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We use the first-order language L := {€,C; P,|J, P; @,w}, where € and C are binary predicates, P is a binary function, | J and
P are unary functions, and & and w are constants.

The equality symbol = is used in £ which indicates that two terms have the same value under any model and assignment. The
equality symbol = is used in metalanguage which indicates that two strings are equal.

The ZF axioms we shall use in this sheet are listed below:

ZF1 Extensionality: VaVy(Vz(z € z <> z € y) > . = y);

ZF2 Empty Set: Vx —x € @;

ZF3 Pairs: VaVyVz(z € P(x,y) <> (x =2 Vy = z));

ZF4 Unions: VaVy(y € Jz < 3z(y € 2 Az € x));

ZF5 Comprehension Scheme: Let ¢ € Form(L) and z,wy, ..., wy, € Free(y). Then VaVw; - - -Yw,IyVz(z € y < (2 € z A @));
ZF6 Power Sets: VaVy(y € P(z) <>y C z);

ZF7 Infinity: 32(@ € © AVy(y € x — y* € x)), where y™T is defined to be | J P(y, P(y,v));

ZF8 Replacement Scheme: Let ¢ € Form(L) and x,y, w1, ...,wg, A € Free(y). Then VAVw; - --Vwi(Va(z € A — Iy p) —
IBYy(y € B <> Jz(x € A A ¢))), where 3y ¢ is defined to be (Jy o AV2Vy((¢ A plz/y]) = y = 2)).

ZF9 Foundation: Vax(—~x =@ — Jy(y € c A=3z(z € y A z € x))).
AC Choice: Vz(—x =@ — FyVz(z € z —» FJww € yN 2)).
The predicate C is introduced for convenience. It satisfies VaVy(x Cy <> Vz(z € x — 2 € y)).

The constant w is the smallest inductive set, whose existence and uniqueness follows from the Axioms of Infinity, Comprehension
Scheme, and Extensionality.

Question 1

(a) Let X be a well-ordered set, and € X. Show that either x is the greatest element in X or x has an immediate
successor (that is an element z* € X with x < z* such that there isno y € X with z < y < z*).

(b) Let X C R such that the inherited order < from R is a well-order on X. Prove that X must be countable.

[Hint: consider the intervals (x,x*).]

Proof. (a) Suppose that z is not the greatest element in X. Then the set {y € X : < y} C X is non-empty. Since X is
well-ordered, it has a minimal element z*. We claim that z* is an immediate successor of x. If not, then there
exists z € X suchthat z < z < 2*. Then z € {y € X : < y}, contradicting the minimality of =*.

(b) Suppose for contradiction that X is uncountable. Since X has at most one greatesr element, the set X* of
elements in X which has immediate successors is also uncountable. For each z € X*, let z* be the immediate
successor of z. By part (i) we know that the interval (z,2*) C R\X. For z,y € X* with « # y, the intervals
(z,z*) and (y,y*) are disjoint. Hence R\ X has a subset which is the union of uncountably many disjoint open
intervals. Since R is separable, for each (z,z*) C R\X there exists a rational number ¢, € (z,z*). The map
T — g, is clearly an injection from X* to Q. But Q is countable, contradiction. O

Question 2

Let <4, <p be strict total orders on sets A, B respectively. We define the sum (A, <4) + (B, <p) and the product
(A,<4) x (B, <p) of the orders as follows.

For the sum, we assume A, B are disjoint (which can always be arranged by replacingthemby A’ = {0} x A, B’ = {1} x B
with the obvious orders on them ). Then (A, <4) + (B, <g) is the set A U B with the order < in which elements of
A or B are ordered by < 4, <p respectively and all elements of A precede all elements of B.

The product (A4, <4) x (B, <p) is A x B with the reverse lexicographic order, that is (a,b) <« (a’,t') iffb < V', orb =¥’
anda < a'.



(i) Draw illustrative pictures (coloured pens may be helpful) of the orders
wt+4, 4+4+w, wHw, w-w
(ii) Prove that <, < are well-orders if < 4, <p are well-orders.

[You may omit the (tedious) verification that they are strict orders and that they are total.]

Proof. (i) w+4:
0<1<2<3<4<---<0<1<2<3

4+ w:
0<1<2<3<0<1<2<3<4<---

w4 w:

0<1<2<3<4<---<0<1<2<3<4<---

w - w
0,00 < (1,00 < (2,0) <
< (0,1) < (L,LI) < (2,1) <
< {0,2) < (L,2) < (2,2) <

(ii) Assume that we have proven that <, and < are strict total orders provided that <4 and <p are strict total
orders.

For non-empty S C AU B, if AN S # &, then AN S has an minimal element a(, with respect to (A, <4). Itis
clear that a is the minimal element of S with respect to (AU B, <). If ANS = &, then BN S has an minimal
element b with respect to (B, <p). It is clear that b, is the minimal element of S with respect to (AU B, <4 ).
Hence < is a well-order.

For non-empty S C A x B,let S := {b € B : (a,b) € S}. Sp C B is non-empty. It has an minimal element
bp € B with respect to (B, <p). Let Sy := {a € A: (a,by) € S}. Sa C Ais non-empty. It has an minimal
element ay € A with respect to (A, <4). It is clear that (ag, by) is the minimal element of .S with respect to
(A x B, <x). Hence < is a well-order. O

Question 3
Let «, 3,y be ordinals. Show that
(i) if B <ythena+ 8 < a+17.
[Hint: induction on ~, or use Theorem 14.7.]
(ii) if a + 8 = a + vy then 8 = v, i.e. left cancellation holds.
(iii) right cancellation "« + v = 8 + v implies a = 3" fails, by giving a counterexample.

(iv) if v is a limit ordinal then « + « is a limit ordinal.

Proof. (i) We use transfinite induction on ~.
Base case: If v = 0, then the result holds vacuously.

Successor case: Suppose that (8 < § - o+ 8 < a+4J) holds for ordinal 5. If § < 8, then §t < 8. (B < 6T — a+
B < a+46T) holds vacuously. If § > 3, then 8 < §*. By definition of ordinal addition, a +§+ = (a+0)* > a+4.
Thena+ 3 < a+d7.

Limit case: Suppose that ) is a limit ordinal and (8 < § — a4+ 8 < « + 4) holds for all ordinals § < A.
If3 > A\then (8 < A = a+ 8 < a+ ) holds vacuously. If 3 < ), by definition of ordinal addition,
a+ A= {a+0: d<A}>a+p.

(i) f s <~,thena+ 8 <a+~;if 8 > ~v,thena+ 8 > o + +. Hence « + 8 = « + ~ implies that 5 = .
(i) 1+w=U{l+n: necwt=w=U{2+n: n€w}=24+wbutl #2.



(iv) By definition, a + v = |J{a + 8 : 8 < 7}. For ordinal § < « + ~, there exists ordinal 3 such that § = a + 3.
T = a+ B7T. Since v is a limit ordinal, 8 < - implies that 3™ < +. Hence §* < « + . By Theorem 12.10, o + v
is a limit ordinal. O

Question 4

For any two ordinals «, 3, exactly one of o € 3, a = 3, 5 € a hold. Determine which of these holds when
) a=w+1)-2, f=2-(w+1)
(i) a=(w+1) w, B=w (W+1)

Proof. (i) a=(w+1)-2=(w+1)+ (w+1).
=2-(w+l)=2-w+2-1=U{2n: newt+2=w+2=(w+1)+1
Sincel <w+1,wehave2- (w+1) < (w+1)-2. Thatis, § € a.
(i) a=(w+1) w=U{(w+1)-n: new}
By finite induction, we can prove that (w+ 1) n = (w+ 1)+ -+ (w+1) =w+ (14+w)+-- -+ (1+w)+1 =

n times (n—1) times
wt+w+-F+wt+tl=w-n+1.
N———

(n—1) times
Notethatw-n+1 < w-n+w =w-(n+1). Thena = J{(w+1)n: ncw} =J{w-(n+1): n€w} =w-w =w?
f=w-(w+l)Z=w - wtw-1=w?+w.

Since 0 < w, w? < w? + w. Hence a € S. O

Question 5

Ordinal exponentiation 3 — o for any ordinal o > 0 was defined in lectures. Prove that if o, 5 are countable, with
a > 0, then o is countable.

[Observe the difference with cardinal exponentiation on this point.]

Assume AC. It can be done without much more work.

Proof. We precede the proof by 3 steps.
Step 1: We use transfinite induction on $ to show that if « and  are countable then « + 3 is countable.
Base case: a + 0 = « is countable.
Successor case: Suppose that « + 3 is countable. Then a + 8+ = (a + 8)" = (a + 3) U {« + 3} is countable.

Limit case: Suppose that )\ is a limit ordinal. « + 3 is countable for all ordinals 5 < A\. Thena + A = J{a + 5 :
B < A}. Since ) is countable, « + A is a countable union of countable sets. By AC « + X is countable.

Step 2: We use transfinite induction on $ to show that if o and /3 are countable then « - 3 is countable.
Base case: o - 0 = 0 is countable.
Successor case: Suppose that « - 3 is countable. Then o - 7 = o 3 + a. By Step 1, o - 87 is countable.

Limit case: Suppose that X is a limit ordinal. «- g is countable for all ordinals 8 < A. Thena-A = J{a:0 : S < A}.
Since ) is countable, « - A is a countable union of countable sets. By AC « - A is countable.

Step 3: We use transfinite induction on $ to show that if o and 3 are countable then o is countable.
Base case: o® = 1 is countable.
Successor case: Suppose that o is countable. Then o®" = o - a. By Step 2, o is countable.

Limit case: Suppose that )\ is a limit ordinal. o is countable for all ordinals 3 < \. Then o* = J{a? : 8 < A}.
Since ) is countable, o is a countable union of countable sets. By AC o is countable. O



Question 6

Let P be a non-empty partially strictly ordered set and assume no element of P is maximal (i.e. for every x € P there
exists y € P with z < ). Use AC to show there exists a function f : w — P with f(n) < f(n™) foralln € w.

Proof. Define ¢ : P — P(P) by ¢(z) := {y € P : y > z}. Since P has no maximal element, ¢(z) # @ forall x € P.
By Axiom of Choice, there exists a function g : P(P)\{@} — P such that g(4) € A for A € P(P)\{2}. Consider
h:=goy: P — P.Fixay € P. By Recursion theorem, there exists a function f : w — P such that f(0) = ag and
f(n™) =h(f(n)) forn € w. Note that ho f(n) =gopo f(n)=g({ye P:y> f(n)}) e {y € P:y> f(n)}. Hence
f(n™) > f(n)forall n € w. O

Question 7
Let R be a commutative ring with identity 1 # 0.
(i) Prove that the union of a chain of proper ideals is a proper ideal.

(ii) Use Zorn’s Lemma to prove that R has a maximal ideal.

Proof. See my algebra notes. O

Question 8

Let A be a non-empty set of non-empty sets and X = [J.A. Assume Zorn’s Lemma and prove the existence of a
function F': A — X with F(A) € Aforeach A € A.

[Hint: apply ZL to the partially ordered set P of partial maps from A to X, regarded as a subset of P(A x X), ordered by
inclusion.]

Deduce that Zorn’s Lemma implies the Axiom of Choice.

Proof. Let & be the set of maps f : B — |JAwhere B C Aand f(A) € Aforeach A € B. Let § be partially ordered by set
inclusion.

& is non-empty. Take 4y € JA and ag € Ag. Define f : {Ap} — |JADby f(Ag) = ao. Then f € &. For each chain
J C §,weclaimthat T € &. Itisclear that T € P(A x |JA). For (4,a),(A,b) € |JT, there exists f1, fo € T
such that (4,a) € f1 and (A4,b) € fo. Since T is a chain, either f; C f; or fo C f;. Without loss of generality we
assume the former. Then (A, a), (A4,b) € fo. Since f5 is a map, then a = b. Hence | J 9 is a map. For (A,a) € |J T,
(A,a) € fforsome f € 7. Then a € Asince f is a choice function. We deduce that | is a choice function.

By Zorn’s Lemma, & has a maximal element F. We claim that F is a map from A to |J.A. If not, then take B ¢
A\ dom(F) and b € B. Define F' : dom(F)U B — |JAby

P4y = {ZWA% A dom(f)

Then F € § and F C F, contradicting the maximality of F.

Wew conclude that Zorn’s Lemma implies the Axiom of Choice. O



