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Question 1 (9\

Re-prove the "Weak Nullstellensatz’, Theorem 4.4:

if E is a finitely generated F-algebra where 12 O F are fields, then [E : F| is finite
from the "Noether Normalization Lemma®, Theorem §.8.

,/
/

Proojf By Noether Normalization Lemma, there exists {v1.....y} C I thatis algebraically independent over ly such that Fisa
finitely generated Fly, ..., y,]-module. In particular £ is integral over F[y;, ..., y,] by Proposition 7.4. Since E'is a field,

Fluy. ..., v.] is also a field by Proposition 7.7(a). This is possible only if » = 0, which means ' = F[y,, .., y,]. Hence E is
a finitely generated F-module and [E : F| b

| < OQ.
Question 2 (% T

(i) Let F be an infinite field. Deduce from Sheet 3 Question 4(i) that J(F[ty, ... t)]) is zero.

(i) Show that if R C S is an integral extension then J(S)N R = J(R). Deduce that if, in addition, S is an integral
domain, then J(S) = {0} if and only if J(R) - {0}.

(iii) Now let F be an arbitrary field. Using the Noether Normalization Lemma, deduce that every finitely generated F-
algebra is a Jacobson ring.

Proof. (i) Foreacht; € {t,,...ty}and o £ F, {t, - a) is a maximal ideal of F[t,, ..., tx]. For f € J(F|[t1,...,tx]), f € (ti — a).

In particular f vanishes onAll (z,,...,zx) € F*. Since F is infinite, by Sheet 3 Question 4(i), f = 0. Hence

J(Flty, ... t]) = {0} Th?‘s Ny v o -fv\uq ?

(i) BylGoing-up Theorem there is a bijective correspondence between Spec R and Spec S which is given by ideal exten-
sions and contractions. By Proposition 7.7(c), this restricts to a bijective ndence between MaxSpec R and
MaxSpec S. We have:

J(S)NR ([l MnR- (8)E R . = P=IR)

M €EMaxSpec S PeMaxSpec R

P=MQOR

M eMaxSpec S
Now suppose that S ia an integral domain. That J(S) = 0 implies J(R) = 0 is trivial. For the other direction, since
S is an integral domain. By Proposition 7.6, if J(S) # {0}, then J(R) = J(S) N R # {0}.

(iiif' Suppose that A is a finitely generated F'-algebra. For P € Spec A, A/P is an integral domain and is a finitely
generated F-algebra. By Noether Normalization Lemma, there exists {y,, ...,y } C A/P algebraically independent

/ over F such that A/P is a finitely generated Fly,, ..., y,]-module. In particular A/P is integral over Fly,, ..., y,].
\/ Since {yi,..., yr } is algebraically independent, F'(yy, ..., y,| = Flt,, ..., t,] as F-algebras. Hence J(F[y, ..., y,]) = {0}
by part (i). It follows from part (i) that J(A/P) = {0}. It implies that P is the intersection of all maximal ideals of

A that contain P. We conclude that A is a Jacobson ring. O

Question 3 (9\

(i) Prove that Q is not a finitely generated Z-algebra.
(ii) Let F be a field which is finitely generated as a Z-algebra. Prove that char £ # 0.
Hint: Suppose that F has characteristic zero. Consider the three rings Z C Q C F.

(iii) Let Sbea finitely generated Z-algebra and M a maximal ideal of S. Prove that |S/M| < oco.

Proof. (i) Note that the polynomial rings over Z are free objects in the category Z-Alg. Suppose that Q is a finitely generated
Z-algebra. Then there exists an epimorphism ¢ : Z[t),...,tn] - Q. Let p;/q; = ¢(t;) € Q for each i, where




\

ged(py, qi) = 1. It is not hard to verify that for any f € Z[t,, ..., t,], the denominator of ¢(f) divides ¢, ..., ¢,. Hence
1

= ¢ im ¢, which is a contradiction. Q is not a finitely generated Z-algebra.
q1°""Qn

(ii) Suppose that char I = 0. From Part A Rings & Modules we know that /* contains Q as a subfield. If I is a finitely
generated Z-algebra, then Q is also a finitly generated Z-algebra. This is a contradiction as we have proven in part

(). here \(00( use A r-H n -Ta {—e y

(iii) Note that S/M is a field and is finitely generated as a Z-algebra. We have shown in part (ii) that char F # 0. Let F,,

be the prime subfield of S/M. Then S/M is finitely generated as an F,-algebra. By Hilbert’s Weak Nullstellensatz,
[S/M : F,)is finite. Hence |S/M| = p[S/M : F,] < oo. D

Question 4 OL

Let R be a subring of a field £ and Y a multiplicatively closed subset of R with 1 € ¥ and 0 ¢ Y. Let S be the integral
closure of R in . Prove that the integral closure of Y~'Rin Eis Y ~'S.

Proof. Step 1: Y 'S is integral over Y ~'R.

For s/y € Y '8, since S is integral over R, there exists rq, ...,rn_; € R such that s™ + 115" ' 4 -« 4 1 = 0.

Multiplying by 1/y":
3 n r 3 n-1 ~ % ro
(—) +—'¥~<‘—) tob s = = =0
Y ) Y Y Yyay

This is a monic polynomial in Y ~! R[t] that annihilates s/y. Hence s/y is integral over Y "' R. Y 'S is integral over
VAT

Step 2: Y 'S is the integral closure of Y "' R in E.

Suppose that u € F is integral over Y ~! R. We shall show that u € Y ~'5. There exists rg,...,7, € Rand yg,...,ym € Y

such that
Tmn— T T
.“"l+ m lu7"_l+...+—l"+—2 :0
Ym-1 Wi Yo
Multiplying by y™ := yg* - - ym_1:
oty r m-1 roy™
(u)™ + W yym-1 L OV, TV
Ym-1 n Yo
o U SR TIY S ST oY R 25 ) X
where ) areear i € R. Hence yu is integral over R. As S is the integral closure of R, we have yu € S.
Ym—1 n Yo

Hence u = yu/y € Y ~'S. We conclude that Y 1S is the integral closure of Y "' R in E. ]

Remark. This is Proposition 5.12 in Atiyah & MacDonald. T H E B E ,ST B 00 K
Question 5 d\

Let R be an integrally closed domain with field of fractions F, let £ O F be an algebraic field extension and let a € E.
Show a is integral over R if and only if the (monic) minimal polynomial of a over F lies in R[t].

Hint: consider a suitable splitting field.

Does this necessarily hold if R is not integrally closed? \/

Proof. 1f the monic minimal polynomial of a over I lies in R[t], then a is integral over R by definition. For the other direction,

suppose that a is integral over R. Let m, € F[t] be the minimal polynomial of a over F. Let K be the splitting field of
ma over I. We can express m, as:

R e ——



my(t) = (t—ay)---(t —a,) € K[t

for some a,.....a, = K. Since a is integral over R, there exists a monic polynomial f € R[t] such that f(a) = /[/). By
minimality of m, we have m, | f over F|t]. Then m,(a;) = 0 implies that f(a;) = 0 for each i. In particular a,; ..., a, are
all integral over R. Since m, € Rla,,...,a,,[t], the coefficients of m, are all integral over R. Since R is integrally closed
in F and m, < Ft], the coefficients of m, lie in R. We then conclude that m, € RIt]. \/e‘gT

The proposition does not hold for non-integrally closed domains. For example, let R = Z[V/3], F = Q[V/5], and E =

: 1+ V5 . ‘ 1 95 1 5. :
Consider ——— < F. Its minimal polynomial over F is is simply m(t) = t — +,)\/_. +2\/_ is also integral over

<

¥as

itisarootof t* — t — 1 € Z[V5](t]. But m ¢ Z[V/3)[1].

Remark. This is a corollary of Proposition 5.15 in Atiyah & MacDonald. 1 found the counter-example on Wiki:
https://en.wikipedia.org/wiki/Integrally_closed_domain.

Question 6 ,7‘)\

Let R be an integrally closed, Noetherian, local, integral domain of dimension 1, with unique maximal ideal P. Using the
steps below, or otherwise, prove that R is a principal ideal domain.

(i) Let0 # a € P. Show that for some n > 1 we have P"~! ¢ aR and P" C aR, where P° := R. Letb € P"~'\aR and
put y = a~'b. Show that if yP C P then y € R. Deduce in fact yP ¢ P.

Hint: consider the action of y on the R-module P.
(i) Now deduce that y P = R and hence that P is a brincipal ideal.
(iii) Let I be a proper, non-zero ideal of R. Prove that I = P" for some n > 1.

Hint: first show that there is a maximal n for which I C P™.

Proof. (i) First we note that the only prime ideals of R are {0} and P. If there exists another prime ideal Q € Spec R, then it
is contained in some maximal ideal. But P is the unique maximal ideal of R. Hence there is a chain of prime ideals
{0} € Q € P, contradicting that dim R = 1.

For a € P\{0}, the nilradical Nil(R/ (a)) = P/ (a). Since R is Noetherian, so is R/ (a). By Proposition 3.4,
Nil(R/ (a)) is nilpotent. There exists n € N such that (P/ (a))™ = {0} = P™ C (a). Notice that we have a
descending chain of ideals:

R=POLD POP3DP3D:.."
Let n be the smallest integer such that P" C (a). Then P"*~! ¢ (a).

Letb € P" "\aRand puty = a 'b. If yP C P, then the multiplication by y defines an R-module endomorphism
¢y € Endg(P). Since R is Noetherian, P is a finitely generated R-module. By Nakayama Lemma (Theorem 5.2),
there exists 7, ..., 7x -1 € R such that

Oy + i iy o =0
In other words,
Ve '+ my+ =0 !
Therefore, y is integral over R. Since R is integrally closed, we have y € R as claimed.

However, if y € R, then b = ay € (a), which is a contradiction. Hence we must have yP ¢ P.

(ii) Since b € P"~1,bP C P™ C (a). Hence y = a~'bP C R. In particular yP is an ideal of R. By/part (i) we know that
yP ¢ P,and P is the unique maximal ideal. Then yP = R. Hence P = y 'R = (y '). P is 9/principal ideal.




(iii) Let I be a proper, non-zero ideal of /t. Then 7 C 1. The nilradical Nil(R/I) = P/I is nilpotent (the same as in part
(i)). Hence there exists & > 1 such that (P/I)* = P*/I = {0} = P* C I. As P**! £ P* C I C P, there exists a
maximal n > 1 such that PX**! ¢ 1 C pn,

Since / € P"and I Z P"*' there exists r € I suchthat x = uy "andx ¢ \°""" forsome u € R. Hence u ¢ P. uis
aunitin R. Theny " = u~'zrand P" = (y") C (x) C I. We conclude that\J =/ P" = (y~"). Now we have proven
that every non-zero proper ideal of R is generated by y " for some n ¢ N. R is indeed a principal ideal domain. O

Remark. This is a part of Proposition 9.2 in Atiyah & MacDonald.

Question 7 é\

Let R be a ring, not necessarily Noetherian. Let P be a prime ideal of S = R|t] with t € P. Show that if h(P) is finite then
h(P) > h(P/tS).
Hint: show that if Q is a prime ideal of R, then QS is prime in S.

Deduce that if dim R is finite then dim S > dim R.

Proof. Let ¢ : R <+ S be the embedding. First we shall show that for @ € Spec R, the extension of the ideal Q¢ € Spec S. Note
that

QF=QS = Q[I] - {Zu,!' : ag,...,an € Q, n € N}

=0

From Part A we know that there e\nsls ring |somorph|sm lf[t]/Q[[} (R/Q)[t]. This follows from applying First [somor-

phism Theorem to the composite homomorphism: R % R/Q —— (R/Q)[t]. Since Q € Spec R, /() is an integral
domain. Then (R/Q)[t] = R|[t]/Q|t] is also an integral domain. Hence Q[t] € Spec R|t].
Suppose that the height of the prime ideal 1 (P) = n. There exists a chain of prime ideals in R[t] of maximal length:

{()}: ’(lgl)l g"'gl)nzl)

Consider the contraction of the chain in R: /m 5 7% e

{U}:l)ggp;'g...g[7’::[’f

where P¢ := P, N R. We claim that there exists k € {1,....,n} such that P{_, = I’;;'. Let k be the maximal integer such
thatt € P Thent ¢ Pi_,. Note that P{¢, = Pf_,[t|] 2 Px—, and that P{¢, C P is prime in R[t]. Then we must
have P¢¢, = P; by maximality of the length of the chain. Hence P _, = P = Py and the length of the chain { P{} is
smaller than 1(P).

We claim that the length of the chain { P¢} equals #6 h(P*). If there exists another chain of prime ideals in R:
{0} QOng... ngzpc

then the extension of the chain in R[t] is a chain of prime idealy

0} =Q§CQIC  CQ=P°CP
If m = n = h(P), then {Q(} is a chain of prime ideals of length at least :(P) and the contraction of {Q¢} is {Q;} whose
length is less than n by our previous argument. We conclude that m < n and hence h(P¢) < h(P).
Finally, note that P/tS = P/ (t) = (PN R)/(t) = P¢/(t). The chain { P} projects to a chain { ¢/ (t)} € Spec(R[t}/ (t))-
Hence h(P/tS) < h(P¢) < h(P).
Suppose that dim R is finite. Note that the composite homomorphism R <ty R[t) —T» R[t)/ (t) is a ring isom@rphism.
There exists a chain of prime ideals in R:

/

0}=QuGC @1 & CQn




5

where n = dum R By isomorphism it corresponds to a chain of prime ideals in 72[t]/ {t) of the same length. Then
AQu 10) = n.Let Q.1 = Q;, be the extension of Q,, in R[t], which is also a prime ideal in R[tl./ ote that Q,,[t)/ (t) =
Q./ (t). By the previous part, we have dim S > A(Q.1t]) > h(Q./ ()~ n -~ dim R. 0




