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Question 1

Re-prove the 'Weak Nullstellensatz•, Theorem 4.4:

if E is a finitely generated F-algebra where E F are fields, then [E : FJ is finite

from e "Noether Normalization Lemma", Theorem 8.8.

Proo . By Noether Normalization Lemma, there exists {!/1, ..., yr} C E that is algebraically independent over l)' such that F is a
finitely generated Flyt, yd-module. In particular E is integral over F[YI, ..., yr] by Proposition 7.4. Since E is a field,

., yr) is also a field by Proposition 7.7(a). 'Ihis is possible only if r = 0, which means F = F (!/1 , ..., yr). Hence E is
a finitely generated F-module and [E : Fl < •c.

Question 2

(i) Let F be an infinite field. Deduce from Sheet 3 Question 4(i) that , .., tkJ) is zero.

(ii) Show that if R C S is an integral extension then J(S) n R = J(R). Deduce that if, in addition, S is an integral
domain, then J(S) = {O) if and only if J(R) = {()}.

(iii) Now let F be an arbitrary field. Using the Noether Normalization Lemma, deduce that every finitely generated F-
algebra is a Jacobson ring.

Proof. (i) For each G e {h, ..., tk.} anda F, (t, — a) is a maximal ideal of F[tl, ..., tk]. For f e J(Fltl,...,
In particular f vanishes on Il (Xl, ...,Xk) e Fk . Since F is infinite, by Sheet 3 Question 4(i), f = 0. Hence

(ii) By Going-up Theorem there is a büective corres ondence between Spec Rand Spec S hich is given by ideal exten-
sions and contractions. By Proposition 7.7(c), this restricts to a bijectiv ndence between MaxSpec R and
MaxSpec S. We have:

n M n n P- n P = .J(R)
M EMaxSpec S P€MaxSpec R

M MaxSpec S

Now suppose that S ia an integral domain. That J(S) 0 implies J(R) = 0 is trivial. For the other direction, since
S is an integral domain. By Proposition 7.6, if J(S) {0}, then J(R) = .J(S) n R 74 {0}.

(if Suppose that A is a finitely generated F-algebra. For P e Spec A, A/ P is an integral domain and is a finitely
generated F-algebra. By Noether Normalization Lemma, there exists {UI, ..., yr} C A/ P algebraically independent

over F such that A/ P is a finitely generated ..., yr]-module. In particular A/ P is integral over ..., yr .
Since {yr, ..., yr} is algebraically independent, FIJI, ..., yr] F[tl, ..., trl as F-algebras. Hence .J(FIYI, ..., !/rl) —{0}

by part (i). It follows from part (ii) that J(A/P) = {0}. It implies that P is the intersection of all maximal ideals of
A that contain P. We conclude that A is a Jacobson ring.

Question 3

(i) Prove that Q is not a finitely generated Z-algebra.

(ii) Let F be a field which is finitely generated as a Z-algebra. Prove that char F 0.

Hint: Suppose that F has characteristic zero. Consider the three rings Z C Q C F.

(iii) Let S be a finitely generated Z-algebra and M a maximal ideal of S. Prove that IS/MI < 00.

Proof. (i) Note that the polynomial rings over Z are free objects in the category Z-Alg. Suppose that Q is a finitely generated

Z-algebra. Then there exists an epimorphism : Z[tl, t Q. Let Pi/qj = F(ti) e Q for each i, where
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gcd(Pi , (li) = 1. It is not hard to verify that for any f e Z(tl, tn], the denominator of p(f) divides (11, ..., On. Hence
1

im V, which is a contradiction. Q is not a finitely generated Z-algebra.

(ii) Suppose that char F = 0. From Part A Rings & Modules we know that F contains Q as a subfield. If F is a finitely

generated Z-algebra, then Q is also a finitly generated Z-algebra. This is a contradiction as we have proven in part

hen You u %
(iii) Note that S/M is a field and is finitely generated as a Z-algebra. We have own in part (ii) that char F 0. Let Fp

be the prime subfield of S/M. Then S/M is finitely generated as an Fp- gebra. By Hilbert's Weak Nullstellensatz,

IS/M : Fpl is finite. Hence IS/MI = p[S/M : FpJ < 00.

Question 4

Let R be a subring of a field E and Y a multiplicatively closed subset of R with 1 e Y and 0 Y. Let S be the integral

closure of R in E. Prove that the integral closure of Y -I R in E is Y -I S.

Proof. Step 1: Y -I S is integral over Y -I R.

For s/y e Y -I S, since S is integral over R, there exists ro, ... -1 G R such that sn + 1 + ...

Multiplying by l/y n .

This is a monic polynomial in Y -1 R[t) that annihilates s/y. Hence s/y is integral over Y -I R. Y ̄ I S is integral over

Y -I R.

Step 2: Y -I S is the integral closure of Y -I R in E.

Suppose that u e E is integral over Y -I R. We shall show that u e Y -I S. There exists ro, ..., r m e Rand yo, ...,ym e Y

such that

Multiplying by yrn

where

um + um 1 + ...+—u+rlTm—I

• Ym—l:

Tm—I Y

Ym—l

roy
yu +

Yo

roy
e R. Hence yu is integral over R. As S is the integral closure of R, we have yu e S.

Yo

Hence u yu/y e Y -I S. We conclude that Y -I S' is the integral closure of Y -I R in E.

Remark. This is Proposition 5.12 in Atiyah & MacDonald. THE BEST 
bOÖ k

Question S

Let R be an integrally closed domain with field of fractions F, let E 2 F be an algebraic field extension and let a e E.

Show a is integral over R if and only if the (monic) minimal polynomial of a over F lies in R[t].

Hint: consider a suitable splitting field.

Does this necessarily hold if R is not integrally closed?

Proof. If the monic minimal polynomial of a over F lies in R[tl, then a is integral over R by definition. For the other direction,

suppose that a is integral over R. Let ma e Flt] be the minimal polynomial of a over F. Let K be the splitting field Of

ma over F. We can express ma as:
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ma(t) = (t — al) (t - an) € K[tl

for some a: , ...,an é K. Since a is integral over R, there exists a monic polynomial f e R[tJ such that f(a) O. By
minimality of ma we have ma I f over F(t). Then ma (a) = 0 implies that f (aj 0 for each i. In particular ave..., an are

all integral over R. Since ma e R[al, the coefficients of ma are all integral over R. Since R is int ally closed

in F and ma E F(tl, the coefficients of ma lie in R. We then conclude that ma e R[tJ.

The proposition does not hold for non-integrally closed domains. For example, let R = Z[v6J, F = Q[v6J, and E =

Consider e F. Its minimal polynomial over F is is simply m(t)
2 2

is also integral over , as
2

it is a root of t 2 —t - 1 e Zlv61tl. Buttn

Remark. ms is a corollary of Proposition 5.15 in Atiyah & MacDonald. I found the counter-example on Wiki:

https://en.vikipedia.org/viki/lntegrally_closed_domain.

Question 6

Let R be an integrally closed, Noetherian, local, integral domain of dimension 1, with unique maximal ideal P. Using the

steps below, or otherwise, prove that R is a principal ideal domain.

(i) Let O a € P. Show that for some n > 1 we have g OR and C aR, where PO := R. Let b e Pn-1\aR and

put y = a -l b. Show that if YP C P then y e R. Deduce in fact YP P.

Hint: consider the action of!' on the R-module P.

(ii) Now deduce that YP R and hence that P is a principal ideal.

(iii) Let I be a proper, non-zero ideal of R. Prove that I = p n for some n > l.

Hint: first show that there is a maximal n for which I C P".

Proof. (i) First we note that the only prime ideals of R are {0} and P. If there exists another prime ideal Q e Spec R, then it

is contained in some maximal ideal. But P is the unique maximal ideal of R. Hence there is a chain of prime ideals

{O} C Q C P, contradicting that dim R = 1.

For a e P\{()}, the nilradical Nil(R/ (a)) = P/ Since R is Noetherian, so is R/ (a). By Proposition 3.4,

Nil(R/ (a)) is nilpotent. There exists m e N such that (P/ — {O} p m C (a). Notice that we have a

descending chain of ideals:

Let n be the smallest integer such that C (a). Then pn- l (a).

Let b e and put y = a-lb. If YP C P, then the multiplication by y defines an R-module endomorphism

€ EndR(P). Since R is Noetherian, P is a finitely generated R-module. By Nakayama Lemma Clheorem 5.2),

there exists ro, ..., e R such that

In other words,

Therefore, y is integral over R. Since R is integrally closed, we have y e R as claimed.

However, if y e R, then b = ay e (a), which is a contradiction. Hence we must have YP P.

(ii) Since b e pn—l, bP C pn C (a). Hence YP = a-lbP C R. In particular YP is an ideal of R. By art (i) we know that

YP P, and P is the unique maximal ideal. Then YP = R. Hence P = y-IR= (y-1). Pis principal ideal.



(iii) Let I be a proper, non-zero ideal of R. Then C R. The nilradical Nil(R/I) = P/ I is nilpotent (the same as in part

(i)). Hence there exists k > I such that (P/l) k — — {0} p k C I. As Pk C I C P, there exists a

maximal n > I such that I C P".

Since I C P" and I P" 41 , there exists e I such that = uy• and r some u e R. Hence u P. u is
a unit in R. Then y -n = u -1 x and P" = C (r) C I. We conclude that PO = Now we have proven

that every non-zero proper ideal of R is generated by y 'l for some n e N. R is indeed a principal ideal domain. Cl

Remark. This is a part of Proposition 9.2 in Atiyah & MacDonald.

Question 7

Let R be a ring, not necessarily Noetherian. Let P be a prime ideal of S = R(t) with t e P. Show that if h(P) is finite then

h(P) > h(P/tS).

Hint: show that if Q is a prime ideal of R, then QS is prime in S.

Deduce that if dim R is finite then dim S > dim R.

Proof. Let : R S be the embedding. First we shall show that for Q e Spec R, the extension of the ideal QC e Spec S. Note

that

att.' : ... , an € Q, n € N

From Part A we know that there exists ring isomorphism: ms follows from applying First Isomor-

phism Theorem to the composite homomorphism: R —y R/Q Since Q e Spec R, R/Q is an integral

domain. Then is also an integral domain. Hence Q[tl e Spec

Suppose that the height of the prime ideal h(P) = n. There exists a chain of prime ideals in R[t] of maximal length:

Consider the contraction of the chain in R:

where P/ := P, n R. We claim that there exists k € 1 ... n such that | — Pi. Let k be the maximal integer such

that t e Pk. Then t Pk-l. Note that It e_i = _ llt] Pk—l an t at Pk.ce_l Pk is prime in R[t]. Then we must

have Pkce_l = Pk by maximality of the length of the chain. Hence Pi_ 1 = = Pi and the length of the chain {Pic ) is

smaller than h(P).

We claim that the length of the chain {PiC } equals h(PC ). If there exists another chain of prime ideals in R:

then the extension of the chain in R[tJ is a chain of prime ideals

If m n = h(P), then {Q: } is a chain of prime ideals of length at least Il(P) and the contraction of {Q:} is {Q} whose

length is less than n by our previous argument. We conclude that m < n and hence h(PC) < h(P).

Finally, note that P/tS = P/ (t) = (Pn R)/ (t) = PC/ (t). The chain {1%} projects to a chain {P{/ (t)} C (t)).

Hence h(P/tS) < h(PC ) < h(P).

Suppose that dim R is finite. Note that the composite homomorphism R R[tl RIO/ (t) is a ring iso rphism.

There exists a chain of prime ideals in R:
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n — dun R. By isomotphtsm it corresponds to a chain of prime ideals in Rltl/ (t) of thg same length. lhen
h(Qe/ n. tet Q..lt; be the extension or Qt. in Rttl. which is also a prime ideal in R[tl. Note that (t) =

Q. / By the prestous part, have dttnS h(Qnltl) h(Qn/ (t)) n . dim R.


