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We use the first-order language L := {∈,⊆;P,
⋃
,P;∅, ω}, where ∈ and ⊆ are binary predicates, P is a binary function,

⋃
and

P are unary functions, and ∅ and ω are constants.

The equality symbol .= is used in L which indicates that two terms have the same value under any model and assignment. The
equality symbol = is used in metalanguage which indicates that two strings are equal.

The ZF axioms we shall use in this sheet are listed below:

ZF1 Extensionality: ∀x∀y(∀z(z ∈ x↔ z ∈ y)↔ x
.
= y);

ZF2 Empty Set: ∀x ¬x ∈ ∅;

ZF3 Pairs: ∀x∀y∀z(z ∈ P (x, y)↔ (x
.
= z ∨ y .

= z));

ZF4 Unions: ∀x∀y(y ∈
⋃
x↔ ∃z(y ∈ z ∧ z ∈ x));

ZF5 Comprehension Scheme: Let ϕ ∈ Form(L) and z, w1, ..., wk ∈ Free(ϕ). Then ∀x∀w1 · · · ∀wk∃y∀z(z ∈ y ↔ (z ∈ x ∧ ϕ));

ZF6 Power Sets: ∀x∀y(y ∈ P(x)↔ y ⊆ x);

ZF7 Infinity: ∃x(∅ ∈ x ∧ ∀y(y ∈ x→ y+ ∈ x)), where y+ is defined to be
⋃
P (y, P (y, y));

ZF8 Replacement Scheme: Let ϕ ∈ Form(L) and x, y, w1, ..., wk, A ∈ Free(ϕ). Then ∀A∀w1 · · · ∀wk(∀x(x ∈ A → ∃!y ϕ) →
∃B∀y(y ∈ B ↔ ∃x(x ∈ A ∧ ϕ))), where ∃!y ϕ is defined to be (∃y ϕ ∧ ∀z∀y((ϕ ∧ ϕ[z/y])→ y

.
= z)).

ZF9 Foundation: ∀x(¬x .
= ∅→ ∃y(y ∈ x ∧ ¬∃z(z ∈ y ∧ z ∈ x))).

AC Choice: ∀x(¬x .
= ∅→ ∃y∀z(z ∈ x→ ∃!w w ∈ y ∩ z)).

The predicate ⊆ is introduced for convenience. It satisfies ∀x∀y(x ⊆ y ↔ ∀z(z ∈ x→ z ∈ y)).

The constant ω is the smallest inductive set, whose existence and uniqueness follows from the Axioms of Infinity, Comprehension
Scheme, and Extensionality.

Question 1

(a) Let X be a well-ordered set, and x ∈ X. Show that either x is the greatest element in X or x has an immediate
successor (that is an element x∗ ∈ X with x < x∗ such that there is no y ∈ X with x < y < x∗).

(b) LetX ⊂ R such that the inherited order < from R is a well-order onX. Prove thatX must be countable.

[Hint: consider the intervals (x, x∗).]

Proof. (a) Suppose that x is not the greatest element in X. Then the set {y ∈ X : x < y} ⊆ X is non-empty. Since X is
well-ordered, it has a minimal element x∗. We claim that x∗ is an immediate successor of x. If not, then there
exists z ∈ X such that x < z < x∗. Then z ∈ {y ∈ X : x < y}, contradicting the minimality of x∗.

(b) Suppose for contradiction that X is uncountable. Since X has at most one greatesr element, the set X∗ of
elements in X which has immediate successors is also uncountable. For each x ∈ X∗, let x∗ be the immediate
successor of x. By part (i) we know that the interval (x, x∗) ⊆ R\X. For x, y ∈ X∗ with x 6 .= y, the intervals
(x, x∗) and (y, y∗) are disjoint. Hence R\X has a subset which is the union of uncountably many disjoint open
intervals. Since R is separable, for each (x, x∗) ⊆ R\X there exists a rational number qx ∈ (x, x∗). The map
x 7→ qx is clearly an injection fromX∗ to Q. But Q is countable, contradiction.

Question 2

Let <A, <B be strict total orders on sets A,B respectively. We define the sum (A,<A) + (B,<B) and the product
(A,<A)× (B,<B) of the orders as follows.

For the sum,we assumeA,B are disjoint (which can always be arranged by replacing thembyA′ = {0}×A,B′ = {1}×B
with the obvious orders on them ). Then (A,<A) + (B,<B) is the set A ∪ B with the order <+ in which elements of
A or B are ordered by <A, <B respectively and all elements of A precede all elements of B.

The product (A,<A)× (B,<B) is A×B with the reverse lexicographic order, that is (a, b) <× (a′, b′) iff b < b′, or b = b′

and a < a′.
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(i) Draw illustrative pictures (coloured pens may be helpful) of the orders

ω + 4, 4 + ω, ω + ω, ω · ω

(ii) Prove that <+, <× are well-orders if <A, <B are well-orders.

[You may omit the (tedious) verification that they are strict orders and that they are total.]

Proof. (i) ω + 4:
0 < 1 < 2 < 3 < 4 < · · · < 0̄ < 1̄ < 2̄ < 3̄

4 + ω:
0 < 1 < 2 < 3 < 0̄ < 1̄ < 2̄ < 3̄ < 4̄ < · · ·

ω + ω:
0 < 1 < 2 < 3 < 4 < · · · < 0̄ < 1̄ < 2̄ < 3̄ < 4̄ < · · ·

ω · ω:
〈0, 0〉 < 〈1, 0〉 < 〈2, 0〉 < · · ·

· · · < 〈0, 1〉 < 〈1, 1〉 < 〈2, 1〉 < · · ·
· · · < 〈0, 2〉 < 〈1, 2〉 < 〈2, 2〉 < · · ·

(ii) Assume that we have proven that <+ and <× are strict total orders provided that <A and <B are strict total
orders.

For non-empty S ⊆ A ∪ B, if A ∩ S 6 .= ∅, then A ∩ S has an minimal element a0 with respect to 〈A,<A〉. It is
clear that a0 is the minimal element of S with respect to 〈A ∪B,<+〉. If A∩ S

.
= ∅, then B ∩ S has an minimal

element b with respect to 〈B,<B〉. It is clear that b0 is the minimal element of S with respect to 〈A ∪B,<+〉.
Hence <+ is a well-order.

For non-empty S ⊆ A × B, let SB := {b ∈ B : 〈a, b〉 ∈ S}. SB ⊆ B is non-empty. It has an minimal element
b0 ∈ B with respect to 〈B,<B〉. Let SA := {a ∈ A : 〈a, b0〉 ∈ S}. SA ⊆ A is non-empty. It has an minimal
element a0 ∈ A with respect to 〈A,<A〉. It is clear that 〈a0, b0〉 is the minimal element of S with respect to
〈A×B,<×〉. Hence <× is a well-order.

Question 3

Let α, β, γ be ordinals. Show that

(i) if β < γ then α+ β < α+ γ.

[Hint: induction on γ, or use Theorem 14.7.]

(ii) if α+ β = α+ γ then β = γ, i.e. left cancellation holds.

(iii) right cancellation "α+ γ = β + γ implies α = β" fails, by giving a counterexample.

(iv) if γ is a limit ordinal then α+ γ is a limit ordinal.

Proof. (i) We use transfinite induction on γ.

Base case: If γ .
= 0, then the result holds vacuously.

Successor case: Suppose that (β < δ → α+β < α+ δ) holds for ordinal δ. If δ < β, then δ+ 6 β. (β < δ+ → α+

β < α+δ+) holds vacuously. If δ > β, then β < δ+. By definition of ordinal addition, α+δ+
.
= (α+δ)+ > α+δ.

Then α+ β < α+ δ+.

Limit case: Suppose that λ is a limit ordinal and (β < δ → α + β < α + δ) holds for all ordinals δ < λ.
If β > λ, then (β < λ → α + β < α + λ) holds vacuously. If β < λ, by definition of ordinal addition,
α+ λ

.
=

⋃
{α+ δ : δ < λ} > α+ β.

(ii) If β < γ, then α+ β < α+ γ; if β > γ, then α+ β > α+ γ. Hence α+ β
.
= α+ γ implies that β .

= γ.

(iii) 1 + ω
.
=

⋃
{1 + n : n ∈ ω} .= ω

.
=

⋃
{2 + n : n ∈ ω} .= 2 + ω but 1 6 .= 2.
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(iv) By definition, α + γ
.
=

⋃
{α + β : β < γ}. For ordinal δ < α + γ, there exists ordinal β such that δ .

= α + β.
δ+

.
= α+ β+. Since γ is a limit ordinal, β < γ implies that β+ < γ. Hence δ+ < α+ γ. By Theorem 12.10, α+ γ

is a limit ordinal.

Question 4

For any two ordinals α, β, exactly one of α ∈ β, α = β, β ∈ α hold. Determine which of these holds when

(i) α = (ω + 1) · 2, β = 2 · (ω + 1)

(ii) α = (ω + 1) · ω, β = ω · (ω + 1)

Proof. (i) α = (ω + 1) · 2 .
= (ω + 1) + (ω + 1).

β = 2 · (ω + 1)
.
= 2 · ω + 2 · 1 .

=
⋃
{2n : n ∈ ω}+ 2

.
= ω + 2

.
= (ω + 1) + 1.

Since 1 < ω + 1, we have 2 · (ω + 1) < (ω + 1) · 2. That is, β ∈ α.

(ii) α = (ω + 1) · ω .
=

⋃
{(ω + 1) · n : n ∈ ω}.

By finite induction, we can prove that (ω + 1) · n .
= (ω + 1) + · · ·+ (ω + 1)︸ ︷︷ ︸

n times

.
= ω + (1 + ω) + · · ·+ (1 + ω)︸ ︷︷ ︸

(n−1) times

+1
.
=

ω + ω + · · ·+ ω︸ ︷︷ ︸
(n−1) times

+1
.
= ω · n+ 1.

Note that ω ·n+1 < ω ·n+ω
.
= ω ·(n+1). Then α .

=
⋃
{(ω+1) ·n : n ∈ ω} .=

⋃
{ω ·(n+1) : n ∈ ω} .= ω ·ω .

= ω2.

β = ω · (ω + 1)
.
= ω · ω + ω · 1 .

= ω2 + ω.

Since 0 < ω, ω2 < ω2 + ω. Hence α ∈ β.

Question 5

Ordinal exponentiation β 7→ αβ for any ordinal α > 0 was defined in lectures. Prove that if α, β are countable, with
α > 0, then αβ is countable.

[Observe the difference with cardinal exponentiation on this point.]

Assume AC. It can be done without much more work.

Proof. We precede the proof by 3 steps.

Step 1: We use transfinite induction on β to show that if α and β are countable then α+ β is countable.

Base case: α+ 0 = α is countable.

Successor case: Suppose that α+ β is countable. Then α+ β+ = (α+ β)+ = (α+ β) ∪ {α+ β} is countable.

Limit case: Suppose that λ is a limit ordinal. α+ β is countable for all ordinals β < λ. Then α+ λ =
⋃
{α+ β :

β < λ}. Since λ is countable, α+ λ is a countable union of countable sets. By AC α+ λ is countable.

Step 2: We use transfinite induction on β to show that if α and β are countable then α · β is countable.

Base case: α · 0 = 0 is countable.

Successor case: Suppose that α · β is countable. Then α · β+ = α · β + α. By Step 1, α · β+ is countable.

Limit case: Suppose thatλ is a limit ordinal. α·β is countable for all ordinals β < λ. Thenα·λ =
⋃
{α·β : β < λ}.

Since λ is countable, α · λ is a countable union of countable sets. By AC α · λ is countable.

Step 3: We use transfinite induction on β to show that if α and β are countable then αβ is countable.

Base case: α0 = 1 is countable.

Successor case: Suppose that αβ is countable. Then αβ
+

= αβ · α. By Step 2, αβ+

is countable.

Limit case: Suppose that λ is a limit ordinal. αβ is countable for all ordinals β < λ. Then αλ =
⋃
{αβ : β < λ}.

Since λ is countable, αλ is a countable union of countable sets. By AC αλ is countable.
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Question 6

Let P be a non-empty partially strictly ordered set and assume no element of P is maximal (i.e. for every x ∈ P there
exists y ∈ P with x < y). Use AC to show there exists a function f : ω → P with f(n) < f (n+) for all n ∈ ω.

Proof. Define ϕ : P → P(P ) by ϕ(x) := {y ∈ P : y > x}. Since P has no maximal element, ϕ(x) 6 .= ∅ for all x ∈ P .
By Axiom of Choice, there exists a function g : P(P )\{∅} → P such that g(A) ∈ A for A ∈ P(P )\{∅}. Consider
h := g ◦ ϕ : P → P . Fix a0 ∈ P . By Recursion theorem, there exists a function f : ω → P such that f(0)

.
= a0 and

f(n+)
.
= h(f(n)) for n ∈ ω. Note that h ◦ f(n)

.
= g ◦ ϕ ◦ f(n)

.
= g({y ∈ P : y > f(n)}) ∈ {y ∈ P : y > f(n)}. Hence

f(n+) > f(n) for all n ∈ ω.

Question 7

Let R be a commutative ring with identity 1 6= 0.

(i) Prove that the union of a chain of proper ideals is a proper ideal.

(ii) Use Zorn’s Lemma to prove that R has a maximal ideal.

Proof. See my algebra notes.

Question 8

Let A be a non-empty set of non-empty sets and X =
⋃
A. Assume Zorn’s Lemma and prove the existence of a

function F : A → X with F (A) ∈ A for each A ∈ A.

[Hint: apply ZL to the partially ordered set P of partial maps from A to X, regarded as a subset of P(A ×X), ordered by
inclusion.]

Deduce that Zorn’s Lemma implies the Axiom of Choice.

Proof. Let S be the set of maps f : B →
⋃
A where B ⊆ A and f(A) ∈ A for each A ∈ B. Let S be partially ordered by set

inclusion.

S is non-empty. Take A0 ∈
⋃
A and a0 ∈ A0. Define f : {A0} →

⋃
A by f(A0) = a0. Then f ∈ S . For each chain

T ⊆ S , we claim that
⋃
T ∈ S . It is clear that

⋃
T ∈ P(A×

⋃
A). For 〈A, a〉 , 〈A, b〉 ∈

⋃
T , there exists f1, f2 ∈ T

such that 〈A, a〉 ∈ f1 and 〈A, b〉 ∈ f2. Since T is a chain, either f1 ⊆ f2 or f2 ⊆ f1. Without loss of generality we
assume the former. Then 〈A, a〉 , 〈A, b〉 ∈ f2. Since f2 is a map, then a

.
= b. Hence

⋃
T is a map. For 〈A, a〉 ∈

⋃
T ,

〈A, a〉 ∈ f for some f ∈ T . Then a ∈ A since f is a choice function. We deduce that
⋃

T is a choice function.

By Zorn’s Lemma, S has a maximal element F . We claim that F is a map from A to
⋃
A. If not, then take B ∈

A\dom(F ) and b ∈ B. Define F̃ : dom(F ) ∪B →
⋃
A by

F̃ (A)
.
=

{
F (A), A ∈ dom(F );

b, A
.
= B.

Then F̃ ∈ S and F ( F̃ , contradicting the maximality of F .

Wew conclude that Zorn’s Lemma implies the Axiom of Choice.


