Peize Liu St. Peter's College University of Oxford

Problem Sheet 4

B2.2: Commutative Algebra

Overall: d

Question 1

Re-prove the "Weak Nullstellensatz", Theorem 4.4:

if E is a finitely generated F-algebra where $E\supseteq F$ are fields, then [E:F] is finite

from the "Noether Normalization Lemma", Theorem 8.8.

Proof. By Noether Normalization Lemma, there exists $\{y_1,...,y_r\}\subseteq E$ that is algebraically independent over F, such that F is a finitely generated $F[y_1,...,y_r]$ -module. In particular E is integral over $F[y_1,...,y_r]$ by Proposition 7.4. Since E is a field, $F[y_1,...,y_r]$ is also a field by Proposition 7.7(a). This is possible only if r=0, which means $F=F[y_1,...,y_r]$. Hence E is a finitely generated F-module and $[E:F]<\infty$.

Question 2 BT

- (i) Let F be an infinite field. Deduce from Sheet 3 Question 4(i) that $J(F[t_1,..,t_k])$ is zero.
- (ii) Show that if $R \subseteq S$ is an integral extension then $J(S) \cap R = J(R)$. Deduce that if, in addition, S is an integral domain, then $J(S) = \{0\}$ if and only if $J(R) = \{0\}$.
- (iii) Now let *F* be an arbitrary field. Using the Noether Normalization Lemma, deduce that every finitely generated *F*-algebra is a Jacobson ring.

Proof. (i) For each $t_i \in \{t_1, ..., t_k\}$ and $a \notin F$, $\langle t_i - a \rangle$ is a maximal ideal of $F[t_1, ..., t_k]$. For $f \in J(F[t_1, ..., t_k])$, $f \in \langle t_i - a \rangle$. In particular f vanishes on all $(x_1, ..., x_k) \in F^k$. Since F is infinite, by Sheet 3 Question 4(i), f = 0. Hence $J(F[t_1, ..., t_k]) = \{0\}$.

(ii) By Going-up Theorem there is a bijective correspondence between Spec R and Spec S which is given by ideal extensions and contractions. By Proposition 7.7(c), this restricts to a bijective correspondence between MaxSpec R and MaxSpec S. We have:

$$J(S) \cap R = \bigcap_{\substack{M \in \operatorname{MaxSpec} S}} M \cap R = \bigcap_{\substack{P = M \cap R \\ M \in \operatorname{MaxSpec} S}} P = \bigcap_{\substack{P \in \operatorname{MaxSpec} R}} P = J(R)$$

Now suppose that S is an integral domain. That J(S)=0 implies J(R)=0 is trivial. For the other direction, since S is an integral domain. By Proposition 7.6, if $J(S)\neq\{0\}$, then $J(R)=J(S)\cap R\neq\{0\}$.

(iii) Suppose that A is a finitely generated F-algebra. For $P \in \operatorname{Spec} A$, A/P is an integral domain and is a finitely generated F-algebra. By Noether Normalization Lemma, there exists $\{y_1, ..., y_r\} \subseteq A/P$ algebraically independent over F such that A/P is a finitely generated $F[y_1, ..., y_r]$ -module. In particular A/P is integral over $F[y_1, ..., y_r]$. Since $\{y_1, ..., y_r\}$ is algebraically independent, $F[y_1, ..., y_r] \cong F[t_1, ..., t_r]$ as F-algebras. Hence $J(F[y_1, ..., y_r]) = \{0\}$ by part (i). It follows from part (ii) that $J(A/P) = \{0\}$. It implies that P is the intersection of all maximal ideals of A that contain P. We conclude that A is a Jacobson ring.

Question 3

- (i) Prove that Q is not a finitely generated Z-algebra.
- (ii) Let F be a field which is finitely generated as a \mathbb{Z} -algebra. Prove that $\operatorname{char} F \neq 0$. Hint: Suppose that F has characteristic zero. Consider the three rings $\mathbb{Z} \subseteq \mathbb{Q} \subseteq F$.
- (iii) Let S be a finitely generated \mathbb{Z} -algebra and M a maximal ideal of S. Prove that $|S/M| < \infty$.
- *Proof.* (i) Note that the polynomial rings over $\mathbb Z$ are free objects in the category $\mathbb Z$ -Alg. Suppose that $\mathbb Q$ is a finitely generated $\mathbb Z$ -algebra. Then there exists an epimorphism $\varphi: \mathbb Z[t_1,...,t_n] \twoheadrightarrow \mathbb Q$. Let $p_i/q_i = \varphi(t_i) \in \mathbb Q$ for each i, where

 $\gcd(p_i,q_i)=1$. It is not hard to verify that for any $f\in\mathbb{Z}[t_1,...,t_n]$, the denominator of $\varphi(f)$ divides $q_1,...,q_n$. Hence $\frac{1}{q_1\cdots q_n+1}\notin\operatorname{im}\varphi$, which is a contradiction. $\mathbb Q$ is not a finitely generated $\mathbb Z$ -algebra.

- (ii) Suppose that $\operatorname{char} F = 0$. From Part A Rings & Modules we know that F contains $\mathbb Q$ as a subfield. If F is a finitely generated $\mathbb Z$ -algebra, then $\mathbb Q$ is also a finitly generated $\mathbb Z$ -algebra. This is a contradiction as we have proven in part (i).
- (iii) Note that S/M is a field and is finitely generated as a \mathbb{Z} -algebra. We have shown in part (ii) that char $F \neq 0$. Let \mathbb{F}_p be the prime subfield of S/M. Then S/M is finitely generated as an \mathbb{F}_p -algebra. By Hilbert's Weak Nullstellensatz, $[S/M:\mathbb{F}_p]$ is finite. Hence $|S/M|=p[S/M:\mathbb{F}_p]<\infty$.

Question 4

Let R be a subring of a field E and Y a multiplicatively closed subset of R with $1 \in Y$ and $0 \notin Y$. Let S be the integral closure of R in E. Prove that the integral closure of $Y^{-1}R$ in E is $Y^{-1}S$.

Proof. Step 1: $Y^{-1}S$ is integral over $Y^{-1}R$.

For $s/y \in Y^{-1}S$, since S is integral over R, there exists $r_0, ..., r_{n-1} \in R$ such that $s^n + r_{n-1}s^{n-1} + \cdots + r_0 = 0$. Multiplying by $1/y^n$:

$$\left(\frac{s}{y}\right)^{n} + \frac{r_{n-1}}{y} \cdot \left(\frac{s}{y}\right)^{n-1} + \dots + \frac{r_{1}}{y^{n-1}} \cdot \frac{s}{y} + \frac{r_{0}}{y^{n}} = 0$$

This is a monic polynomial in $Y^{-1}R[t]$ that annihilates s/y. Hence s/y is integral over $Y^{-1}R$. $Y^{-1}S$ is integral over $Y^{-1}R$.

Step 2: $Y^{-1}S$ is the integral closure of $Y^{-1}R$ in E.

Suppose that $u \in E$ is integral over $Y^{-1}R$. We shall show that $u \in Y^{-1}S$. There exists $r_0, ..., r_m \in R$ and $y_0, ..., y_m \in Y$ such that

$$u^{m} + \frac{r_{m-1}}{y_{m-1}}u^{m-1} + \dots + \frac{r_{1}}{y_{1}}u + \frac{r_{0}}{y_{0}} = 0$$

Multiplying by $y^m := y_0^m \cdots y_{m-1}^m$:

$$(yu)^m + \frac{r_{m-1}y}{y_{m-1}}(yu)^{m-1} + \dots + \frac{r_1y^{m-1}}{y_1}yu + \frac{r_0y^m}{y_0} = 0$$

where $\frac{r_{m-1}y}{y_{m-1}},...,\frac{r_1y^{m-1}}{y_1},\frac{r_0y^m}{y_0}\in R$. Hence yu is integral over R. As S is the integral closure of R, we have $yu\in S$. Hence $u=yu/y\in Y^{-1}S$. We conclude that $Y^{-1}S$ is the integral closure of $Y^{-1}R$ in E.

Remark. This is Proposition 5.12 in Atiyah & MacDonald. THE BEST BOOK

Question 5

Let R be an integrally closed domain with field of fractions F, let $E \supseteq F$ be an algebraic field extension and let $a \in E$. Show a is integral over R if and only if the (monic) minimal polynomial of a over F lies in R[t].

Hint: consider a suitable splitting field.

Does this necessarily hold if R is not integrally closed?

Proof. If the monic minimal polynomial of a over F lies in R[t], then a is integral over R by definition. For the other direction, suppose that a is integral over R. Let $m_a \in F[t]$ be the minimal polynomial of a over F. Let K be the splitting field of m_a over F. We can express m_a as:

$$m_a(t) = (t - a_1) \cdots (t - a_n) \in K[t]$$

for some $a_1, ..., a_n \in K$. Since a is integral over R, there exists a monic polynomial $f \in R[t]$ such that f(a) = 0. By minimality of m_a we have $m_a \mid f$ over F[t]. Then $m_a(a_i) = 0$ implies that $f(a_i) = 0$ for each i. In particular $a_1, ..., a_n$ are all integral over R. Since $m_a \in R[a_1, ..., a_n][t]$, the coefficients of m_a are all integral over R. Since R is integrally closed in F and $m_a \in F[t]$, the coefficients of m_a lie in R. We then conclude that $m_a \in R[t]$.

The proposition does not hold for non-integrally closed domains. For example, let $R=\mathbb{Z}[\sqrt{5}]$, $F=\mathbb{Q}[\sqrt{5}]$, and E=F. Consider $\frac{1+\sqrt{5}}{2}\in F$. Its minimal polynomial over F is is simply $m(t)=t-\frac{1+\sqrt{5}}{2}$. $\frac{1+\sqrt{5}}{2}$ is also integral over R, as it is a root of $t^2-t-1\in\mathbb{Z}[\sqrt{5}][t]$. But $m\notin\mathbb{Z}[\sqrt{5}][t]$.

Remark. This is a corollary of Proposition 5.15 in *Atiyah & MacDonald*. I found the counter-example on Wiki: https://en.wikipedia.org/wiki/Integrally_closed_domain.

Question 6

(i) Let $0 \neq a \in P$. Show that for some $n \geqslant 1$ we have $P^{n-1} \not\subseteq aR$ and $P^n \subseteq aR$, where $P^0 := R$. Let $b \in P^{n-1} \setminus aR$ and put $y = a^{-1}b$. Show that if $yP \subseteq P$ then $y \in R$. Deduce in fact $yP \not\subseteq P$.

Hint: consider the action of y on the R-module P.

- (ii) Now deduce that yP = R and hence that P is a principal ideal.
- (iii) Let *I* be a proper, non-zero ideal of *R*. Prove that $I = P^n$ for some $n \ge 1$.

Hint: first show that there is a maximal n for which $I \subseteq P^n$.

Proof. (i) First we note that the only prime ideals of R are $\{0\}$ and P. If there exists another prime ideal $Q \in \operatorname{Spec} R$, then it is contained in some maximal ideal. But P is the unique maximal ideal of R. Hence there is a chain of prime ideals $\{0\} \subseteq Q \subseteq P$, contradicting that $\dim R = 1$.

For $a \in P\setminus\{0\}$, the nilradical $\operatorname{Nil}(R/\langle a\rangle) = P/\langle a\rangle$. Since R is Noetherian, so is $R/\langle a\rangle$. By Proposition 3.4, $\operatorname{Nil}(R/\langle a\rangle)$ is nilpotent. There exists $m \in \mathbb{N}$ such that $(P/\langle a\rangle)^m = \{0\} \Longrightarrow P^m \subseteq \langle a\rangle$. Notice that we have a descending chain of ideals:

$$R = P^0 \supseteq P \supseteq P^2 \supseteq P^3 \supseteq \cdots$$

$$R \in \langle a \rangle \text{ Then } P^{n-1} \not\subset \langle a \rangle$$

Let n be the smallest integer such that $P^n \subseteq \langle a \rangle$. Then $P^{n-1} \not\subseteq \langle a \rangle$.

Let $b \in P^{n-1} \setminus aR$ and put $y = a^{-1}b$. If $yP \subseteq P$, then the multiplication by y defines an R-module endomorphism $\varphi_y \in \operatorname{End}_R(P)$. Since R is Noetherian, P is a finitely generated R-module. By Nakayama Lemma (Theorem 5.2), there exists $r_0, ..., r_{k-1} \in R$ such that

$$\varphi_y^k + r_{k-1}\varphi_y^{k-1} + \dots + r_1\varphi_y + r_0 = 0$$

In other words,

$$y^k + r_{k-1}y^{k-1} + \dots + r_1y + r_0 = 0$$

Therefore, y is integral over R. Since R is integrally closed, we have $y \in R$ as claimed.

However, if $y \in R$, then $b = ay \in \langle a \rangle$, which is a contradiction. Hence we must have $yP \not\subseteq P$.

(ii) Since $b \in P^{n-1}$, $bP \subseteq P^n \subseteq \langle a \rangle$. Hence $yP = a^{-1}bP \subseteq R$. In particular yP is an ideal of R. By part (i) we know that $yP \not\subseteq P$, and P is the unique maximal ideal. Then yP = R. Hence $P = y^{-1}R = \langle y^{-1} \rangle$. P is a principal ideal.

(iii) Let I be a proper, non-zero ideal of R. Then $I \subseteq R$. The nilradical Nil(R/I) = P/I is nilpotent (the same as in part (i)). Hence there exists $k \ge 1$ such that $(P/I)^k = P^k/I = \{0\} \Longrightarrow P^k \subseteq I$. As $P^{k+1} \not\subseteq P^k \subseteq I \subseteq P$, there exists a maximal $n \ge 1$ such that $P^{k+1} \subseteq I \subseteq P^n$.

Since $I \subseteq P^n$ and $I \not\subseteq P^{n+1}$, there exists $x \in I$ such that $x = uy^{-n}$ and $x \notin V^{n+1}$ for some $u \in R$. Hence $u \notin P$. u is a unit in R. Then $y^{-n}=u^{-1}x$ and $P^n=\langle y^{-n}\rangle\subseteq\langle x\rangle\subseteq I$. We conclude that $\bigvee \neq P^n=\langle y^{-n}\rangle$. Now we have proven that every non-zero proper ideal of R is generated by y^{-n} for some $n \in \mathbb{N}$. R is indeed a principal ideal domain. \square

Remark. This is a part of Proposition 9.2 in Atiyah & MacDonald.

Let R be a ring, not necessarily Noetherian. Let P be a prime ideal of S = R[t] with $t \in P$. Show that if h(P) is finite then h(P) > h(P/tS).

Hint: show that if Q is a prime ideal of R, then QS is prime in S.

Deduce that if $\dim R$ is finite then $\dim S > \dim R$.

Proof. Let $\iota: R \hookrightarrow S$ be the embedding. First we shall show that for $Q \in \operatorname{Spec} R$, the extension of the ideal $Q^e \in \operatorname{Spec} S$. Note

$$Q^e = QS = Q[t] = \left\{ \sum_{i=0}^n a_i t^i : a_0, ..., a_n \in Q, \ n \in \mathbb{N} \right\}$$

From Part A we know that there exists ring isomorphism: $R[t]/Q[t] \cong (R/Q)[t]$. This follows from applying First Isomorphism: phism Theorem to the composite homomorphism: $R \xrightarrow{\pi_Q} R/Q \xleftarrow{\tilde{\iota}} (R/Q)[t]$. Since $Q \in \operatorname{Spec} R$, R/Q is an integral domain. Then $(R/Q)[t] \cong R[t]/Q[t]$ is also an integral domain. Hence $Q[t] \in \operatorname{Spec} R[t]$.

Suppose that the height of the prime ideal h(P) = n. There exists a chain of prime ideals in R[t] of maximal length:

$$\{0\} = P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n = P$$

Consider the contraction of the chain in R:

$$\{0\} = P_0^c \subseteq P_1^c \subseteq \cdots \subseteq P_n^c = P^c \qquad \text{in } c \in \mathcal{C}$$

where $P_i^c := P_i \cap R$. We claim that there exists $k \in \{1, ..., n\}$ such that $P_{k-1}^c = P_k^c$. Let k be the maximal integer such that $t \in P_k$. Then $t \notin P_{k-1}$. Note that $P_{k-1}^{ce} = P_{k-1}^c[t] \supseteq P_{k-1}$ and that $P_{k-1}^{ce} \subseteq P_k$ is prime in R[t]. Then we must have $P_{k-1}^{ce} = P_k$ by maximality of the length of the chain. Hence $P_{k-1}^c = P_{k-1}^{cec} = P_k^c$ and the length of the chain $\{P_i^c\}$ is smaller than h(P).

We claim that the length of the chain $\{P_i^c\}$ equals to $h(P^c)$. If there exists another chain of prime ideals in R:

$$\{0\} = Q_0 \subsetneq Q_1 \subsetneq \cdots \subsetneq Q_m = P^c$$

then the extension of the chain in R[t] is a chain of prime ideal

$$\{0\} = Q_0^e \subsetneq Q_1^e \subsetneq \cdots \subsetneq Q_m^e = P^{ce} \subseteq P$$

If m = n = h(P), then $\{Q_i^e\}$ is a chain of prime ideals of length at least h(P) and the contraction of $\{Q_i^e\}$ is $\{Q_i\}$ whose length is less than n by our previous argument. We conclude that m < n and hence $h(P^c) < h(P)$.

Finally, note that $P/tS = P/\langle t \rangle = (P \cap R)/\langle t \rangle = P^c/\langle t \rangle$. The chain $\{P_i^c\}$ projects to a chain $\{P_i^c/\langle t \rangle\} \subseteq \operatorname{Spec}(R[t]/\langle t \rangle)$. Hence $h(P/tS) \leq h(P^c) < h(P)$.

Suppose that dim R is finite. Note that the composite homomorphism $R \stackrel{\iota}{\longleftrightarrow} R[t] \stackrel{\pi}{\longrightarrow} R[t]/\langle t \rangle$ is a ring isomorphism. There exists a chain of prime ideals in R:

$$\{0\} = Q_0 \subsetneq Q_1 \subsetneq \cdots \subsetneq Q_n$$

where $n=\dim R$. By isomorphism it corresponds to a chain of prime ideals in $R[t]/\langle t\rangle$ of the same length. Then $h(Q_n/\langle t\rangle)=n$. Let $Q_n[t]=Q_n^e$ be the extension of Q_n in R[t], which is also a prime ideal in R[t]. Note that $Q_n[t]/\langle t\rangle=Q_n/\langle t\rangle$. By the previous part, we have $\dim S\geqslant h(Q_n[t])>h(Q_n/\langle t\rangle)=n=\dim R$.