Peize Liu St. Peter's College University of Oxford

Problem Sheet 4
B1.2: Set Theory

We use the first-order language $\mathcal{L} := \{ \in, \subseteq; P, \bigcup, \mathcal{P}; \varnothing, \omega \}$, where \in and \subseteq are binary predicates, P is a binary function, \bigcup and \mathcal{P} are unary functions, and \varnothing and ω are constants.

The equality symbol \doteq is used in \mathcal{L} which indicates that two terms have the same value under any model and assignment. The equality symbol = is used in metalanguage which indicates that two strings are equal.

The ZF axioms we shall use in this sheet are listed below:

- **ZF1** Extensionality: $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \leftrightarrow x = y)$;
- **ZF2** *Empty Set*: $\forall x \neg x \in \emptyset$;
- **ZF3** Pairs: $\forall x \forall y \forall z (z \in P(x, y) \leftrightarrow (x = z \lor y = z));$
- **ZF4** Unions: $\forall x \forall y (y \in \bigcup x \leftrightarrow \exists z (y \in z \land z \in x));$
- **ZF5** Comprehension Scheme: Let $\varphi \in \text{Form}(\mathcal{L})$ and $z, w_1, ..., w_k \in \text{Free}(\varphi)$. Then $\forall x \forall w_1 \cdots \forall w_k \exists y \forall z (z \in y \leftrightarrow (z \in x \land \varphi))$;
- **ZF6** Power Sets: $\forall x \forall y (y \in \mathcal{P}(x) \leftrightarrow y \subseteq x)$;
- **ZF7** Infinity: $\exists x (\varnothing \in x \land \forall y (y \in x \rightarrow y^+ \in x))$, where y^+ is defined to be ||P(y, P(y, y))|;
- **ZF8** Replacement Scheme: Let $\varphi \in \text{Form}(\mathcal{L})$ and $x, y, w_1, ..., w_k, A \in \text{Free}(\varphi)$. Then $\forall A \forall w_1 \cdots \forall w_k (\forall x (x \in A \rightarrow \exists! y \varphi) \rightarrow \exists B \forall y (y \in B \leftrightarrow \exists x (x \in A \land \varphi)))$, where $\exists! y \varphi$ is defined to be $(\exists y \varphi \land \forall z \forall y ((\varphi \land \varphi[z/y]) \rightarrow y \doteq z))$.
- **ZF9** Foundation: $\forall x (\neg x \doteq \varnothing \rightarrow \exists y (y \in x \land \neg \exists z (z \in y \land z \in x))).$
- **AC** Choice: $\forall x (\neg x \doteq \varnothing \rightarrow \exists y \forall z (z \in x \rightarrow \exists! w \ w \in y \cap z)).$

The predicate \subseteq is introduced for convenience. It satisfies $\forall x \forall y (x \subseteq y \leftrightarrow \forall z (z \in x \to z \in y))$.

The constant ω is the smallest inductive set, whose existence and uniqueness follows from the Axioms of Infinity, Comprehension Scheme, and Extensionality.

Question 1

- (a) Let X be a well-ordered set, and $x \in X$. Show that either x is the greatest element in X or x has an immediate successor (that is an element $x^* \in X$ with $x < x^*$ such that there is no $y \in X$ with $x < y < x^*$).
- (b) Let $X \subset \mathbb{R}$ such that the inherited order < from \mathbb{R} is a well-order on X. Prove that X must be countable.

[*Hint*: consider the intervals (x, x^*) .]

- *Proof.* (a) Suppose that x is not the greatest element in X. Then the set $\{y \in X : x < y\} \subseteq X$ is non-empty. Since X is well-ordered, it has a minimal element x^* . We claim that x^* is an immediate successor of x. If not, then there exists $z \in X$ such that $x < z < x^*$. Then $z \in \{y \in X : x < y\}$, contradicting the minimality of x^* .
 - (b) Suppose for contradiction that X is uncountable. Since X has at most one greatesr element, the set X^* of elements in X which has immediate successors is also uncountable. For each $x \in X^*$, let x^* be the immediate successor of x. By part (i) we know that the interval $(x,x^*) \subseteq \mathbb{R} \backslash X$. For $x,y \in X^*$ with $x \neq y$, the intervals (x,x^*) and (y,y^*) are disjoint. Hence $\mathbb{R} \backslash X$ has a subset which is the union of uncountably many disjoint open intervals. Since \mathbb{R} is separable, for each $(x,x^*) \subseteq \mathbb{R} \backslash X$ there exists a rational number $q_x \in (x,x^*)$. The map $x \mapsto q_x$ is clearly an injection from X^* to \mathbb{Q} . But \mathbb{Q} is countable, contradiction.

Question 2

Let $<_A,<_B$ be strict total orders on sets A,B respectively. We define the *sum* $(A,<_A)+(B,<_B)$ and the *product* $(A,<_A)\times(B,<_B)$ of the orders as follows.

For the sum, we assume A, B are disjoint (which can always be arranged by replacing them by $A' = \{0\} \times A, B' = \{1\} \times B$ with the obvious orders on them). Then $(A, <_A) + (B, <_B)$ is the set $A \cup B$ with the order $<_+$ in which elements of A or B are ordered by $<_A, <_B$ respectively and all elements of A precede all elements of B.

The product $(A, <_A) \times (B, <_B)$ is $A \times B$ with the *reverse lexicographic order*, that is $(a, b) <_\times (a', b')$ iff b < b', or b = b' and a < a'.

(i) Draw illustrative pictures (coloured pens may be helpful) of the orders

$$\omega + 4$$
, $4 + \omega$, $\omega + \omega$, $\omega \cdot \omega$

(ii) Prove that $<_+,<_\times$ are well-orders if $<_A,<_B$ are well-orders.

[You may omit the (tedious) verification that they are strict orders and that they are total.]

Proof. (i) $\omega + 4$:

$$0 < 1 < 2 < 3 < 4 < \dots < \bar{0} < \bar{1} < \bar{2} < \bar{3}$$

 $4 + \omega$:

$$0 < 1 < 2 < 3 < \bar{0} < \bar{1} < \bar{2} < \bar{3} < \bar{4} < \cdots$$

 $\omega + \omega$:

$$0 < 1 < 2 < 3 < 4 < \dots < \bar{0} < \bar{1} < \bar{2} < \bar{3} < \bar{4} < \dots$$

 $\omega \cdot \omega$:

(ii) Assume that we have proven that $<_+$ and $<_\times$ are strict total orders provided that $<_A$ and $<_B$ are strict total orders.

For non-empty $S \subseteq A \cup B$, if $A \cap S \neq \emptyset$, then $A \cap S$ has an minimal element a_0 with respect to $\langle A, <_A \rangle$. It is clear that a_0 is the minimal element of S with respect to $\langle A \cup B, <_+ \rangle$. If $A \cap S \doteq \emptyset$, then $B \cap S$ has an minimal element b with respect to $\langle B, <_B \rangle$. It is clear that b_0 is the minimal element of S with respect to $\langle A \cup B, <_+ \rangle$. Hence $<_+$ is a well-order.

For non-empty $S \subseteq A \times B$, let $S_B := \{b \in B : \langle a,b \rangle \in S\}$. $S_B \subseteq B$ is non-empty. It has an minimal element $b_0 \in B$ with respect to $\langle B, <_B \rangle$. Let $S_A := \{a \in A : \langle a,b_0 \rangle \in S\}$. $S_A \subseteq A$ is non-empty. It has an minimal element $a_0 \in A$ with respect to $\langle A, <_A \rangle$. It is clear that $\langle a_0, b_0 \rangle$ is the minimal element of S with respect to $\langle A \times B, <_\times \rangle$. Hence $<_\times$ is a well-order.

Question 3

Let α, β, γ be ordinals. Show that

(i) if $\beta < \gamma$ then $\alpha + \beta < \alpha + \gamma$.

[Hint: induction on γ , or use Theorem 14.7.]

- (ii) if $\alpha + \beta = \alpha + \gamma$ then $\beta = \gamma$, i.e. left cancellation holds.
- (iii) right cancellation " $\alpha + \gamma = \beta + \gamma$ implies $\alpha = \beta$ " fails, by giving a counterexample.
- (iv) if γ is a limit ordinal then $\alpha + \gamma$ is a limit ordinal.

Proof. (i) We use transfinite induction on γ .

Base case: If $\gamma \doteq 0$, then the result holds vacuously.

Successor case: Suppose that $(\beta < \delta \to \alpha + \beta < \alpha + \delta)$ holds for ordinal δ . If $\delta < \beta$, then $\delta^+ \leqslant \beta$. $(\beta < \delta^+ \to \alpha + \beta < \alpha + \delta^+)$ holds vacuously. If $\delta \geqslant \beta$, then $\beta < \delta^+$. By definition of ordinal addition, $\alpha + \delta^+ \doteq (\alpha + \delta)^+ > \alpha + \delta$. Then $\alpha + \beta < \alpha + \delta^+$.

Limit case: Suppose that λ is a limit ordinal and $(\beta < \delta \rightarrow \alpha + \beta < \alpha + \delta)$ holds for all ordinals $\delta < \lambda$. If $\beta \geqslant \lambda$, then $(\beta < \lambda \rightarrow \alpha + \beta < \alpha + \lambda)$ holds vacuously. If $\beta < \lambda$, by definition of ordinal addition, $\alpha + \lambda \doteq \bigcup \{\alpha + \delta : \delta < \lambda\} > \alpha + \beta$.

- (ii) If $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$; if $\beta > \gamma$, then $\alpha + \beta > \alpha + \gamma$. Hence $\alpha + \beta \doteq \alpha + \gamma$ implies that $\beta \doteq \gamma$.
- (iii) $1 + \omega \doteq \bigcup \{1 + n : n \in \omega\} \doteq \omega \doteq \bigcup \{2 + n : n \in \omega\} \doteq 2 + \omega$ but $1 \neq 2$.

(iv) By definition, $\alpha + \gamma \doteq \bigcup \{\alpha + \beta : \beta < \gamma \}$. For ordinal $\delta < \alpha + \gamma$, there exists ordinal β such that $\delta \doteq \alpha + \beta$. $\delta^+ \doteq \alpha + \beta^+$. Since γ is a limit ordinal, $\beta < \gamma$ implies that $\beta^+ < \gamma$. Hence $\delta^+ < \alpha + \gamma$. By Theorem 12.10, $\alpha + \gamma$ is a limit ordinal.

Question 4

For any two ordinals α, β , exactly one of $\alpha \in \beta$, $\alpha = \beta$, $\beta \in \alpha$ hold. Determine which of these holds when

(i)
$$\alpha = (\omega + 1) \cdot 2$$
, $\beta = 2 \cdot (\omega + 1)$

(ii)
$$\alpha = (\omega + 1) \cdot \omega$$
, $\beta = \omega \cdot (\omega + 1)$

Proof. (i) $\alpha = (\omega + 1) \cdot 2 = (\omega + 1) + (\omega + 1)$.

$$\beta = 2 \cdot (\omega + 1) \doteq 2 \cdot \omega + 2 \cdot 1 \doteq \bigcup \{2n: n \in \omega\} + 2 \doteq \omega + 2 \doteq (\omega + 1) + 1.$$

Since $1 < \omega + 1$, we have $2 \cdot (\omega + 1) < (\omega + 1) \cdot 2$. That is, $\beta \in \alpha$.

(ii) $\alpha = (\omega + 1) \cdot \omega \doteq \bigcup \{(\omega + 1) \cdot n : n \in \omega\}.$

By finite induction, we can prove that $(\omega+1)\cdot n\doteq\underbrace{(\omega+1)+\cdots+(\omega+1)}_{n\text{ times}}\doteq\omega+\underbrace{(1+\omega)+\cdots+(1+\omega)}_{(n-1)\text{ times}}+1\doteq\underbrace{(\omega+1)+\cdots+(\omega+1)}_{n\text{ times}}$

$$\omega + \underbrace{\omega + \dots + \omega}_{(n-1) \text{ times}} + 1 \doteq \omega \cdot n + 1.$$

Note that $\omega \cdot n + 1 < \omega \cdot n + \omega \doteq \omega \cdot (n+1)$. Then $\alpha \doteq \bigcup \{(\omega+1) \cdot n : n \in \omega\} \doteq \bigcup \{\omega \cdot (n+1) : n \in \omega\} \doteq \omega \cdot \omega \doteq \omega^2$.

$$\beta = \omega \cdot (\omega + 1) \doteq \omega \cdot \omega + \omega \cdot 1 \doteq \omega^2 + \omega.$$

Since
$$0 < \omega$$
, $\omega^2 < \omega^2 + \omega$. Hence $\alpha \in \beta$.

Question 5

Ordinal exponentiation $\beta \mapsto \alpha^{\beta}$ for any ordinal $\alpha > 0$ was defined in lectures. Prove that if α, β are countable, with $\alpha > 0$, then α^{β} is countable.

[Observe the difference with cardinal exponentiation on this point.]

Assume AC. It can be done without much more work.

Proof. We precede the proof by 3 steps.

Step 1: We use transfinite induction on β to show that if α and β are countable then $\alpha + \beta$ is countable.

Base case: $\alpha + 0 = \alpha$ is countable.

Successor case: Suppose that $\alpha + \beta$ is countable. Then $\alpha + \beta^+ = (\alpha + \beta)^+ = (\alpha + \beta) \cup \{\alpha + \beta\}$ is countable.

Limit case: Suppose that λ is a limit ordinal. $\alpha + \beta$ is countable for all ordinals $\beta < \lambda$. Then $\alpha + \lambda = \bigcup \{\alpha + \beta : \beta < \lambda \}$. Since λ is countable, $\alpha + \lambda$ is a countable union of countable sets. By AC $\alpha + \lambda$ is countable.

Step 2: We use transfinite induction on β to show that if α and β are countable then $\alpha \cdot \beta$ is countable.

Base case: $\alpha \cdot 0 = 0$ is countable.

Successor case: Suppose that $\alpha \cdot \beta$ is countable. Then $\alpha \cdot \beta^+ = \alpha \cdot \beta + \alpha$. By Step 1, $\alpha \cdot \beta^+$ is countable.

Limit case: Suppose that λ is a limit ordinal. $\alpha \cdot \beta$ is countable for all ordinals $\beta < \lambda$. Then $\alpha \cdot \lambda = \bigcup \{\alpha \cdot \beta : \beta < \lambda\}$. Since λ is countable, $\alpha \cdot \lambda$ is a countable union of countable sets. By AC $\alpha \cdot \lambda$ is countable.

Step 3: We use transfinite induction on β to show that if α and β are countable then α^{β} is countable.

Base case: $\alpha^0 = 1$ is countable.

Successor case: Suppose that α^{β} is countable. Then $\alpha^{\beta^+} = \alpha^{\beta} \cdot \alpha$. By Step 2, α^{β^+} is countable.

Limit case: Suppose that λ is a limit ordinal. α^{β} is countable for all ordinals $\beta < \lambda$. Then $\alpha^{\lambda} = \bigcup \{\alpha^{\beta} : \beta < \lambda \}$. Since λ is countable, α^{λ} is a countable union of countable sets. By AC α^{λ} is countable.

Question 6

Let P be a non-empty partially strictly ordered set and assume no element of P is maximal (i.e. for every $x \in P$ there exists $y \in P$ with x < y). Use AC to show there exists a function $f : \omega \to P$ with $f(n) < f(n^+)$ for all $n \in \omega$.

Proof. Define $\varphi: P \to \mathcal{P}(P)$ by $\varphi(x) := \{y \in P: y > x\}$. Since P has no maximal element, $\varphi(x) \neq \emptyset$ for all $x \in P$. By Axiom of Choice, there exists a function $g: \mathcal{P}(P) \setminus \{\emptyset\} \to P$ such that $g(A) \in A$ for $A \in \mathcal{P}(P) \setminus \{\emptyset\}$. Consider $h:=g\circ\varphi: P\to P$. Fix $a_0\in P$. By Recursion theorem, there exists a function $f:\omega\to P$ such that $f(0)\doteq a_0$ and $f(n^+)\doteq h(f(n))$ for $n\in\omega$. Note that $h\circ f(n)\doteq g\circ\varphi\circ f(n)\doteq g(\{y\in P:y>f(n)\})\in \{y\in P:y>f(n)\}$. Hence $f(n^+)>f(n)$ for all $n\in\omega$.

Question 7

Let R be a commutative ring with identity $1 \neq 0$.

- (i) Prove that the union of a chain of proper ideals is a proper ideal.
- (ii) Use Zorn's Lemma to prove that R has a maximal ideal.

Proof. See my algebra notes.

Question 8

Let \mathcal{A} be a non-empty set of non-empty sets and $X = \bigcup \mathcal{A}$. Assume Zorn's Lemma and prove the existence of a function $F : \mathcal{A} \to X$ with $F(A) \in A$ for each $A \in \mathcal{A}$.

[Hint: apply ZL to the partially ordered set P of partial maps from A to X, regarded as a subset of $\mathcal{P}(A \times X)$, ordered by inclusion.]

Deduce that Zorn's Lemma implies the Axiom of Choice.

Proof. Let \mathcal{S} be the set of maps $f: \mathcal{B} \to \bigcup \mathcal{A}$ where $\mathcal{B} \subseteq \mathcal{A}$ and $f(A) \in A$ for each $A \in \mathcal{B}$. Let \mathcal{S} be partially ordered by set inclusion.

 \mathcal{S} is non-empty. Take $A_0 \in \bigcup \mathcal{A}$ and $a_0 \in A_0$. Define $f: \{A_0\} \to \bigcup \mathcal{A}$ by $f(A_0) = a_0$. Then $f \in \mathcal{S}$. For each chain $\mathcal{T} \subseteq \mathcal{S}$, we claim that $\bigcup \mathcal{T} \in \mathcal{S}$. It is clear that $\bigcup \mathcal{T} \in \mathcal{P}(\mathcal{A} \times \bigcup \mathcal{A})$. For $\langle A, a \rangle$, $\langle A, b \rangle \in \bigcup \mathcal{T}$, there exists $f_1, f_2 \in \mathcal{T}$ such that $\langle A, a \rangle \in f_1$ and $\langle A, b \rangle \in f_2$. Since \mathcal{T} is a chain, either $f_1 \subseteq f_2$ or $f_2 \subseteq f_1$. Without loss of generality we assume the former. Then $\langle A, a \rangle$, $\langle A, b \rangle \in f_2$. Since f_2 is a map, then a = b. Hence $\bigcup \mathcal{T}$ is a map. For $\langle A, a \rangle \in \bigcup \mathcal{T}$, $\langle A, a \rangle \in f$ for some $f \in \mathcal{T}$. Then $a \in A$ since f is a choice function. We deduce that $\bigcup \mathcal{T}$ is a choice function.

By Zorn's Lemma, $\mathcal S$ has a maximal element F. We claim that F is a map from $\mathcal A$ to $\bigcup \mathcal A$. If not, then take $B \in \mathcal A \setminus \mathrm{dom}(F)$ and $b \in B$. Define $\tilde F : \mathrm{dom}(F) \cup B \to \bigcup \mathcal A$ by

$$\tilde{F}(A) \doteq \begin{cases} F(A), & A \in \text{dom}(F); \\ b, & A \doteq B. \end{cases}$$

Then $\tilde{F} \in \mathcal{S}$ and $F \subseteq \tilde{F}$, contradicting the maximality of F.

Wew conclude that Zorn's Lemma implies the Axiom of Choice.