Peize Liu St. Peter's College University of Oxford

Problem Sheet 2 C2.2: Homological Algebra

Overall mark: α

Section A: Introductory

Question 1

Show that \mathbb{Q} is not a projective \mathbb{Z} -module.

Proof. Suppose that \mathbb{Q} is a projective \mathbb{Z} -module. Let F be the free \mathbb{Z} -module generated by elements in \mathbb{Q} , that is,

$$F := \bigoplus_{x \in \mathbb{Q}} \mathbb{Z} x$$

Let $\pi: F \to \mathbb{Q}$ be the canonical projection. Since \mathbb{Q} is projective, there exists $s: \mathbb{Q} \to F$ such that $\pi \circ s = \mathrm{id}_{\mathbb{Q}}$.

As s is injective, we can embed $\mathbb Q$ into F as a submodule. There exists $x \in \mathbb Q$ such that the projection $\pi_x : F \to \mathbb Z e_x \cong \mathbb Z$ satisfies that $f := \pi_x \circ s \neq 0$. Let $f(1) = m \in \mathbb Z \setminus \{0\}$. We have $1 = m \cdot f(1/m^2)$, where both $f(1/m^2) \in \mathbb Z$ and $m \in \mathbb Z$. This is a contradiction. $\mathbb Q$ is not a projective $\mathbb Z$ -module.

Section B: Core

Question 2

Write an injective resolution for \mathbb{Z} as a \mathbb{Z} -module.

α

Proof. Consider the short exact sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

Since \mathbb{Z} is a principal ideal domain, every divisible \mathbb{Z} -module is injective. Hence \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective. Therefore the short exact sequence gives an injective resolution for \mathbb{Z} .

Question 3

Write free resolutions for:

- 1. $\mathbb{Z}/2$ in \mathbb{Z} -Mod,
- 2. $\mathbb{Z}/2$ in $(\mathbb{Z}/2)[x]$ -Mod,
- 3. $\mathbb{Z}/2$ in $\mathbb{Z}[x]$ -Mod,
- 4. $\mathbb{Z}/2$ in $\mathbb{Z}[x]/\langle 2x \rangle$ -Mod.

Proof. 1. We know that the following sequence of \mathbb{Z} -modules is exact:

 α

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2 \longrightarrow 0$$

where $\mathbb Z$ is a free $\mathbb Z$ -module. The short exact sequence gives an in $\mathbb Z$ -tive resolution for $\mathbb Z/2$ as a $\mathbb Z$ -module. \checkmark

2. We know that the following sequence of $(\mathbb{Z}/2)[x]$ -modules is exact:

$$0 \longrightarrow (\mathbb{Z}/2)[x] \xrightarrow{\cdot x} (\mathbb{Z}/2)[x] \xrightarrow{\text{ev}} \mathbb{Z}/2 \longrightarrow 0$$

where $\pi: (\mathbb{Z}/2)[x] \to \mathbb{Z}/2$ is the evaluation homomorphism induced by $x \mapsto 0$. The short exact sequence gives an injective resolution for $\mathbb{Z}/2$ as a $(\mathbb{Z}/2)[x]$ -module.

3. First we consider the projection $p: \mathbb{Z}[x] \to \mathbb{Z}/2$. It is easy to observe that $\mathbb{Z}/2 \cong \frac{\mathbb{Z}[x]}{(2-x)}$.

$$\mathbb{Z}[x] \xrightarrow{p} \mathbb{Z}/2 \longrightarrow 0$$

Then $\ker p = \langle 2, x \rangle$ by first isomorphism theorem. We can construct a surjection $q: \mathbb{Z}[x] \oplus \mathbb{Z}[x] \to \ker p$ by $(f,g) \mapsto 2f(x) + xg(x)$.

$$\mathbb{Z}[x] \oplus \mathbb{Z}[x] \xrightarrow{q} \ker p \longrightarrow 0$$

Since 2 and x are coprime in $\mathbb{Z}[x]$, for $(f,g) \in \ker q$, we have $f \in \langle x \rangle$ and $g \in \langle 2 \rangle$. So $\ker q = \langle x \rangle \oplus \langle 2 \rangle$. Finally it is easy to see that there is a bijection $r: \mathbb{Z}[x] \oplus \mathbb{Z}[x] \to \ker q$ given by $(f,g) \mapsto (xf,2g)$.

$$0 \longrightarrow \mathbb{Z}[x] \oplus \mathbb{Z}[x] \xrightarrow{r} \ker q \longrightarrow 0$$

Patching the three exact sequences together, we obtain the free resolution of $\mathbb{Z}/2$ as a $\mathbb{Z}[x]$ -module:

$$0 \longrightarrow \mathbb{Z}[x] \oplus \mathbb{Z}[x] \xrightarrow{r} \mathbb{Z}[x] \oplus \mathbb{Z}[x] \xrightarrow{q} \mathbb{Z}[x] \xrightarrow{p} \mathbb{Z}/2 \longrightarrow 0$$

4. We will have the same argument with part (3), constructing the following exact sequence

$$\frac{\mathbb{Z}[x]}{\langle 2x \rangle} \oplus \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{r} \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \oplus \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{q} \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{p} \mathbb{Z}/2 \xrightarrow{} 0$$

except that $r: (f,g) \mapsto (xf,2g)$ is no longer injective. As 2x = 0 in $\frac{\mathbb{Z}[x]}{(2x)}$, we have $\ker r = \langle 2 \rangle \oplus \langle x \rangle$.

Let $s: \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \oplus \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \to \ker r$ given by $(f,g) \mapsto (2f,xg)$. Then $\ker s = \langle x \rangle \oplus \langle 2 \rangle = \ker q$. We have

$$\frac{\mathbb{Z}[x]}{\langle 2x \rangle} \oplus \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{S} \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \oplus \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{r} \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \oplus \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{q} \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{p} \mathbb{Z}/2 \xrightarrow{} 0$$

$$\frac{\mathbb{Z}[x]}{\langle 2x \rangle} \oplus \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{S} \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \oplus \frac{\mathbb{Z}[x]}{\langle 2x \rangle} \xrightarrow{r} \ker s \longrightarrow 0$$

By patching the two sequences we obtain an unbounded free resolution for $\mathbb{Z}/2$ as a $\mathbb{Z}[x]/\langle 2x \rangle$ module:

$$\cdots \xrightarrow{S} R^2 \xrightarrow{r} R^2 \xrightarrow{S} R^2 \xrightarrow{r} R^2 \xrightarrow{r} R^2 \xrightarrow{q} R \xrightarrow{p} \mathbb{Z}/2 \xrightarrow{} 0$$
 where $R := \mathbb{Z}[x]/\langle 2x \rangle$.

Question 4

Let *R* be a commutative ring, $r \in R$, and $M \in R$ -Mod. Define $R[r^{-1}] := \frac{R[x]}{rx-1} = \operatorname{coker}(R[x] \xrightarrow{rx-1} R[x])$ and $M[r^{-1}] = \operatorname{coker}(R[x] \xrightarrow{rx-1} R[x])$ $\operatorname{coker}(M[x] \xrightarrow{rx-1} M[x])$ where $M[x] = \left\{ \sum_i m_i x^i \right\}$ is viewed naturally as an R[x]-module.

Show that $M \otimes_R R[r^{-1}] \simeq M[r^{-1}]$.

 \bigcirc *Proof.* We have the short exact sequence of *R*-modules

$$0 \longrightarrow \langle rx - 1 \rangle_{R[x]} \longrightarrow R[x] \longrightarrow R[r^{-1}] \longrightarrow 0$$

where $\langle rx-1\rangle_{R[x]}$ is the ideal of R[x] generated by (rx-1). Since the functor $M\otimes_R$ – is right exact, we have the following exact sequence

$$M \otimes_R \langle rx - 1 \rangle_{R[x]} \longrightarrow M \otimes_R R[x] \longrightarrow M \otimes_R R[r^{-1}] \longrightarrow 0$$

Similarly we have the short exact sequence of *R*-modules

$$0 \longrightarrow \langle rx - 1 \rangle_{M[x]} \longrightarrow M[x] \longrightarrow M[r^{-1}] \longrightarrow 0$$

where $\langle rx-1\rangle_{M[x]}$ is the submodule of M[x] generated by (rx-1). We can patch the two sequences together as follows

The homomorphisms α , β , γ are given by

$$\alpha: \qquad \sum_{i=1}^{n} m_{i} x^{i} (rx-1) \qquad \longmapsto \qquad \sum_{i=1}^{n} m \otimes_{R} x^{i} (rx-1)$$

$$\beta: \qquad \sum_{i=1}^{n} m_{i} x^{i} \qquad \longmapsto \qquad \sum_{i=1}^{n} m \otimes_{R} x^{i}$$

$$\gamma: \qquad \sum_{i=1}^{n} m_{i} r^{-i} \qquad \longmapsto \qquad \sum_{i=1}^{n} m_{i} \otimes_{R} r^{-i}$$

It is straight forward to check that γ is well-defined, everything is an R-module homomorphism, and the diagram above commutes.

It is trivial that β is injective. Every element in $M \otimes_R \langle rx - 1 \rangle_{R[x]}$ has the form $m \otimes_R \sum a_i x^i (rx - 1)$, where $m \in M$ and $a_i \in R$. Then we have

$$\alpha \left(\sum_{i=1}^{n} m a_i x^i (rx - 1) \right) = \sum_{i=1}^{n} a_i \alpha (m x^i (rx - 1)) = m \otimes_R \sum_{i=1}^{n} a_i x^i (rx - 1)$$

Hence α is surjective.

Now by the **Four Lemma** (a half of the five lemma), we conclude that γ is an isomorphism. So $M[r^{-1}] \cong M \otimes_R R[r^{-1}]$ as R-modules.

Question 5

Prove the general Frobenius reciprocity formula (Tensor-Hom adjunction):

 $\operatorname{Hom}_S(A,\operatorname{Hom}_R(B,C))\cong\operatorname{Hom}_R(A\otimes_S B,C)$. where A is a right S-module, B is an (S,R)-bimodule, and C is a right R-module.

O *Proof.* This is a very straightforward verification.

Let $\sigma \in \operatorname{Hom}_S(A, \operatorname{Hom}_R(B, C))$. σ defines a map $\widetilde{\sigma} : A \times B \to C$ by $\widetilde{\sigma}(a, b) := \sigma(a)(b)$. We note the $\widetilde{\sigma}$ defines a balanced product:

$$\widetilde{\sigma}(a+a',b) = \sigma(a+a')(b) = (\sigma(a)+\sigma(a'))(b) = \sigma(a)(b)+\sigma(a')(b) = \widetilde{\sigma}(a,b)+\widetilde{\sigma}(a',b)$$

$$\widetilde{\sigma}(a,b+b') = \sigma(a)(b+b') = \sigma(a)(b)+\sigma(a)(b') = \widetilde{\sigma}(a,b)+\widetilde{\sigma}(a,b')$$

$$\widetilde{\sigma}(as,b) = \sigma(as)(b) = (\sigma(a)s)(b) = \sigma(a)(sb) = \widetilde{\sigma}(a,sb)$$

By the universal property of $A \otimes_S B$, there exists a unique right R-module homomorphism $\varphi : A \otimes_S B \to C$ such

that $\sigma(a)(b) = \varphi(a \otimes_S b)$. We claim that $\sigma \mapsto \varphi$ defines an isomorphism of *Abelian groups*

$$F: \operatorname{Hom}_{\operatorname{\mathsf{Mod-}S}}(A, \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Mod-}R}}(B, C)) \to \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Mod-}R}}(A \otimes_S B, C)$$

The assignment $\sigma \mapsto \varphi$ trivially preserves addition. If $F(\sigma) = 0$, then $\sigma(a)(b) = 0$ for all $a \in A$ and $b \in B$. Hence $\sigma(a) = 0$ for all $a \in A$. Hence $\sigma = 0$. This implies that F is injective.

For $\varphi \in \operatorname{Hom}_{\operatorname{\mathsf{Mod-}} R}(A \otimes_S B, C)$, let $\sigma_a \colon b \mapsto \varphi(a \otimes_S b)$. Then we have

$$\sigma_a(br+b'r') = \varphi(a \otimes_S (br+b'r')) = \varphi((a \otimes_S b)r + (a \otimes_S b')r') = \varphi(a \otimes_S b)r + \varphi(a \otimes_S b')r' = \sigma_a(b)r + \sigma_a(b')r'$$

Hence $\sigma_a \in \operatorname{Hom}_{\operatorname{\mathsf{Mod-}} R}(B,C)$. Let $\sigma \colon a \mapsto \sigma_a$. Then we have

$$\sigma(as + a's')(b) = \varphi((as + a's') \otimes_S b) = \varphi(a \otimes_S sb) + \varphi(a' \otimes_S s'b) = \sigma(a)(sb) + \sigma(a')(s'b) = (\sigma(a)s + \sigma(a')s')(b)$$

Hence $\sigma \in \operatorname{Hom}_{\operatorname{Mod-}S}(A, \operatorname{Hom}_{\operatorname{Mod-}R}(B, C))$. We deduce that F is surjective.

Section C: Optional

Question 6

Show that every *R*-submodule of a free *R*-module *M* is free when *R* is a PID.

Proof. Let N be a R-submodule of M. Let X be a basis of M. We consider the set \mathcal{S} of triplets (Y, Z, b), where

- $Z \subseteq Y \subseteq X$:
- $N_Y := N \cap \bigoplus_{y \in Y} Ry$ is free;
- $b: Z \to N$ is a map such that im b is a basis of N_Y .

Equip $\mathcal S$ with the partial order

$$(Y, Z, b) \leq_{\mathscr{S}} (Y', Z', b') \iff (Y \subseteq Y') \land (Z \subseteq Z') \land (b'|_{Z} = b)$$

 \mathscr{S} is non-empty, as $(\varnothing,\varnothing,\varnothing)\in\mathscr{S}$. Let $\{(Y_i,Z_i,b_i)\}_{i\in I}$ be a chain in \mathscr{S} . Let $Y:=\bigcup_i Y_i,\ Z:=\bigcup_i Z_i$ and $b=\bigcup_i b_i$. We claim that $(Y,Z,b)\in\mathscr{S}$. Indeed $Z\subseteq Y$. The union im $b=\bigcup_i \operatorname{im} b_i$ is clearly linearly independent and spans N_Y . Hence N_Y is free.

Now by Zorn's Lemma, \mathcal{S} has a maximal element, which will be denoted again by (Y, Z, b). Hopefully it does not cause any ambiguity in the subsequent discussions.

We claim that Y = X. Suppose for contradiction that it is not. Then we take $x \in X \setminus Y$. Consider the ideal

$$I := \left\{ a \in R \colon \left(ax + \bigoplus_{y \in Y} Ry \right) \cap N \neq \emptyset \right\}$$

If $I = \{0\}$, then $N_{Y \cup \{x\}} = N \cap \left(\bigoplus_{y \in Y} Ry \oplus Rx\right) = N_Y$. We have $(Y, Z, b) <_{\mathscr{S}} (Y \cap \{x\}, Z, b)$. This is a contradiction.

Suppose that $I \neq \{0\}$. Since R is a PID, $I = \langle c \rangle$ for some $c \in R$. Pick

$$m = cx + \sum_{i} a_{i} y_{i} \in \left(cx + \sum_{y \in Y} Ry\right) \cap N$$

We claim that $N_{Y \cup \{x\}} = N_Y \oplus Rm$. For $n \in N_{Y \cup \{x\}}$, $n = \sum_j b_j y'_j + rx$ for some $b, b_i \in R$ and $y'_j \in Y$. Then by definition

 $r \in \langle c \rangle$. Let r = sc for some $s \in R$. Hence

$$n = \sum_{j} b_{j} y_{j}' + scx = sm + \left(\sum_{j} b_{j} y_{j}' - \sum_{i} a_{i} y_{i}\right) \in N_{Y} + Rm$$

It is clear that $N_Y \cap Rm = \{0\}$ as $Y \cup \{x\}$ is linearly independent. This proves our claim. Now we let $Z' = Z \cup \{x\}$, $Y' = Y \cup \{x\}$, and $b' : Z' \to N$ which satisfies $b'|_Z = b$ and b'(x) = m. We have $(Y, Z, b) <_{\mathscr{S}} (Y', Z', b')$. This is a contradiction.

In conclusion, we have
$$X = Y$$
. Hence $N_Y = N \cap \bigoplus_{y \in X} Rx = N$ is free. \Box