Peize Liu St. Peter's College University of Oxford

Problem Sheet 1 B1.1: Logic

Question 1

- (a) Which of the following are formulae of \mathcal{L} ? Give reasons.
 - (i) $(p_3 \to p_1)$
 - (ii) $p_1 \rightarrow p_2 \rightarrow p_3$
 - (iii) $(\neg p_5 \land \neg p_6) = \neg p_{11}$
 - (iv) $(p \leftrightarrow \neg p)$
 - (v) $((p_1 \vee \neg p_1) \to (\neg p_2))$
- (b) Prove carefully that for any formula ϕ , the number of left parentheses occurring in ϕ is equal to the number of right parentheses occurring in ϕ .

Proof. We note the following fact: ψ begins with (if and only if it contains a binary symbol, if and only if it has length greater than 2. Not actually

- a proof :P (a) (i) This is a formula, formed by applying Rule III to p_3 and p_1 .
 - (ii) This is not a formula. Any formula with length greater than 1 must begin with either \neg or (.
 - (iii) This is not a formula. = is not in the alphabet of \mathcal{L} .
 - (iv) This is a formula. By Rule II, p is a formula. By Rule III, p is a formula. By Rule III, p is a formula.
 - Strictly speaking, p without subscripts is not a propositional variable but that's a minor issue (v) This is not a formula. It can be expressed as $(\phi \to \psi)$ where $\phi = (p_1 \land \neg p_1)$ and $\psi = (\neg p_2)$ are formulae. But $(\neg p_2)$ is not a formula, because it begins with (and does not contain any binary symbols.
 - This argument invokes the unique readability theorem. (b) We use induction on the number of left parentheses of ϕ : It might be easier to just quote Q2(a)

If ϕ has no left parentheses, it must be either p or $\neg p$ for some propositional variable p. Hence ϕ has no right parentheses. The result holds. ϕ may also be $\neg\neg$ p, etc. You could consider both negation and binary operators in one induction by considering length of formula instead — that's the more standard method Suppose that the result holds for formulae with no more than n left parentheses. Assume that ϕ now have n+1left parentheses. Since n+1>0, there exists formulae ψ_1 and ψ_2 such that $\phi=(\psi_1\star\psi_2)$ for some binary symbol $\star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. Both ψ_1 and ψ_2 have at most n left parentheses. By induction hypothesis, both ψ_1 and ψ_2 have equal number of left and right parentheses. It follows that ϕ has equal number of left and right parentheses.

By dealing with negation and binary operators separately, you left out the cases $\neg(\phi * \psi)$, etc. again

Ouestion 2

- (a) Prove that the length of a formula with exactly n occurrences of the negation symbol and m occurrences of binary connectives is 4m + n + 1. Check this for the formulae in Question 1.(a).
- (b) List all formulae of \mathcal{L} of length ≤ 6 .

Proof. (a) We use induction on the length of the formula ϕ .

Base case: If the length of ϕ is 1, then $\phi = p$ is a propositional variable. In this case m = n = 0. Length $\ell = 1$ 4m + n + 1.

Did you forgot this part? :P

Induction case: Suppose that the result holds for all formulae of length less than ℓ . Assume that ϕ has length ℓ . ϕ is one of the following:

- (i) p, a propositional variable; Given that the length > 1 in the inductive case, you can
- (ii) $\neg \psi$, where ψ is a formula; simply list cases (ii), (iii) only
- (iii) $(\psi_1 \star \psi_2)$, where ψ_1 and ψ_2 are formulae, and $\star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

For (i), this is the base case. For (ii), ψ is a formula with m binary symbols and n-1 negation symbols. It has length $\ell-1$. By induction hypothesis, $\ell-1=4m+(n-1)+1$. Hence $\ell=4m+n+1$. For (iii), ψ_1 and ψ_2 are formulae of length less than ℓ . Suppose that ψ_1 has m_1 binary symbols, n_1 negation symbols and length ℓ_1 , and ψ_2 has m_2 binary symbols, n_2 negation symbols, and length ℓ_2 . Then

$$\ell_1 = 4m_1 + n_1 + 1, \quad \ell_2 = 4m_2 + n_2 + 1, \quad m = m_1 + m_2 + 1, \quad n = n_1 + n_2, \quad \ell = \ell_1 + \ell_2 + 3.$$

We deduce that $\ell = 4m + n + 1$.

(b) The equation $4m + n + 1 \le 6 \ (m, n \in \mathbb{N})$ has the following solutions:

$$(m,n) = (0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (1,0), (1,1).$$

The possible formulae are:

$$\begin{array}{c} p_1, \ \neg p_1, \ \neg \neg p_1, \ \neg \neg \neg p_1, \ \neg \neg \neg \neg p_1, \ \neg \neg \neg \neg p_1, \\ (p_1 \wedge p_2), \ (p_1 \vee p_2), \ (p_1 \to p_2), \ (p_1 \leftrightarrow p_2), \\ (\neg p_1 \wedge p_2), \ (\neg p_1 \vee p_2), \ (\neg p_1 \to p_2), \ (\neg p_1 \leftrightarrow p_2), \\ (p_1 \wedge \neg p_2), \ (p_1 \vee \neg p_2), \ (p_1 \to \neg p_2), \ (p_1 \leftrightarrow \neg p_2), \end{array}$$

where p_1 and p_2 can be replaced by arbitrary propositional variables.

 \blacktriangleright What about $\neg(p1 * p2)$?

Question 3

Can a proper initial segment of a formula ever be a formula again? How about final proper segments?

Proof. A string of formula cannot have a proper initial substring that is also a formula. By Question 2, a formula must have equal number of left and right parentheses.

We use induction on the length of the formula to prove: a proper initial substring of a formula contains more left paren-This is not true! Consider "¬" as initial segment of "¬\". theses than right parentheses.

Base case: Suppose that ϕ is a formula of length 1. It does not contain proper initial substrings.

Note: Some accept empty string (but not a formula). That's also okay Induction case: Suppose that the result holds for formulae of length less than n. Assume that ϕ is a formula of length n. ϕ is one of the following:

- (i) p, a propositional variable;
- (ii) $\neg \psi$, where ψ is a formula;
- (iii) $(\psi_1 \star \psi_2)$, where ψ_1 and ψ_2 are formulae, and $\star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

A proper way to attempt this question: You inductive hypothesis should be both 1) a proper initial segment of a formula contains no less left parenthesis than right parenthesis; and 2) a proper initial segment is not a formula

For (i), this is the base case. For (ii), a proper initial substring of ϕ is either \neg or $\neg \chi$, where χ is a proper initial substring of ψ . By induction hyopthesis, χ is not a formula. Hence $\neg \chi$ is not a formula. For (iii), a proper initial substring of ϕ is one of the following:

- (a) (;
- (b) $(\chi$, where χ is a proper initial substring of ψ_1 ;
- (c) $(\psi_1;$
- (d) $(\psi_1 \star;$
- (e) $(\psi_1 \star \chi)$, where χ is a proper initial substring of ψ_2 ;
- (f) $(\psi_1 \star \psi_2$.

Your proof still generally applies:

- for case (ii), both (1) and (2) come trivially from inductive hypothesis;
- for case (iii), you only need to invoke the weak inequality from inductive hypothesis (because from (a) - (f) you always have one extra left parenthesis outside, so it suffices even if χ has as many left parentheses as right) — Here the whole proper initial segment does have more left parentheses than right, but it's restricted to case (iii) only

Note that by induction hypothesis, χ has more left parentheses than right parentheses. ψ_1 and ψ_2 has equal number of left and right parentheses by Question 2.(a). Hence in all situations χ has more left parentheses than right parentheses.

A string of formula can have a proper final substring that is also a formula. For example $\neg p$ is formula, and p is also a formula.

Question 4

Prove the Unique Readability Theorem.

Proof. Let ϕ be a formula. By definition, ϕ is one of the following:

(i) p, a propositional variable;

- (ii) $\neg \psi$, where ψ is a formula;
- (iii) $(\psi_1 \star \psi_2)$, where ψ_1 and ψ_2 are formulae, and $\star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

If we look at the first symbol, we observe that these three readings are mutually exclusive.

The first case is trivial. For the second case, if $\phi = \neg \psi = \neg \chi$, then $\psi = \chi$. For the third case, suppose that $\phi = (\psi_1 \star \psi_2) = (\chi_1 * \chi_2)$. Then $\psi_1 \star \psi_2 = \chi_1 * \chi_2$ as strings. If $\star \neq *$, it follows that either ψ_1 is a proper initial substring of χ_1 or χ_1 is a proper initial substring of ψ_1 . But χ_1 and ψ_1 are both formulae. This is impossible by Question 3. Hence $\star = *$ and $\psi_1 = \chi_1$. It follows that $\psi_2 = \chi_2$. The theorem is hence proven.

The condition that the two binary symbols are not "equal" is not good — It might be that the two binary symbols are the same, but appear at different locations, then you still do not have unique readability. You should rather directly assume that $\psi 1$ and $\chi 1$ are not the same, then invoke Q3.