2”3 +1) g) cosnx dz
2 . 3 T .
== Z o sin ((2” + 1) 5) cosnx dx (by uniform convergence)
m 0
p=1
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2 = 1 s
== il prl’)
2t @ (2
4 2 1 1 1
where a(m, n) ::/ sin mt x| cosnxdr = = T+ T
0 2\m+n+5 m-n+g3
To show that the Fourier series of f diverges at 0, it suffices to show that
>0 =33 () =3 3 () <
n=0 n=0p= 1 n=
Form,N > 1
N N m+N
1 1 1 1 1
Za<m,n>:2( ; )—( Tt D> T 1)>0
n=0 n=0 m+n+§ m_n+§ 2 m+§ i=m—N7'+§
When m = N,
m 2m
1 1 1
a(m,n) = - T+ - 1)Nlnm
for large m. Therefore
2;03—1 3
: —1
’ )N—Ql (21’3_1)—1) In2 — o0
2p?

Y T

as p — 0o. This completes the argument
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