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Section A: Introductory

Question 1

Show that @Q is not a projective Z-module.

a

Proof. Suppose that Q is a projective Z-module. Let F be the free Z-module generated by elements in Q, that is,

\/ F:=@Zx

xeQ

Let 7 : F — Q be the canonical projection. Since Q is projective, there exists s: Q — F such that wo s = idg.

@Zx @Zx

x€Q xeQ
A
EI!.E// lﬂ f lﬂx
< f
Q Q Q—Z

As s is injective, we can embed Q into F as a submodule. There exists x € Q such that the projection 7, : F —
Zey = Z satisfies that f:=m,0s#0. Let f(1) =me Z\{0}. We have 1 = m~f(1/m2), where both f(l/mz) € Z and
m e Z. This is a contradiction. Q is not a projective Z-module. O

Section B: Core

Question 2

Write an injective resolution for Z as a Z-module.

a

Proof. Consider the short exact sequence
V4 0 s Z s Q s Q/Z 5 0

Since Z is a principal ideal domain, every divisible Z-module is injective. Hence @ and Q/Z are injective. There-

fore the short exact sequence gives an injective resolution for Z. O

Question 3

Write free resolutions for:
1. Z/2in Z-Mod,
2. ZI12in (Z/2)[x]-Mod,
3. Z/2in Z[x])-Mod,
4. 7Z/2in Z[x]/ {2x)-Mod.

Proof. 1. We know that the following sequence of Z-modules is exact:

a 0 y7 X24,7 T

> 212 — —> 0
where Z is a free Z-module. The short exact sequence gives an in)(ctive resolution for Z/2 as a Z-module. \/

2. We know that the following sequence of (Z/2)[x]-modules is exact:

ev

0 — (Z/2)[x] —X— Z/2)[x] s Z/2 S 0



soren
Notat
No, this is a free (and therefore projective) resolution.



v

where 7 : (Z/2)[x] — Z/2 is the evaluation homomorphism induced by x — 0. The short exact sequence
gives an injective resolution for Z/2 as a (Z/2)[x]-module.

Z[x]

3. First we consider the projection p: Z[x] — Z/2. It is easy to observe that Z/2 = 0
, X

Z[x] P > 712 > 0

Then ker p = (2, x) by first isomorphism theorem. We can construct a surjection q: Z[x] ® Z[x] — ker p by
(f,8)—2f(x)+xg(x).
Z[x] & Z[x] L} kerp —— 0

Since 2 and x are coprime in Z[x], for (f, g) € ker g, we have f € (x) and g € (2). So ker g = (x) & (2). Finally
it is easy to see that there is a bijection r: Z[x] @ Z[x] — ker q given by (f, g) — (xf,28).

0 — Z[x]®Z[x] ——> kerg —— 0
Patching the three exact sequences together, we obtain the free resolution of Z/2 as a Z[x]-module:

0 — Z[x]®Z[x] —"— Z[x]® Z[x] — 1 Z[x] —P— 7/2 s 0

4. We will have the same argument with part (3), constructing the following exact sequence

Zlx] Zixl  y ZIX] _ZIxl g ZIxl _p

® > ® > > 712 > 0
2x) (2x) 2x)  (2x) (2x)
. C e . Z[x]
except that r: (f, g) — (xf,2g) is no longer injective. As 2x =0 in @, we have kerr = (2) & (x).
VA Z
Let s: % ® % — kerr given by (f,g) — (2f,xg). Then ker s = (x) ® (2) = ker q. We have

Zlx] Zlx] s 2 ZI r, 200 Zix g, ZIx] _p
@2x)  (2x) " @2x) 7 (2x) " @2x) T (2x) " (2x)

> Z12 > 0

Zix] Zlxl s Zlx]l Zlx]

& > ) > kers
2x)  (2x) 2x)  (2x)

~
o

By patching the two sequences we obtain an unbounded free resolution for Z/2 as a Z[x]/ {2x) module:

r . S r q p

S y R? » R? s R? s R? s R S 712 S 0

where R :=Z[x]/ (2x). \/ O

Question 4

Let R be a commutative ring, r € R, and M € R-Mod. Define R [r~!] := £ = coker(R[x] "1 Rx]) and M[r7!] =
coker(M|x] rasl M|[x]) where M[x] = {Z,- m,-xi} is viewed naturally as an R[x]-module.

Show that M®g R[r | = M [r~1].

a

Proof. We have the short exact sequence of R-modules

0 — (rx—1)gyy — Rlx] —— RIr’ '] —— 0

where (rx — 1) gy is the ideal of R[x] generated by (rx —1). Since the functor M ®p — is right exact, we have the
following exact sequence


soren
Notat
= ev?

soren
Notat
Very nice.


M®g(rx—1)gy ——> M®gR[x] ——> M®gR[r™'] —— 0
Similarly we have the short exact sequence of R-modules
0 —— (rx—Dyp —— Mlx] —— MIr™'] —— 0

where (rx — 1)y is the submodule of M|[x] generated by (rx —1). We can patch the two sequences together as
follows

(rx—Dpp ———— Mlx] —— M[r7!] —— 0

Jo s b |

M®R<rx—1>R[x] ——> M®grR[x] ——> M®RR[T'_1] — 50

The homomorphisms «, B,y are given by

n . n .
a: Zmixl(rx—l) _ Zm@Rxl(rx—l)
i=1 i=1
n ) n )
B: Y mix' 5 Y megx!
i=1 i=1
n . n )
Y: Zmir_’ _— Zmi®Rr_’
i=1 i=1

It is straight forward to check that y is well-defined, everything is an R-module homomorphism, and the diagram
above commutes.

It is trivial that f§ is injective. Every element in M ®g (rx — 1) g5 has the form m®g ) aixi(rx —1), where me M
and a; € R. Then we have

a(z ma;x'(rx— 1)) = Z a;a(mx'(rx—1)=m®ep Z a;x'(rx—-1)
i=1 i=1 i=1
Hence «a is surjective.

Now by the Four Lemma (a half of the five lemma), we conclude that y is an isomorphism. So M[r~!] = M ®p
R[r~!] as R-modules. V4 O

Question 5
Prove the general Frobenius reciprocity formula (Tensor-Hom adjunction):

Homg (A,Hompg (B, C)) = Homg (A®s B,C). where A is a right S-module, B is an (S, R)-bimodule, and C is a right
R-module.

(Ol Proof. This is a very straightforward verification.
Let 0 € Homg(A,Hompg (B, C)). o defines a map ¢ : Ax B — C by d(a,b) := o(a)(b). We note the ¢ defines a

balanced product:

gla+ad,b)=c(a+a)(b)=(o(a)+0c@))(b)=c(a)(b)+0c(a)(b)=6(a,b)+5(d, b)
Gla,b+b)=0c@b+b)=0c@b) +oa)(b)=5(a,b) +5a,b)
o(as,b)=0o(as)(b) =(o(a)s)(b) =0o(a)(sb) =0(a,sb)

By the universal property of A®g B, there exists a unique right R-module homomorphism ¢ : A®s B — C such


soren
Notat
Yes - there is basically only one way of going about this.


that o(a)(b) = p(a®s b). We claim that o — ¢ defines an isomorphism of Abelian groups
F: Hompmog-s (A, Hompeq-r (B, C)) — Hompeq-r (A®s B, C)

The assignment o — ¢ trivially preserves addition. If F(o) = 0, then o(a)(b) =0 for all a € A and b € B. Hence
o(a) =0forall a e A. Hence o = 0. This implies that F is injective.

For ¢ € Hompog-g (A®s B,C),leto,: b— p(a®sb). Then we have
oabr+b'r"Y=g@(a®s(br+b'r))=p(a®sb)r+(aesh)r')=pla®sb)r+pa®sb)r' =o,(b)r +o,b")r'
Hence 0, € Hompyoq-r(B,C). Let 0: a— o,. Then we have
olas+a'sh(b)=¢((as+ad's)esb) =pla®ssb)+@(a ®ss'b)=c(a)(sb)+0(a)(s'b) = (c(a)s+o(a’)s")(b)

Hence o € Hompjog-s (A, Hompo4-g(B, C)). We deduce that F is surjective. O

Section C: Optional

Question 6

Show that every R-submodule of a free R-module M is free when R is a PID.

Proof. Let N be a R-submodule of M. Let X be a basis of M. We consider the set . of triplets (Y, Z, b), where
e ZCYCX;

e Ny:=Nn @Ry is free;
yey

* b: Z — Nisamap such thatim b is a basis of Ny.

Equip . with the partial order
Y, Z,b)<y Y, Z'V) < (YSY'AN(Z<Z)AD|,=b)

& is non-empty, as (&, 9, D) € . Let {(Y;, Z;, bi)}iey be achainin &. Let Y :=U; Y}, Z:=U; Z; and b =U; b;. We
claim that (Y, Z,b) € &. Indeed Z < Y. The union im b = |J; im b; is clearly linearly independent and spans Ny.
Hence Ny is free.

Now by Zorn’s Lemma, . has a maximal element, which will be denoted again by (Y, Z, b). Hopefully it does not
cause any ambiguity in the subsequent discussions.

We claim that Y = X. Suppose for contradiction that it is not. Then we take x € X \ Y. Consider the ideal

I::{aeR: (ax+€BRy)mN;é®}

yeyYy

If I = {0}, then Nyup=NN

@ Rye Rx) = Ny.We have (Y, Z,b) <o (Y n{x}, Z, b). This is a contradiction.
yeyY

Suppose that I # {0}. Since R is a PID, I = (c¢) for some c € R. Pick

cx+ ). Ry)mN

m=cx+) aiyi€
i yey

We claim that Nyyx; = Ny®@Rm. Forn € Ny, n=%; bjy}+ rx for some b, b; € R and y;. € Y. Then by definition



re{c). Let r = sc for some s € R. Hence
n:ijy}+scx=sm+(ijy}—Zaiyi) € Ny +Rm
j J i

It is clear that Ny N Rm = {0} as Y U {x} is linearly independent. This proves our claim. Now we let Z' = Z U {x},
Y'=Yu{x}, and b’ : Z/ — N which satisfies b'| ; = b and b'(x) = m. We have (Y, Z,b) <& (Y',Z',b'). Thisis a
contradiction.

In conclusion, we have X = Y. Hence Ny = NN @ Rx = N is free. O
yeX





