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Question 1

The smooth function f :R2 →R is given by f (x, y) = cos2πx +cos2πy . Determine and classify the critical points of f .

A torus T is formed by identifying opposite edges of [0,1]× [0,1] so that f induces a smooth function on T. Use it to verify that
χ(T ) = 0.

Proof. Note that f is doubly periodic:
∀x, y ∈R f (x +1, y) = f (x, y +1) = f (x, y)

Hence f induces a smooth function on T 2 = [0,1]2/ ∼.

The gradient of f is ∇ f = (−2πsin2πx,−2πsin2πy). The Hessian matrix is

H(x, y) =
(
−4π2 cos2πx 0

0 −4π2 cos2πy

)

At the critical points,

∇ f = 0 ⇐⇒ sin2πx = sin2πy = 0 ⇐⇒ x = n

2
∧ y = m

2
, n,m ∈Z

Hence there are 4 critical points in [0,1)2: (0,0),

(
0,

1

2

)
,

(
1

2
,0

)
,

(
1

2
,

1

2

)
. The Hessian matrix at each point is given respectively

by

H(0,0) =−4π2

(
1 0
0 1

)
, H

(
0,

1

2

)
=−4π2

(
1 0
0 −1

)
, H

(
1

2
,0

)
=−4π2

(
−1 0
0 1

)
, H

(
1

2
,

1

2

)
=−4π2

(
−1 0
0 −1

)

Hence (0,0) and

(
1

2
,

1

2

)
are local extrema.

(
0,

1

2

)
and

(
1

2
,0

)
are saddles.

Therefore the Euler characteristic of the torus is χ(T 2) = 1−2+1 = 0.

Question 2

Prove that along a geodesic γ on a surface of revolution the product ρ sinϕ is constant, where ρ(s) is the distance from γ(s)
to the axis of revolution, and ϕ(s) is the angle between γ′(s) and the meridian through γ(s). Prove that on the ellipsoid of
revolution obtained by rotating x2/a2 + y2/b2 = 1 about the x-axis, every geodesic which is not a meridian remains always
between two parallels of latitude.

[On a surface of revolution r(u, v) = (u, f (u)cos v, f (u)sin v) the meridians are given by v = constant and the parallels of
latitude by u = constant].

Proof. From a physical approach, we note that the geodesic locally minimises the distance between two points on the surface. By
the principle of least action, the geodesic satisfies the Euler-Lagrange equation, so it is the path of a free particle on the
surface. Since the surface is azimuthally symmetric, by Noether’s Theorem the angular momentum Lx along the axis of
revolution is conserved. From classical mechanics we know that

Lx = (mγ(s)×γ ′(s)) ·ex = m(ex ×γ(s)) ·γ ′(s) = mρ sinϕ

The last equality follows from that ex ×γ(s) is along the parallel of latitude through γ(s). Hence ρ sinϕ is constant along the
geodesic γ.

The constant paths at the north and the south pole are parallels of latitude. So it suffices the prove that any geodesic passing
through one of the poles is a meridian. But this is trivially true by the uniqueness of geodesic.

Question 3

Let H be the upper half plane model of the hyperbolic plane and let L be a geodesic in H . Find the locus of all points
equidistant from L.
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[Hint: First consider the geodesic
{(

0,e−t
)

: t ∈R}
and find the images of a point P with respect to all isometries mapping the

geodesic to itself.]

Proof. Recall that the isometry group Isom(H) of the hyperbolic planeH is generated by the Möbius transformations

Möb(H) :=
{

z 7→ az +b

cz +d
: a,b,c,d ∈R, ad −bc = 1

}
and the reflection z 7→ −z. Recall also that the geodesics on the hyperbolic plane are (in the Euclidean sense) lines perpen-
dicular to the x-axis and semi-circles centred on the x-axis.

First we consider the geodesic L0 = {(0, y) : y > 0}. We need to determine the stabliser of L0 under the action of Isom(H) on
the set of geodesics ofH.

Suppose that z 7→ az +b

cz +d
fixes L0. Then

∀ y > 0 Re

(
ay i+b

c y i+d

)
= 0 =⇒ ac y2 +bd = 0 =⇒ ac = bd = 0

Since ad −bc = 1, we have either a = d = 0 and bc =−1, or b = c = 0 and ad = 1. Therefore Stab(L0)∩Möb(H) is generated by

da : z 7→ az (a > 0), i : z 7→ −1

z

In addition, the reflection r : z 7→ −z clearly fixes L0. Therefore Stab(L0) is generated by the two above transformations and
the reflection.

For ϕ ∈ Stab(L0), we know that for P ∈H,

d(P,L0) = d(ϕ(P ),ϕ(L0)) = d(ϕ(P ),L0)

Therefore the set of points whose distance to L0 are equal to d(P,L0) is exactly {ϕ(P ) : ϕ ∈ Stab(L0)}. Suppose that P = c eiθ

where c > 0 and θ ∈ (0,π). Then

da(P ) = ac eiθ , i (P ) = 1

c
ei(π−θ), r (P ) = c ei(π−θ)

Hence {ϕ(P ) :ϕ ∈ Stab(L0)} is the rays {k eiθ : k > 0} and {k ei(π−θ) : k > 0}.

Suppose that the geodesic L is a straight line {(a, y) : y > 0} where a ∈ R. Then L = τa(L0), where τa : z 7→ z +a is an isometry
ofH. Since this is a simple translation, we immediately observe that the loci of all points equidistant from L are the rays inH
starting from a ∈R.

Suppose that the geodesic L is a semi-circle {z ∈H : |z −a| = r } where a ∈R and r > 0. We consider a Möbius transformation
ψ such that ψ(0) = r and ψ(∞) =−r . Then

ψ(z) = 1

2r

z − r

z + r
∈ Möb(H)

Then τa ◦ψ is an isometry of H which maps L0 to L. From this Möbius transformation we also observe that all rays starting
from the origin are mapped to circular arcs that pass through a−r and a+r . We deduce that the loci of all points equidistant
from L are the circular arcs inH passing through a − r and a + r .

Question 4

A hyperbolic triangle has angles α,β,γ, respectively, and opposite sides of lengths a,b,c, respectively. By using the hyperbolic
"cos" formula

coshc = cosh a coshb − sinh a sinhb cosγ

applied to relevant right angled triangles, or otherwise, show that

sinh a

sinα
= sinhb

sinβ
= sinhc

sinγ
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Proof. Using the cosine rule,

sinh2 a sinh2 b cos2γ= (coshc −cosh a coshb)2

= cosh2 c +cosh2 a cosh2 b −2cosh a coshb coshc

=⇒ sinh2 a sinh2 b sin2γ= sinh2 a sinh2 b − (
cosh2 c +cosh2 a cosh2 b −2cosh a coshb coshc

)
= (

cosh2 a −1
)(

cosh2 b −1
)− (

cosh2 c +cosh2 a cosh2 b −2cosh a coshb coshc
)

= 1− (
cosh2 a +cosh2 b +cosh2 c +2cosh a coshb coshc

)
The final formula is symmetric in a,b,c. We deduce that

sinh2 a sinh2 b sin2γ= sinh2 b sinh2 c sin2α= sinh2 c sinh2 a sin2β

Hence
sinh2 a

sin2α
= sinh2 c

sin2γ
= sinh2 b

sin2β

Since all sine and hyperbolic sine are positive, we conclude that

sinh a

sinα
= sinhb

sinβ
= sinhc

sinγ

Question 5

Show that if a hyperbolic triangle is right-angled, with γ = π/2, then coshc = cosh a coshb and use this to prove that in a
hyperbolic triangle the length c of the hypotenuse is always longer than the corresponding Euclidean result

p
a2 +b2.

Proof. By cosine rule,
coshc = cosh a coshb − sinh a sinhb cosγ

Since γ=π/2, the equation reduces to
coshc = cosh a coshb

Next, consider the expansion of cosh
p

a2 +b2:

cosh
√

a2 +b2 =
∞∑

n=0

1

(2n)!
(a2 +b2)n

=
∞∑

n=0

n∑
k=0

1

(2n)!

(
n

k

)
a2k b2(n−k)

=
∞∑

n=0

∞∑
k=0

1

(2(n +k))!

(
n +k

k

)
a2k b2n (by absolute convergence)

=
∞∑

n=0

∞∑
k=0

(n+k
k

)(2(n+k)
2k

) a2k

(2k)!

b2n

(2n)!

<
∞∑

n=0

∞∑
k=0

a2k

(2k)!

b2n

(2n)!
(since

(
n +k

k

)
<

(
2(n +k)

2k

)
)

= cosh a coshb

= coshc

Since cosh is increasing on R+, we deduce that c >
p

a2 +b2.


