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Question 1

Let X and Y be real Hilbert spaces and T ∈ℬ(X ,Y ) be surjective. Show that there exists a unique bounded linear operator
R ∈ℬ(Y , X ) such that T R = IY and ‖R y‖ É ‖x‖ for all x ∈ X and y ∈ Y satisfying T x = y .

[Hint: Follow the strategy of the proof of Theorem 2.3.4.]

Proof. Existence: Consider the adjoint T ∗ ∈ℬ(X ,Y ). From Question 1 of Sheet 2 we know that

kerT ∗ =
(
imT

)⊥ = Y ⊥ = {0}

Hence T ∗ is injective. By Theorem 2.3.4, W := imT ∗ is closed in X . Let S ∈ℬ(Y ,W ) be such that Sy = T ∗y for all y ∈ Y . Then
S is bijective. The adjoint S∗ ∈ℬ(W,Y ) is also bijective. By inverse mapping theorem, we have (S∗)−1 ∈ℬ(Y ,W ). We claim
that R := (S∗)−1 is the operator we are looking for.

For y, z ∈ Y , 〈
T R y, z

〉= 〈
(S∗)−1 y,T ∗z

〉= 〈
(S−1)∗y,Sz

〉= 〈
y,S−1Sz

〉= 〈
y, z

〉
Hence T R = idY .

For w,u ∈W ,
〈RT w,u〉 = 〈

w,T ∗R∗u
〉= 〈

w,SS−1u
〉= 〈w,u〉

Hence RT
∣∣
W

= idW . Since W is closed, by the projective theorem we have X =W ⊕W ⊥. Let PW ∈ℬ(X ,W ) be the projection

operator along the direct sum decomposition. Note that kerT =
(
imT ∗

)⊥ =W ⊥. For x ∈ X ,

T x = T PW x +T (x −PW x) = T PW x

and hence
RT x = RT PW x = PW x

We deduce that RT = PW . By Pythagoras’ theorem, for x ∈ X ,

‖x‖2 = ‖PW x‖2 +‖x −PW x‖2

For x ∈ X and y ∈ Y such that T x = y , ∥∥R y
∥∥= ‖RT x‖ = ‖PW x‖ É ‖x‖

Uniqueness: Suppose that R ′ ∈ℬ(Y , X ) such that T R ′ = idY and
∥∥R ′T

∥∥É 1.

For y ∈ Y , there exists w ∈W such that T w = y . Since T R ′ = idY , we have

T (R ′y −w) = T R ′y −T w = y − y = 0 =⇒ R ′y −w ∈ kerT =W ⊥

On the other hand, w ∈W . By Pythagoras’ theorem,∥∥R ′y
∥∥2 = ∥∥R ′y −w

∥∥2 +‖w‖2 Ê ‖w‖2

But by assumption
∥∥R ′y

∥∥ É ‖w‖. Hence we must have R ′y = w . We deduce that imR ′ ⊆ W . Hence im(R −R ′) ⊆ W . But
T (R −R ′) = 0 implies that im(R −R ′) ⊆ kerT =W ⊥. We deduce that

im(R −R ′) ⊆W ∩W ⊥ = {0} =⇒ R = R ′

The bounded right inverse of T is unique.

Question 2

Let X be a Hilbert space and T ∈B(X ). Show that the graph Γ(T ) of T is a closed subspace of X ×X and that

Γ(T )⊥ = {(−T ∗x, x
)

: x ∈ X
}



























































































































































































































































































































2

By considering the corresponding orthogonal decomposition of (x,0), prove that I+T ∗T maps X onto X . Here the space X ×X
is endowed with the inner product 〈

(x1, x2) ,
(
y1, y2

)〉
X×X = 〈

x1, y1
〉

X +〈
x2, y2

〉
X

Proof. T ∈ℬ(X ). That Γ(T ) is closed in X ×X follows directly from the closed graph theorem.

Let Φ := {
(−T ∗x, x) : x ∈ X

}
. It is clear that Φ is a linear subspace of X ×X . For x, y ∈ X ,〈

(x,T x), (−T ∗y, y)
〉= 〈

x,−T ∗y
〉+〈

T x, y
〉=−〈

T x, y
〉+〈

T x, y
〉= 0

Hence Φ⊆ Γ(T )⊥. On the other hand, for (a,b) ∈ Γ(T )⊥, we have

〈(a,b), (x,T x)〉 = 〈a, x〉+〈b,T x〉 = 〈
a +T ∗b, x

〉= 0

for all x ∈ X . Therefore a +T ∗b = 0, and (a,b) = (−T ∗b,b) ∈Φ. we deduce that Γ(T )⊥ ⊆Φ. Hence

Γ(T )⊥ =Φ= {
(−T ∗x, x) : x ∈ X

}
Since Γ(T ) is closed, by the projection theorem, X ×X = Γ(T )⊕Γ(T )⊥. Consider the decomposition of (x,0) ∈ X ×X along the
direct sum. There exists y, z ∈ X such that

(x,0) = (y,T y)+ (−T ∗z, z) =⇒
{

x = y −T ∗z

0 = T y + z
=⇒ x = y −T ∗(−T y) = (id+T ∗T )y ∈ im(id+T ∗T )

Hence id+T ∗T is surjective.

Question 3

Let X and Y be real Banach spaces and T ∈ℬ(X ,Y ). Assume that Z = T X is a finite-codimensional subspace of Y and let{
y1 +Z , . . . , ym +Z

}
be a basis for Y /Z . Define T̂ : X ⊕Rm → Y by

T̂ (x, (v1, . . . , vm)) = T (x)+
m∑

j=1
v j y j

Show that T̂ is a surjective bounded linear operator. Hence, by applying the open mapping theorem, deduce that Z is closed.

Proof. It is clear that T̂ is linear by definition. For y ∈ Y , there exists
∑

j v j y j ∈ Y such that y ∈ ∑
j v j y j + Z . Therefore, there exists

x ∈ X such that y = T (x)+∑
j v j y j . Then we have

T̂ (x, (v1, . . . , vm)) = T (x)+
m∑

j=1
v j y j = y

Hence T̂ is surjective.

We equip X ⊕Rm with the norm

‖(x, (v1, ..., vm))‖ := ‖x‖X +
m∑

j=1

∣∣v j
∣∣

Let M > max
{‖T ‖ ,

∥∥y1
∥∥ , ...,

∥∥ym
∥∥}

. Then for (x, (v1, ..., vm)) ∈ X ⊕Rm ,

∥∥T̂ (x, (v1, ..., vm))
∥∥É ‖T (x)‖+

m∑
j=1

∣∣v j
∣∣∥∥y j

∥∥É ‖T ‖‖x‖+
m∑

j=1

∣∣v j
∣∣∥∥y j

∥∥É M

(
‖x‖+

m∑
j=1

∣∣v j
∣∣)= M ‖(x, (v1, ..., vm))‖

Hence T̂ is bounded.

It is clear that X is closed in X ⊕Rm . If T̂ (x, (v1, ..., vm)) ∈ imT = Z , then
∑

j v j y j + Z = Z and (v1, ..., vm) = 0. Hence T ((X ⊕
Rm) \ X ) = Y \ Z . Finally, by open mapping theorem, Y \ Z is open in Y . Hence Z is closed in Y .
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Question 4

Let X be a Banach space.

(a) Show that if a sequence (xn) in X converges weakly, then its weak limit is unique.

(b) Suppose that xn → x in X and `n → ` in X ∗. Show that `n (xn) → `(x).

(c) Suppose in addition that X is a Hilbert space. Show that if xn * x in X and if ‖xn‖→‖x‖, then xn → x.

(d) Prove (c) when the assumption that X is a Hilbert space is replaced by the assumption that X is uniformly convex: for
every ε> 0, there exists δ= δ(ε) > 0 such that if ‖x‖ = ‖y‖ = 1 and if ‖x − y‖ Ê ε then ‖x + y‖ É 2(1−δ).

[Hint: Consider the sequence 1
2 (xn +x) and use Theorem 3.2.2.]

Proof. (a) Suppose that x and x ′ are weak limits of (xn). Then by definition, for any ` ∈ X ∗, `(xn) → `(x) and `(xn) → `(x ′) as
n →∞. By uniqueness of limit in R, `(x) = `(x ′). In particular, `(x − x ′) = 0 for all ` ∈ X ∗. Suppose that x 6= x ′. Then
there exists a linear functional f ∈ span{x − x ′}∗ such that f (x − x ′) = ∥∥x −x ′∥∥. By Hahn-Banach Theorem, there exists
an extension F of f on X ∗. So F (x −x ′) = ∥∥x −x ′∥∥ 6= 0. This is a contradiction. We deduce that the weak limit is unique.

(b) Since (xn) is convergent in X , it is bounded in X . So there exists M > 0 such that ‖xn‖ É M for all n ∈N. Fix ε> 0.

lim
n→∞xn = x =⇒ ∃N1 ∈N ∀n > N1 ‖xn −x‖ < ε;

lim
n→∞`n = ` =⇒ ∃N2 ∈N ∀n > N2 ‖`n −`‖ < ε.

Then for n > max{N1, N2},

|`n(xn)−`(x)| É |`n(xn)−`(xn)|+ |`(xn)−`(x)| É ‖`n −`‖∗ ‖xn‖+‖`‖∗ ‖xn −x‖ < ε (M +‖`‖∗)

We deduce that `n(xn) → `(x) in R as n →∞.

(c) Since X is a Hilbert space,
‖xn −x‖2 = ‖xn‖2 +‖x‖2 −2Re〈x, xn〉

The map y 7→ 〈
x, y

〉
is a bounded linear functional. Since xn * x, we have 〈x, xn〉→ 〈x, x〉 = ‖x‖2 as n →∞. Therefore

lim
n→∞‖xn −x‖2 = lim

n→∞‖xn‖2 +‖x‖2 −2Re
(

lim
n→∞〈x, xn〉

)
= ‖x‖2 +‖x‖2 −2Re‖x‖2 = 0

Hence xn → x in X .

(d) Suppose that x = 0. Then ‖xn‖ → 0 directly implies that xn → 0 in X by definition. Now suppose that ‖x‖ 6= 0. Since

‖xn‖ → ‖x‖ as n →∞, there exists N ∈ N such that for all n > N , ‖xn‖ Ê 1

2
‖x‖. By discarding the first N terms in the

sequence, we assume that ‖xn‖ 6= 0 for all n ∈N. Let yn := xn/‖xn‖ and y := x/‖x‖. For ` ∈ X ∗,

lim
n→∞`(yn) = lim

n→∞
`(xn)

‖xn‖
=

lim
n→∞`(xn)

lim
n→∞‖xn‖

= `(x)

‖x‖ = `(y)

Hence yn * y in X . Let zn := 1

2
(yn + y). Then zn * y in X . By Theorem 3.2.2,

1 = ∥∥y
∥∥É liminf

n→∞ ‖zn‖ = 1

2
liminf

n→∞
∥∥yn + y

∥∥
Suppose that yn 6→ y in X . Then there exists ε > 0 such that limsup

n→∞
∥∥yn − y

∥∥ Ê ε. By definition of uniform convexity,

there exists δ> 0 such that
∥∥yn + y

∥∥É 2(1−δ) whenever
∥∥yn − y

∥∥Ê ε. Hence

liminf
n→∞

∥∥yn + y
∥∥É 2(1−δ)

This contradicts the equation above. We deduce that yn → y in X . Finally, since ‖xn‖→ ‖x‖ in R and xn = yn ‖xn‖, by
algebra of limits we conclude that xn → x in X .
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Question 5

All sequence spaces in this question are real.

(a) Let 1 < p <∞. Show that a sequence (xn) ⊆ `p converges weakly to x if and only if it is bounded and xn( j ) → x( j ) for
every j .

[Hint: Use weak sequential compactness or the inequality∣∣∣∣∣∑
j
α( j )β( j )

∣∣∣∣∣É
{∑

j
|α( j )|p

}1/p {∑
j
|β( j )|q

}1/q

. ]

(b) Show that a sequence in `1 is weakly convergent if and only if it is strongly convergent.

[Hint: For given ε > 0, construct inductively increasing sequences nk and mk such that
∑

jÉmk−1

∣∣xnk ( j )
∣∣ < ε/8 and∑

j>mk

∣∣xnk ( j )
∣∣< ε/8. Then test the weak convergence against b ∈ `∞ given by b( j ) = sign

(
xnk ( j )

)
for mk−1 < j É mk .]

(c) Let 1 É p <∞ and let en ∈ `p denote the sequence
(
δn j

)∞
j=1 where δ is the Kronecker delta. Does (en) converge weakly

or strongly in `p ? If it converges (weakly or strongly), identify its limit.

Proof. (a) " =⇒ " Suppose that (xn) converges weakly in `p to x. By Theorem 3.2.1, (xn) is bounded in `p . For each j ∈N, consider
the bounded linear functional ` j : `p →R, y 7→ y( j ). Then by the definition of weak convergence,

lim
n→∞xn( j ) = lim

n→∞` j (xn) = lim
n→∞` j (x) = x( j )

" ⇐= " Suppose that (xn) ⊆ `p is pointwise convergent to x ∈ `p and is bounded in `p . There exists K > 0 such that

‖xn‖p :=
( ∑

j∈N
|xn( j )|p

)1/p

< K

for any n ∈N. But this implies that (xn) is uniformly pointwise bounded. That is, |xn( j )| < K for all n, j ∈N.

Note that there is an isometric isomorphism (`p )∗ ∼= `q where q−1 + p−1 = 1. Since (xn) is bounded, by Hölder’s in-
equality and bounded convergence theorem,

lim
n→∞

∣∣∣∣∣ ∑
j∈N

y( j )(xn( j )−x( j ))

∣∣∣∣∣É lim
n→∞

∥∥y
∥∥

q ‖xn −x‖p = ∥∥y
∥∥

q

∥∥∥ lim
n→∞xn −x

∥∥∥
p
= 0

for any y ∈ `q . Hence xn * x in `p .

(b) It is clear that the strong convergence implies the weak convergence. Suppose that (xn) ⊆ `1 converges weakly but not
strongly to x ∈ `1. Let yn := xn −x. Then there exists a subsequence (zn) of (yn) such that

‖zn‖1 =
∑
j∈N

∣∣zn( j )
∣∣Ê ε

for some ε> 0.

We shall construct the increasing sequences (nk ) and (mk ) in the following inductive way:

• Let m0 = 0 and n0 = 0.

• Suppose that we have constructed mk−1 and nk−1. We claim that there exists nk Ê nk−1 such that∑
jÉmk−1

∣∣znk ( j )
∣∣< ε

8

From part (a) we know that zn( j ) → 0 as n →∞ for each n ∈N. Then

∀ i ∈ {0, ...,k −1} ∃Ni ∈N ∀n > Ni |zn(i )| < ε

8(mk−1 +1)
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Let nk := max{nk−1, N0, ..., Nk−1}. Then

∑
jÉmk−1

∣∣znk ( j )
∣∣< mk−1∑

j=0

ε

8(mk−1 +1)
= ε

8

• We claim that there exists mk Ê mk−1 such that ∑
jÊmk

∣∣znk ( j )
∣∣< ε

8

Since (znk ) ∈ `1, ∥∥znk

∥∥
1 =

∑
j∈N

∣∣znk ( j )
∣∣<∞

Choose sufficiently large mk such that
mk∑
j=0

∣∣znk ( j )
∣∣> ∥∥znk

∥∥
1 −

ε

8

and the result follows.

We identify (`1)∗ with `∞. Consider b ∈ `∞ such that b( j ) = sgn
(
znk

)
for mk−1 < j É mk .

For sufficiently large k,

〈
b, znk

〉= ∑
j∈N

b( j )znk ( j ) =
(

mk−1∑
j=0

+
∞∑

j=mk+1

)
b( j )znk ( j )+

mk∑
j=mk−1+1

|znk ( j )|

where ∣∣∣∣∣
(

mk−1∑
j=0

+
∞∑

j=mk+1

)
b( j )znk ( j )

∣∣∣∣∣É mk−1∑
j=0

|znk ( j )|+
∞∑

j=mk+1
|znk ( j )| < ε

8
+ ε

8
= ε

4

In addition,

ε< ‖x‖ =
(

mk−1∑
j=0

+
∞∑

j=mk+1

)
|znk ( j )|+

mk∑
j=mk−1+1

|znk ( j )| < ε

4
+

mk∑
j=mk−1+1

|znk ( j )|

Therefore 〈
b, znk

〉> ε

4
+

(
ε− ε

4

)
= ε

contradicting that xn * 0 in `1. We conclude that xn → 0 in `1.

(c) We claim that (en) converges weakly (but not strongly) to 0 in `p .

For any n,m ∈Nwith n 6= m,
‖en −em‖p = (1p + (−1)p )1/p = 21/p

Hence (en) is not a Cauchy sequence in `p . It does not converge in norm.

Again we identify (`p )∗ with `q where p−1 +q−1 = 1. For y ∈ `q ,∑
j∈N

|en( j )y( j )| = ∑
j∈N

|δn j y( j )| = |y(n)|→ 0

as n →∞. Hence en * 0 in `p .
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Question 6

A sequence (`n) in the dual space X ∗ of a Banach space X is said to be weak* convergent to ` ∈ X ∗ if `n(x) → `(x) for all x ∈ X .

(a) Show that weak* convergent sequences are bounded.

(b) Show that if X is separable, then the unit ball of X ∗ is weak* sequentially compact, i.e. every sequence (`n) in X ∗ with
‖`n‖∗ É 1 has a weak* convergent subsequence.

[Hint: Let (xn) be a dense subset of X . Mimic the proof of the weak sequential compactness of the unit ball to construct a
subsequence

(
`nk

)
such that `nk (xm) is convergent for every m.]

Proof. (a) Suppose that `n * ` in X ∗. Then for any x ∈ X , |(`n −`)x| → 0 as n → ∞. In particular the sequence |(`n −`)x| is
bounded in R for each x ∈ X . By the uniform boundedness principle, there exists K > 0 such that ‖`n −`‖∗ < K for all
n ∈N. By triangular inequality,

sup
n∈N

‖`n‖∗ É sup
n∈N

‖`n −`‖∗+‖`‖∗ É M +‖`‖∗

Hence the sequence (`n) is bounded in X ∗.

(b) Let {xm}m∈N be a countable dense subset of X . Without loss of generality let x0 = 0 and assume that xm 6= 0 for all m > 0.
Let ym := xm/‖xm‖ for all m > 0. Then {ym}m∈Z+ is a countable dense subset of the unit sphere S ⊆ X . We claim that
there exists a subsequence (`nk ) of (`n) such that `nk (ym) → `(ym) as k →∞ for all m > 0.

We inductively construct a map S :N×N→N as follows:

• Let S(k,0) = k.

• Suppose that we have constructed S(k, j −1) for each k ∈N. Note that the sequence
{
`S(k, j−1)(y j )

}
k∈N is bounded

in R, because ∣∣`S(k, j−1)(y j )
∣∣É ∥∥`S(k, j−1)

∥∥
∗
∥∥y j

∥∥É 1

Since [−1,1] is sequentially compact inR, by Bolzano-Weierstrass Theorem, there exists a convergent subsequence{
`S(k, j )(y j )

}
k∈N of

{
`S(k, j−1)(y j )

}
k∈N. That is, `S(k, j )(y j ) → a j as k →∞ for some a j ∈ [−1,1].

Now, consider the subsequence {`S( j , j )} j∈N of {`n}n∈N. For each fixed m, S( j , j ) is a subsequence of S( j ,m) for j Ê m.
Therefore `S( j , j )(ym) → am as j →∞ for each m > 0.

Next, consider an arbitrary x ∈ X \ {0}. Fix ε> 0. Since
{

ym
}

is dense in S, there exists ym such that

∥∥∥∥ym − x

‖x‖
∥∥∥∥< ε

3‖x‖ .

Since
{
`S( j , j )(ym)

}
j∈N is a Cauchy sequence, there exists M ∈N such that

∣∣(`S( j , j ) −`S(i ,i ))(ym)
∣∣ < ε

3‖x‖ for all i , j > M .

Then ∣∣`S(i ,i )(x)−`S( j , j )(x)
∣∣= ‖x‖

∣∣∣∣(`S(i ,i ) −`S( j , j )
)( x

‖x‖
)∣∣∣∣

É ‖x‖
∣∣∣∣(`S(i ,i ) −`S( j , j )

)( x

‖x‖ − ym

)∣∣∣∣+‖x‖ ∣∣(`S(i ,i ) −`S( j , j )
)(

ym
)∣∣

< ‖x‖∥∥`S(i ,i ) −`S( j , j )
∥∥∗∥∥∥∥ x

‖x‖ − ym

∥∥∥∥+ε
< 2

3
ε+ 1

3
ε= ε

Hence
{
`S( j , j )(x)

}
j∈N is a Cauchy sequence.

Finally, we define ` : X →R by
`(x) := lim

j→∞
`S( j , j )(x)

It is clear that ` is bounded and linear. Hence ` ∈ X ∗. We conclude that `S( j , j ) * ` as j →∞ in X ∗. The closed unit ball
in X ∗ is weak sequentially compact.


























