
Peize Liu

St. Peter’s College
University of Oxford

Notes on

Category Theory

July, 2021



Notes on Category Theory
Peize Liu

St Peter’s College, University of Oxford

Examinable Syllabus 3

1 Basic Concepts 4
1.1 Categories and Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Functors and Natural Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Universal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Representable Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Limits and Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Homological Algebra 13
2.1 Abelian Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Chain Complexes and Exact Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Homology and Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Derived Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Notations 14

References 15



Examinable Syllabus

C2.7 Category Theory

• Introduction: universal properties in linear and multilinear algebra.

• Categories, functors, natural transformations. Examples including categories of sets, groups, rings, vector spaces and mod-
ules, topological spaces. Groups, monoids and partially ordered sets as categories. Opposite categories and the principle of
duality. Covariant, contravariant, faithful and full functors. Equivalences of categories.

• Adjoints: definition and examples including free and forgetful functors and abelianisations of groups. Adjunctions via units
and counits, adjunctions via initial objects.

• Representables: definitions and examples including tensor products. The Yoneda lemma and applications.

• Limits and colimits, including products, equalizers, pullbacks and pushouts. Monics and epics. Interaction between functors
and limits.

• Monads and comonads, algebras over a monad, Barr-Beck monadicity theorem (proof not examinable). The category of affine
schemes as the opposite of the category of commutative rings.

C2.2 Homological Algebra

• Overview of category theory: adjoint functors, limits and colimits, Abelian categories.

• Chain complexes: complexes of R-modules and in an abelian category, operations on chain complexes, long exact sequences,
chain homotopies, mapping cones and cylinders.

• Derived functors: delta functors, projective and injective resolutions, left and right derived functors, adjoint functors and
exactness, balancing Tor and Ext.

• Tor and Ext: Tor and flatness, Ext and extensions, universal coefficients theorems, Kunneth formula, Koszul resolutions.

• Group homology and cohomology: definition, basic properties, cyclic groups, interpretation of H 1 and H 2, the Bar resolution.
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Chapter 1

Basic Concepts

1.1 Categories and Morphisms

Let us go straight into the central definition.

Definition 1.1. Categories

A category C consists of the following data:

1. A class of objects, denoted by Obj(C);

2. A class of morphisms, denoted by Mor(C);

3. The maps ι : Mor(C) → Obj(C) and τ : Mor(C) → Obj(C), which assigns the source object and the target object to a
morphism.

For f ∈ Mor(C), if X = ι( f ) and Y = τ( f ), then we say that f is a morphism from X to Y , and write

f : X Y or X Y
f

The class of morphisms from X to Y is denoted by HomC(X ,Y ) := ι−1(X )∩τ−1(Y ).

4. An identity morphism idX ∈ HomC(X , X ) for each object X .

5. For objects X ,Y , Z , we have the composition of morphisms:

◦ : HomC(Y , Z )×HomC(X ,Y ) → HomC(X , Z ), ( f , g ) 7→ f ◦ g

satisfying

(a) Associativity: Suppose that X ,Y , Z ,W are objects. Let f ∈ HomC(Z ,W ), g ∈ HomC(Y , Z ), h ∈ HomC(X ,Y ). Then

f ◦ (g ◦h) = ( f ◦ g )◦h

(b) For any morphism f ∈ HomC(X ,Y ), we have

f ◦ idX = f = idY ◦ f

Remark. Set-Theoretic Issues.

A problem related to the Zermelo-Fraenkel set theory is that, for the definition above, Obj(C) and Mor(C) may be proper classes.
Our way to avoid the issue is to introduce the following concept:
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Definition 1.2. Grothendieck Universe

A set U is called a Grothendieck universe, if it satisfies:

1. Transitivity: ∀x(x ∈U =⇒ x ⊆U );

2. Pairing: ∀x∀y(x, y ∈U =⇒ {x, y} ∈U );

3. Power set: ∀x(x ∈U =⇒ P (x) ∈U );

4. Union: ∀x∀ f

(
(x ∈U ∧ f : x →U ) =⇒ ∪

i∈x
f (i ) ∈U

)
;

5. Minimal inductive set: N ∈U .

A set x is said to be U -small, if x ∈U .

We say that a category C is locally U -small, if HomC(X ,Y ) is a U -small set for any objects X ,Y .
We say that a category C is U -small, if Mor(C) is a U -small set.

We adopt the following hypothesis, which is independent of ZFC:

Axiom 1.3. Tarski’s Axiom

For each set x there exists a Grothendieck universe U such that x ∈U .

From now on we fix a Grothendieck universe U , and assume that all sets and categories involved in our discussion are U -small.

We give some constructions of categories.

Definition 1.4. Subcategories

Suppose that C is a category. We say that C′ is a subcategory of C, if:

1. Obj(C′) ⊆ Obj(C) and Mor(C′) ⊆ Mor(C′);

2. For X ∈ Obj(C′), the identity morphisms of HomC(X , X ) and HomC′ (X , X ) coincide;

3. The source map ι′ : Mor(C′) → Obj(C′), the target map τ′ : Mor(C′) → Obj(C′), and the compositions of morphisms are
restricted from those of C.

If HomC′ (X ,Y ) = HomC(X ,Y ) for any X ,Y ∈ Obj(C′), then we say that C′ is a full subcategory of C.

Definition 1.5. Opposite Categories

Suppose that C is a category. The opposite category Cop consists of the following data:

1. Obj(Cop) := Obj(C);

2. For any objects X ,Y , HomCop (X ,Y ) := HomCop (X ,Y );

3. For morphisms f ∈ HomCop (Y , Z ) and g ∈ HomCop (X ,Y ), the composition f ◦opg in Cop is the reversed composition g ◦ f
in C;

4. the identity morphisms of HomC(X , X ) and HomCop (X , X ) coincide.

Remark. In other words, the opposite category Cop is C with all arrows reversed.

Next we give some examples of categories.

Example 1.6. Examples of Categories

1. Let (S,É) be a poset (partially ordered set). S is a category, where the objects are elements of S, and for any a,b ∈ S,
Hom(a,b) is a singleton if a É b and is empty otherwise.
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For any n ∈N, n is the totally order set {0, ...,n−1}, so we can define a corresponding category structure on n. We denote
the resulting category by n.

2. The category of (U -small) sets is denoted by Set. The morphisms are maps between sets.

3. The category of groups is denoted by Grp. The morphisms are group homomorphisms. Grp has a full subcategory Ab,
whose objects are the Abelian groups.

4. The category of rings is denoted by Rng. The morphisms are ring homomorphisms. The category of rings with multi-
plicatively identity is denoted by Ring. The morphisms are unital ring homomorphisms.

5. The category of left-modules over the ring R is denoted by R-Mod. The morphisms are left R-module homomorphisms.
Similarly, the category of right-modules over the ring R is denoted by Mod-R.

6. The category of vector spaces over a field k is denoted by k-Vect. It has a full subcategory k-Vectfd, whose objects are
finite-dimensional vector spaces.

7. The category of topological spaces is denoted by Top. The morphisms are continuous maps.

8. Given a set S, we can define the discrete category Disc(S), whose objects are elements are elements of S, and morphisms
are the identity morphisms idx for each x ∈ S.

The generalisation of injections and surjections in category theory are monomorphisms and epimorphisms.

Definition 1.7. Monomorphisms, Epimorphisms, Isomorphisms

Suppose that C is a category. Let X ,Y ∈ Obj(C). We say that f ∈ HomC(X ,Y ) is

1. a monomorphism, if for any Z ∈ Obj(C) and g ,h ∈ HomC(Z , X ), we have that f ◦ g = f ◦h =⇒ g = h. (Left cancellation)

2. an epimorphism, if for any Z ∈ Obj(C) and g ,h ∈ HomC(Y , Z ), we have that g ◦ f = h ◦ f =⇒ g = h. (Right cancellation)

3. an isomorphism, if there exists g ∈ HomC(Y , X ) such that g ◦ f = idX and f ◦ g = idY .

If there exists an isomorphism f : X → Y , then we say that X and Y are isomorphic and write X ∼= Y .

Remark. In the categories Set and Grp, the monomorphisms and epimorphisms are exactly the injective and surjective maps. This
is not the case in Ring. For example, the inclusion map ι : Z ,→Q is an epimorphism in Ring, but is certainly not a surjective map.
This also warns us that

monomorphism + epimorphism 6= isomorphism

Remark. A category in which each morphism is an isomorphism is called a groupoid. A group is a category with a single object (the
group elements are the morphisms).

1.2 Functors and Natural Transformations

Definition 1.8. Functors

Let C and C′ be categories. A functor F :C→C′ consists of the following data:

1. A map between objects F : Obj(C) → Obj(C′).

2. For X ,Y ∈ Obj(C), a map between morphisms F : HomC(X ,Y ) → HomC′ (F X ,F Y ), satisfying

(a) For X ∈ Obj(C), we have F (idX ) = idF X ;

(b) For X ,Y , Z ∈ Obj(C), f ∈ HomC(Y , Z ) and g ∈ HomC(X ,Y ), we have F ( f ◦ g ) = F ( f )◦F (g ).

We say that a functor F : Obj(C) → Obj(C′) is

1. faithful, if for any X ,Y ∈ Obj(C), the map HomC(X ,Y ) → HomC′ (F X ,F Y ) is injective;

2. full, if for any X ,Y ∈ Obj(C), the map HomC(X ,Y ) → HomC′ (F X ,F Y ) is surjective;

3. fully faithful, if for any X ,Y ∈ Obj(C), the map HomC(X ,Y ) → HomC′ (F X ,F Y ) is bijective.
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Remark. In old literature, the functor F : C→ C′ is called a covariant functor. G : C→ C′ is called a contravariant functor, if is a
functor G :Cop →C′.

Functors compose in the natural way: If G : C → C′ and F : C′ → C′′ are two functors, then the composite functor F ◦G : C → C′′

consists of the composite morphisms

Obj(C) Obj(C′) Obj(C′′)

HomC(X ,Y ) HomC′ (G X ,GY ) HomC′′ (FG X ,FGY )

G F

G F

Example 1.9. Examples of Functors

1. For a category C there is obviously an identity functor idC :C→C.

2. A subcategory C′ of C gives the inclusion functor ι :C′ ,→C, which is always faithful. ι is full if C′ is a full subcategory.

3. Let G be a group. We can always "forget" the group structure on G and regard it as a set. This defines a forgetful functor
Grp→ Set. The functor is faithful and not full.

4. The Abelianisation G 7→ G/G ′, where the derived subgroup is defined by G ′ := {x y x−1 y−1 : x, y ∈ G}, gives a functor
Grp→Ab. The functor is neither faithful nor full.

5. For any based topological space (X ,b) we can define its fundamental group π1(X ,b). It gives a functor Top• → Grp,
where Top• is the category of based topological spaces. Similarly, the homology groups X 7→ Hi (X ,Z) gives a family of
functors Top→Ab.

6. The category of all (U -small) category is denoted by Cat. The morphisms are functors between categories.

7. Let S be a set. We can define a discrete category Disc(S) on S. This gives a fully faithful functor Set→Cat.

Definition 1.10. Natural Transformations

Let F,G : C→ C′ be two functors. A natural transformation η : F ⇒ G is a family of morphisms ηX ∈ HomC′ (F X ,G X ), X ∈ C,
such that the diagram commutes

F X G X

F Y GY

ηX

F ( f ) G( f )
ηY

for any morphism f ∈ HomC(X ,Y ).

We say that η : F ⇒G is a natural isomorphism, if every ηX ∈ HomC′ (F X ,G X ) is an isomorphism. We shall write F 'G if there
is a natural isomorphism between F and G .

Natural transformations are often represented by the diagram

C C′.

F

G

η

Remark. It is instructive to think natural transformations as homotopies between two functors.

Compositions of Natural Transformations.

1. For three functors F,G , H : C→C′ and natural transformations η : F ⇒G and λ : G ⇒ H , we can define the vertical composi-
tion λ◦η : F ⇒ H to be the the family {λX ◦ηX : X ∈ Obj(C)}. It is represented by the diagram

C C′

F

G

H

η

λ

=⇒ C C′.

F

H

λ◦η
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2. Consider the following diagram:

C C′ C′′

F1

F2

G1

G2

with natural transformations ξ : F1 ⇒ F2 and θ : G1 ⇒G2. For each X ∈ Obj(C) we have the commutative diagram

G1F1X G2F1X

G1F2X G2F2X

θF1 X

G1(ξX ) G2(ξX )
θF2 X

We can define the horizontal composition θ◦ξ : G1 ◦F1 ⇒G2 ◦F2 such that, (θ◦ξ)X : G2F2X →G1F1X is given by the diagonal
composition of the above diagram for each X ∈ Obj(C). It is represented by the diagram

C C′ C′′

F1

F2

G1

G2

ξ θ =⇒ C C′′.

G1F1

G2F2

θ ◦ξ

3. As a special case of horizontal composition, we can compose a natural transformation with functors. Consider the following
diagram:

C1 C2 C3 C4.H

F

G

η K

We can define η ◦ H : F H ⇒ FG to be the horizontal composition η ◦ idH . And similarly define K ◦η : K F ⇒ KG to be the
horizontal composition idK ◦η. Here idH and idK are identity natural transformations on the functors H and K respectively.

Definition 1.11. Quasi-Inverse, Equivalence

Let C and C′ be two categories. We say that the functor F :C→C′ is an equivalence of categories C and C′, if there exist functor
G :C′ →C such that G ◦F ' idC and F ◦G ' idC′ . G is called a quasi-inverse of F .

If we have G ◦F = idC and F ◦G = idC′ , then we say that G is the inverse of F . We say that C and C′ are isomorphic categories.

Lemma 1.12. Uniqueness of Quasi-Inverse

Suppose that G1 and G2 are quasi-inverses of the functor F :C→C′. Then there exists a natural isomorphism η : G1 ⇒G2.

Proof. We have the horizontal composition of natural isomorphisms:

G = idC′ ◦G 'G ′ ◦F ◦G 'G ′ ◦ idC =G ′

Definition 1.13. Essential Surjection

Let C and C′ be categories. We say that a functor F :C→C′ is essentially surjective, if for any Y ∈ Obj(C′) there exists X ∈ Obj(C)
such that F X ∼= Y .

Theorem 1.14

Let C and C′ be categories. For a functor F :C→C′, the following are equivalent:

1. F is an equivalence;
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2. F is fully faithful and essentially surjective.

Proof.

1 =⇒ 2: Let G :C′ →C be a quasi-inverse of F . Let φ : FG ⇒ idC′ and ψ : GF ⇒ idC be natural isomorphisms.

For X ∈ Obj(C′), we have X =φX (FG X ) ∼= FG X . Hence F is essentially surjective.

For X ,Y ∈C. the composition

HomC(X ,Y ) HomC′ (F X ,F Y ) HomC(GF X ,GF Y ) HomC(X ,Y )

f F ( f ) GF ( f ) ψY ◦GF ( f )◦ψ−1
X

F G ψ

is the identity map on HomC(X ,Y ). Hence F is faithful. Interchanging F and G we find that G is also faithful. Hence F
must be full.

2 =⇒ 1: We shall construct a full subcategory D of C, which is called the skeleton of C as follows.

Using the axiom of choice we can choose a representative for each isomorphism class of objects in C. Let D be the full
subcategory of C with these objects. Let ι : D→ C be the inclusion functor. We shall show that ι is an equivalence. For
each X ∈ Obj(C), we can choose an isomorphism ηX : X → κ(X ) ∈D. Furthermore we choose ηX = idX if X ∈ Obj(D).
Now we have a map κ : Obj(C) → Obj(D). We extend it to a functor κ :C→D by defining

κ( f ) := ηY ◦ f ◦η−1
X ∈ HomD(κ(X ),κ(Y ))

for f ∈ HomC(X ,Y ). In this way, η : idC ⇒ ικ becomes a natural isomorphism. Since κι = idD, we deduce that κ is a
quasi-inverse of ι. Hence D is equivalent to C.

Similarly we construct the skeleton D′ of C′. Let ι′ :D′ →C′ be the inclusion functor and κ′ :C′ →D′ be its quasi-inverse.
It is easy to verify that G := κ′ ◦F ◦ ι :D→D′ is still fully faithful and essentially surjective.

For Y ∈ Obj(D′), there exists X ∈ Obj(D) such that G X ∼= Y , by essential surjectivity of G . But this implies that G X = Y
by our construction. Hence G : Obj(D) → Obj(D′) is surjective. Suppose that X ,Y ∈ Obj(D) such that G X = GY . Since
G is fully faithful, we have X ∼= Y . Then X = Y again by our construction. Hence G : Obj(D) → Obj(D′) is injective. We
deduce that G :D→D′ is invertible. Let H := ι◦G−1 ◦κ′ :C′ →C. We have

F ◦H = F ◦ ι◦G−1 ◦κ′ ' ι′ ◦κ′ ◦F ◦ ι◦G−1 ◦κ′ = ι′ ◦G ◦G−1 ◦κ′ = ι′ ◦κ′ ' idC′

H ◦F = ι◦G−1 ◦κ′ ◦F ' ι◦G−1 ◦κ′ ◦ ι◦κ= ι◦G−1 ◦G ◦κ= ι◦κ' idC

Hence H is a quasi-inverse of F . F is an equivalence.

Example 1.15. Some Elementary Linear Algebra

We fix a field k. Recall that k-Vectfd is the category of finite-dimensional vector spaces over k. We define the category Mat as
follows: The object set Obj(Mat) =N. For m,n ∈N, we define HomMat(m,n) := Mm×n(k), the set of all m ×n matrices over k.
The composition of morphisms is the usual matrix multiplication. By convention, M0×n(k) = Mm×0(k) = {0}.

We define a functor F : Mat→ k-Vectfd as follows. For n ∈ Obj(Mat), F (n) := kn = Mn×1(k). For A ∈ HomMat(m,n), the linear
map F (A) : km → kn is the matrix multiplication v 7→ Av .

It is easy to verify that F is a fully faithful and essentially surjective functor (just linear algebra!). So the categories Mat and
k-Vectfd are equivalent.

Definition 1.16. Functor Categories

Given two (U -small) categories C and C′, the functor category Fun(C,C′) consists of the following data:

• The objects of Fun(C,C′) are the morphisms from C to C′;

• The morphisms from F : C → C′ to G : C → C′ are the natural transformations F ⇒ G . (This is why we call natural
transformations morphisms of functors.)

• The composition of morphisms is given by the vertical composition of natural transformations.



10 CHAPTER 1. BASIC CONCEPTS

Lemma 1.17

Let C and C′ be categories. There is a natural isomorphism Fun(Cop,C′op) ' Fun(C,C′)op, in which every natural transforma-
tion η : F ⇒G is mapped to ηop : Gop ⇒ F op.

1.3 Universal Properties

Definition 1.18. Initial Objects, Final Objects, Null Objects

Let C be a category. An object X ∈ Obj(C) is said to be

1. initial, if HomC(X ,Y ) is a singleton for all Y ∈ Obj(C);

2. final, if HomC(Y , X ) is a singleton for all Y ∈ Obj(C);

3. null, if it is both initial and final.

Lemma 1.19

The initial and final objects are unique up to isomorphism.

Proof. Suppose that X and X ′ are initial in C. Then there exist unique morphisms f : X → X ′ and g : X ′ → X . Hence f ◦ g : X ′ → X ′

and g ◦ f : X → X are also unique. Then f ◦ g = idX ′ and g ◦ f = idX . We have X ∼= X ′. The proof for final objects are
identical.

Example 1.20. Examples of Initial and Final Objects

1. The poset category (Z,É) has no initial nor final objects.

2. In the category Set, the initial object is the empty set ∅, and the final objects are singletons {∗}.

3. In the category Grp, {e} is a null object.

4. In the category Ring, Z is an initial object.

The initial and final objects are the natural tools to express the universal properties which are already familar to readers through
learning algebra. To make things rigorous, we need the following definition:

Definition 1.21. Comma Categories

Consider the functors S :A→C and T :B→C. The comma category (S/T ) consists of the following data:

• The objects are the triplets (A,B , f ), where A ∈ Obj(A), B ∈ Obj(B), and f ∈ HomC(S A,T B);

• The morphisms from (A,B , f ) to (A′,B ′, f ′) are pairs (g ,h), where g ∈ HomA(A, A′) and h ∈ HomB(B ,B ′), such that the
following diagram commutes:

S A S A′

T B T B ′

S(g )

f f ′

T (h)

• The composition of morphisms is given by (g1,h1) ◦ (g2,h2) := (g1 ◦ g2,h1 ◦h2). The identity morphism on (A,B , f ) is
(idA , idB ).

Example 1.22. Universal Property of Free Modules

Let R be a commutative ring with identity. The free R-module generated by the set X is the R-module F X = ⊕
x∈X

Rx. There is a

canonical inclusion map ι : X ,→ F X . The free module F X can be characterised by the following universal property:

For any R-module N and set-map f : X → N , there exists a unique R-module homomorphism φ : F X → N such that f =φ◦ ι.
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We construct a corresponding comma category as follows.

The free construction gives a functor F : Set → R-Mod. Let G : R-Mod → Set be the forgetful functor. Then the canonical
inclusion is a morphism ι : X →GF X .

The category 1 has a unique morphism. Any functor jX : 1→ R-Mod is equivalent to picking a object X ∈ Obj(R-Mod).

Consider the comma category (X /G) := ( jX /G), corresponding to the functors jX : 1→ Set and G : R-Mod→ Set. The objects
in (X /F ) are of the form (∗, N , f ), where N ∈ Obj(R-Mod) and f ∈ HomSet(X ,GN ). The morphism from (∗, N , f ) to (∗, N ′, f ′)
is a R-module homomorphism ψ : N → N ′ such that the following diagram commutes:

X

f (GN ) f ′(GN ′)

f f ′

ψ

By the above definition, (∗,F X , ι) is an initial object of (X /G). So by Lemma 1.19, the free module F X is unique up to an
R-module homomorphism.

1.4 Adjoints

Definition 1.23. Products and Coproducts of Categories

Let I be a U -small set. Let {Ci : i ∈ I } be a family of categories.

1. The product category
∏
i∈I

Ci consists of the following data:

• The object set Obj

(∏
i∈I

Ci

)
:=∏

i∈I
Obj(Ci ). The objects are of the form (Xi )i∈I .

• For (Xi )i∈I and (Yi )i∈I , the morphisms Hom∏
i∈I Ci

((Xi )i∈I , (Yi )i∈I ) :=∏
i∈I

HomCi
(Xi ,Yi ).

• The composition of morphisms is defined to be component-wise.

2. The coproduct category
⨿
i∈I

Ci consists of the following data:

• The object set Obj

(⨿
i∈I

Ci

)
:=⨿

i∈I
Obj(Ci ). The objects are of the form (Xi )i∈I .

• The morphisms

Hom⨿
i∈I Ci

(X j , Xk ) :=
{

HomC j
(X j .Xk ) j = k

∅ j 6= k

where each X j ∈ Obj(C j ).

Example 1.24. Hom Functor

Given a category C, the assignment (X ,Y ) 7→ HomC(X ,Y ) defines a binary functor

HomC :Cop ×C→ Set

Indeed, a pair of morphisms f : X ′ → X and g : Y → Y ′ in C induces HomC(X ,Y ) → HomC(X ′,Y ′) via φ 7→ g ◦φ◦ f .

Definition 1.25. Adjunction

(F,G ,φ) is called an adjunction, if F :C1 →C2 and G :C2 →C1 are a pair of functors, and φ is a natrual isomorphism of functors:

φ : HomC2
(F (−),−) ⇒ HomC1

(−,G(−))

In practice φ is often omitted. We say that (F,G) is an adjoint pair, F is the left adjoint of G , and G is the right adjoint of F .
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1.5 Representable Functors

1.6 Limits and Colimits
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Homological Algebra

2.1 Abelian Categories

2.2 Chain Complexes and Exact Sequences

2.3 Homology and Cohomology

2.4 Derived Functors
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Notations

• Cat: The category of (U -small) categories.

• Set: The category of sets.

• Grp: The category of groups.

• Ab: The category of Abelian groups.

• Rng: The category of rings.

• Ring: The category of rings with multiplicative identity.

• R-Mod: The category of left modules over the ring R.

• Mod-R: The category of right modules over the ring R.

• (R,S)-Mod: The category of (R,S)-bimodules, where R and S are rings.

• k-Vect: The category of vector spaces over the field k.

• k-Vectfd: The category of finite-dimensional vector spaces over the field k.

• Mat: The category of column vectors over a field k, with morphisms represented by matrices.

• R-Alg: The category of associative algebras over the ring R.

• Top: The category of topological spaces.

• Top•: The category of based topological spaces.

• Fun(C,C′): The category of functors from C to C′.

• N: The set of non-negetive integers.

• Z+: The set of positive integers.

• Z: The set of integers.

• Q: The set of rational numbers.

• R: The set of real numbers.

• C: The set of complex numbers.
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