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Section A: Introductory

Question 1

Show thatQ is not a projective Z-module.

Proof. Suppose thatQ is a projective Z-module. Let F be the free Z-module generated by elements inQ, that is,

F := ⊕
x∈Q

Zx

Let π : F →Q be the canonical projection. SinceQ is projective, there exists s :Q→ F such that π◦ s = idQ.⊕
x∈Q

Zx

Q Q

π
∃! s

⊕
x∈Q

Zx

Q Z
f

πx
s

As s is injective, we can embed Q into F as a submodule. There exists x ∈ Q such that the projection πx : F →
Zex

∼=Z satisfies that f := πx ◦ s 6= 0. Let f (1) = m ∈Z\ {0}. We have 1 = m · f (1/m2), where both f (1/m2) ∈Z and

m ∈Z. This is a contradiction. Q is not a projective Z-module.

Section B: Core

Question 2

Write an injective resolution for Z as a Z-module.

Proof. Consider the short exact sequence

0 Z Q Q/Z 0

Since Z is a principal ideal domain, every divisible Z-module is injective. Hence Q and Q/Z are injective. There-

fore the short exact sequence gives an injective resolution for Z.

Question 3

Write free resolutions for:

1. Z/2 in Z-Mod,

2. Z/2 in (Z/2)[x]-Mod,

3. Z/2 in Z[x]-Mod,

4. Z/2 in Z[x]/〈2x〉-Mod.

Proof. 1. We know that the following sequence of Z-modules is exact:

0 Z Z Z/2 0×2 π

where Z is a free Z-module. The short exact sequence gives an injective resolution for Z/2 as a Z-module.

2. We know that the following sequence of (Z/2)[x]-modules is exact:

0 (Z/2)[x] (Z/2)[x] Z/2 0·x ev

α

α

α

soren
Notat
No, this is a free (and therefore projective) resolution.
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where π : (Z/2)[x] → Z/2 is the evaluation homomorphism induced by x 7→ 0. The short exact sequence

gives an injective resolution for Z/2 as a (Z/2)[x]-module.

3. First we consider the projection p : Z[x] →Z/2. It is easy to observe that Z/2 ∼= Z[x]

〈2, x〉 .

Z[x] Z/2 0
p

Then ker p = 〈2, x〉 by first isomorphism theorem. We can construct a surjection q : Z[x]⊕Z[x] → ker p by

( f , g ) 7→ 2 f (x)+xg (x).

Z[x]⊕Z[x] ker p 0
q

Since 2 and x are coprime in Z[x], for ( f , g ) ∈ ker q , we have f ∈ 〈x〉 and g ∈ 〈2〉. So ker q = 〈x〉⊕〈2〉. Finally

it is easy to see that there is a bijection r : Z[x]⊕Z[x] → ker q given by ( f , g ) 7→ (x f ,2g ).

0 Z[x]⊕Z[x] ker q 0r

Patching the three exact sequences together, we obtain the free resolution of Z/2 as a Z[x]-module:

0 Z[x]⊕Z[x] Z[x]⊕Z[x] Z[x] Z/2 0r q p

4. We will have the same argument with part (3), constructing the following exact sequence

Z[x]

〈2x〉 ⊕
Z[x]

〈2x〉
Z[x]

〈2x〉 ⊕
Z[x]

〈2x〉
Z[x]

〈2x〉 Z/2 0r q p

except that r : ( f , g ) 7→ (x f ,2g ) is no longer injective. As 2x = 0 in
Z[x]

〈2x〉 , we have kerr = 〈2〉⊕〈x〉.

Let s :
Z[x]

〈2x〉 ⊕
Z[x]

〈2x〉 → kerr given by ( f , g ) 7→ (2 f , xg ). Then ker s = 〈x〉⊕〈2〉 = ker q . We have

Z[x]

〈2x〉 ⊕
Z[x]

〈2x〉
Z[x]

〈2x〉 ⊕
Z[x]

〈2x〉
Z[x]

〈2x〉 ⊕
Z[x]

〈2x〉
Z[x]

〈2x〉 Z/2 0

Z[x]

〈2x〉 ⊕
Z[x]

〈2x〉
Z[x]

〈2x〉 ⊕
Z[x]

〈2x〉 ker s 0

r q ps

s r

By patching the two sequences we obtain an unbounded free resolution for Z/2 as a Z[x]/〈2x〉 module:

· · · R2 R2 R2 R2 R Z/2 0s r q prs

where R :=Z[x]/〈2x〉.

Question 4

Let R be a commutative ring, r ∈ R, and M ∈ R-Mod. Define R
[
r−1

]
:= R[x]

r x−1 = coker(R[x]
r x−1→ R[x]) and M

[
r−1

] =
coker(M [x]

r x−1→ M [x]) where M [x] = {∑
i mi xi

}
is viewed naturally as an R[x]-module.

Show that M ⊗R R
[
r−1

]' M
[
r−1

]
.

Proof. We have the short exact sequence of R-modules

0 〈r x −1〉R[x] R[x] R[r−1] 0

where 〈r x −1〉R[x] is the ideal of R[x] generated by (r x −1). Since the functor M ⊗R − is right exact, we have the

following exact sequence

α

soren
Notat
= ev?

soren
Notat
Very nice.
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M ⊗R 〈r x −1〉R[x] M ⊗R R[x] M ⊗R R[r−1] 0

Similarly we have the short exact sequence of R-modules

0 〈r x −1〉M [x] M [x] M [r−1] 0

where 〈r x −1〉M [x] is the submodule of M [x] generated by (r x −1). We can patch the two sequences together as

follows

〈r x −1〉M [x] M [x] M [r−1] 0

M ⊗R 〈r x −1〉R[x] M ⊗R R[x] M ⊗R R[r−1] 0

γβα

The homomorphisms α,β,γ are given by

α :
n∑

i=1
mi xi (r x −1)

n∑
i=1

m ⊗R xi (r x −1)

β :
n∑

i=1
mi xi

n∑
i=1

m ⊗R xi

γ :
n∑

i=1
mi r−i

n∑
i=1

mi ⊗R r−i

It is straight forward to check that γ is well-defined, everything is an R-module homomorphism, and the diagram

above commutes.

It is trivial that β is injective. Every element in M ⊗R 〈r x −1〉R[x] has the form m ⊗R
∑

ai xi (r x −1), where m ∈ M

and ai ∈ R. Then we have

α

(
n∑

i=1
mai xi (r x −1)

)
=

n∑
i=1

aiα(mxi (r x −1)) = m ⊗R

n∑
i=1

ai xi (r x −1)

Hence α is surjective.

Now by the Four Lemma (a half of the five lemma), we conclude that γ is an isomorphism. So M [r−1] ∼= M ⊗R

R[r−1] as R-modules.

Question 5

Prove the general Frobenius reciprocity formula (Tensor-Hom adjunction):

HomS (A,HomR (B ,C )) ∼= HomR (A⊗S B ,C ) . where A is a right S-module, B is an (S,R)-bimodule, and C is a right

R-module.

Proof. This is a very straightforward verification.

Let σ ∈ HomS(A,HomR (B ,C )). σ defines a map σ̃ : A ×B → C by σ̃(a,b) := σ(a)(b). We note the σ̃ defines a

balanced product:

σ̃(a +a′,b) =σ(a +a′)(b) = (σ(a)+σ(a′))(b) =σ(a)(b)+σ(a′)(b) = σ̃(a,b)+ σ̃(a′,b)

σ̃(a,b +b′) =σ(a)(b +b′) =σ(a)(b)+σ(a)(b′) = σ̃(a,b)+ σ̃(a,b′)

σ̃(as,b) =σ(as)(b) = (σ(a)s)(b) =σ(a)(sb) = σ̃(a, sb)

By the universal property of A ⊗S B , there exists a unique right R-module homomorphism ϕ : A ⊗S B → C such

α

soren
Notat
Yes - there is basically only one way of going about this.
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that σ(a)(b) =ϕ(a ⊗S b). We claim that σ 7→ϕ defines an isomorphism of Abelian groups

F : HomMod-S (A,HomMod-R (B ,C )) → HomMod-R (A⊗S B ,C )

The assignment σ 7→ ϕ trivially preserves addition. If F (σ) = 0, then σ(a)(b) = 0 for all a ∈ A and b ∈ B . Hence

σ(a) = 0 for all a ∈ A. Hence σ= 0. This implies that F is injective.

For ϕ ∈ HomMod-R (A⊗S B ,C ), let σa : b 7→ϕ(a ⊗S b). Then we have

σa(br +b′r ′) =ϕ(a ⊗S (br +b′r ′)) =ϕ((a ⊗S b)r + (a ⊗S b′)r ′) =ϕ(a ⊗S b)r +ϕ(a ⊗S b′)r ′ =σa(b)r +σa(b′)r ′

Hence σa ∈ HomMod-R (B ,C ). Let σ : a 7→σa . Then we have

σ(as +a′s′)(b) =ϕ((as +a′s′)⊗S b) =ϕ(a ⊗S sb)+ϕ(a′⊗S s′b) =σ(a)(sb)+σ(a′)(s′b) = (σ(a)s +σ(a′)s′)(b)

Hence σ ∈ HomMod-S (A,HomMod-R (B ,C )). We deduce that F is surjective.

Section C: Optional

Question 6

Show that every R-submodule of a free R-module M is free when R is a PID.

Proof. Let N be a R-submodule of M . Let X be a basis of M . We consider the set S of triplets (Y , Z ,b), where

• Z ⊆ Y ⊆ X ;

• NY := N ∩ ⊕
y∈Y

R y is free;

• b : Z → N is a map such that imb is a basis of NY .

Equip S with the partial order

(Y , Z ,b) ÉS (Y ′, Z ′,b′) ⇐⇒ (Y ⊆ Y ′)∧ (Z ⊆ Z ′)∧ (b′|Z = b)

S is non-empty, as (∅,∅,∅) ∈S . Let {(Yi , Zi ,bi )}i∈I be a chain in S . Let Y :=⋃
i Yi , Z :=⋃

i Zi and b =⋃
i bi . We

claim that (Y , Z ,b) ∈ S . Indeed Z ⊆ Y . The union imb = ⋃
i imbi is clearly linearly independent and spans NY .

Hence NY is free.

Now by Zorn’s Lemma, S has a maximal element, which will be denoted again by (Y , Z ,b). Hopefully it does not

cause any ambiguity in the subsequent discussions.

We claim that Y = X . Suppose for contradiction that it is not. Then we take x ∈ X \ Y . Consider the ideal

I :=
{

a ∈ R :

(
ax + ⊕

y∈Y
R y

)
∩N 6=∅

}

If I = {0}, then NY ∪{x} = N ∩
(⊕

y∈Y
R y ⊕Rx

)
= NY . We have (Y , Z ,b) <S (Y ∩ {x}, Z ,b). This is a contradiction.

Suppose that I 6= {0}. Since R is a PID, I = 〈c〉 for some c ∈ R. Pick

m = cx +∑
i

ai yi ∈
(

cx + ∑
y∈Y

R y

)
∩N

We claim that NY ∪{x} = NY ⊕Rm. For n ∈ NY ∪{x}, n =∑
j b j y ′

j +r x for some b,bi ∈ R and y ′
j ∈ Y . Then by definition
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r ∈ 〈c〉. Let r = sc for some s ∈ R. Hence

n =∑
j

b j y ′
j + scx = sm +

(∑
j

b j y ′
j −

∑
i

ai yi

)
∈ NY +Rm

It is clear that NY ∩Rm = {0} as Y ∪ {x} is linearly independent. This proves our claim. Now we let Z ′ = Z ∪ {x},

Y ′ = Y ∪ {x}, and b′ : Z ′ → N which satisfies b′|Z = b and b′(x) = m. We have (Y , Z ,b) <S (Y ′, Z ′,b′). This is a

contradiction.

In conclusion, we have X = Y . Hence NY = N ∩ ⊕
y∈X

Rx = N is free.




