Peize Liu St. Peter's College University of Oxford

Problem Sheet 1 C2.6: Introduction to Schemes

Question 1

- i) For ring R, and radical ideals $\mathfrak{a}, \mathfrak{b} \subseteq R$, prove that $\mathfrak{a} \subseteq \mathfrak{b} \iff \mathbb{V}(\mathfrak{a}) \supset \mathbb{V}(\mathfrak{b})$.
- ii) Show that the presheaf of constant real functions is not a sheaf on X when X = 2 points with the discrete topology.
- iii) Show that the sheafification of the presheaf of constant functions is the sheaf of locally constant functions. (Optional: What happens in the case $X = \mathbb{Q}$?)
- iv) Show that a scheme X is irreducible \iff every non-empty open subset is dense.
- v) Show that *R* is Noetherian \implies every subset of Spec *R* is quasi-compact.

i) The direction " \Longrightarrow " is trivial. For the " \Longleftrightarrow " direction, suppose that $\mathbb{V}(\mathfrak{b}) \subseteq \mathbb{V}(\mathfrak{a})$ and $a \not\subseteq b$. Then we pick Proof. $r \in \mathfrak{a}$ such that $r \notin \mathfrak{b}$. Then $r \neq 0 \in R/\mathfrak{b}$. Since \mathfrak{b} is a radical ideal, the nilradical Nil $(R/\mathfrak{b}) = \{0\}$ So there exists $\mathfrak{p} \in \operatorname{Spec} R$ such that $\mathfrak{b} \subseteq \mathfrak{p}$ and $r \notin \mathfrak{p}$. The condition $\mathbb{V}(\mathfrak{b}) \subseteq \mathbb{V}(\mathfrak{a})$ implies that $\mathfrak{a} \subseteq \mathfrak{p}$. So $r \in \mathfrak{a}$ implies that $r \in \mathfrak{p}$. We obtain a contradication. Therefore we have $\mathfrak{a} \subseteq \mathfrak{b}$.

- ii) Let $F: \mathsf{Top}X \to \mathsf{Ab}$ be the presheaf of constant functions on X. Let $s_1 \in F(\{1\})$ and $s_2 \in F(\{2\})$ be the realvalued functions such that $s_1(1) = 1 \neq 2 = s_2(2)$. Then $\{s_1, s_2\}$ agrees on the overlap $\{1\} \cap \{2\} = \emptyset$. But if there exists $s \in F(X) = F(\{1\} \cup \{2\})$ such that $s|_1 = s_1$ and $s|_2 = s_2$, then s is not constant on $\{1,2\}$. So F is not a sheaf.
- iii) Let $F: \mathsf{Top}X \to \mathsf{Ab}$ be the presheaf of constant functions on X. Let F^+ be the sheafification of F. Let U be open in X and $s: U \to \bigsqcup_{x \in U} F_x$ in $F^+(U)$. By definition, for any $x \in U$, there exist $V \subseteq U$ with $x \in V$ and $t \in F(V)$ such that $s(y) = t_v \in F_v$ for all $y \in V$. Since $t \in F(V)$ is a constant function, $t : V \to \mathbb{R}$ is given by $t(y) = c_V$ for some $c_V \in \mathbb{R}$. Hence $s(y) = t_V = c_V$ for $y \in V$. That is, s is constant on V, which is an open neighbourhood of x. That proves that s is a locally constant function. We deduce that F^+ is the sheaf of locally constant functions.
- iv) The statement is true for any topological space X.

If X is reducible, then $X = X_1 \cup X_2$ for closed sets $X_1, X_2 \subsetneq X$. Then $X \setminus X_1$ is a non-empty open set of X. The closure

$$\overline{X_1 \setminus X_1} \subseteq X_2 \subsetneq X$$

since X_2 is closed. So $X \setminus X_1$ is not dense in X. Conversely, suppose that X has a non-empty non-dense open subset *U*. Then $\overline{U} \neq X$. We have $X = \overline{U} \cup (X \setminus U)$. So *X* is reducible.

v) Let $\{\mathfrak{p}_i\}_{i\in I}\subseteq\operatorname{Spec} R$. We claim that there exists $i_1,...,i_n\in I$ such that

$$\sum_{i \in I} \mathfrak{p}_i = \sum_{k=1}^n \mathfrak{p}_{i_k}$$

Since R is Noetherian, $\sum_{i \in I} \mathfrak{p}_i$ is finitely generated. Let $r_1, ..., r_n \in R$ be the generators. For each r_k , since $r_k \in \sum_{i \in I} \mathfrak{p}_i$, we have $r_k = \sum_{j=1}^{\ell_k} s_j$, where $s_j \in \mathfrak{p}_j$ for some $j \in I$. Therefore, by relabeling, we may assume that $r_1, ..., r_n$ generates $\sum_{i \in I} \mathfrak{p}_i$, where each $r_k \in \mathfrak{p}_{i_k}$. This proves our claim.

Let $A \subseteq \operatorname{Spec} R$. We shall prove that A is compact¹. Suppose that $\{U_i\}_{i\in I}$ is an open cover of A. Let $\mathbb{V}(\mathfrak{p}_i) :=$ Spec $R \setminus U_i$. Then $\bigcap_{i \in I} \mathbb{V}(\mathfrak{p}_i) \cap A = \emptyset$. But

$$\bigcap_{i \in I} \mathbb{V}(\mathfrak{p}_i) = \mathbb{V}\left(\sum_{i \in I} \mathfrak{p}_i\right) = \mathbb{V}\left(\sum_{k=1}^n \mathfrak{p}_{i_k}\right) = \bigcap_{k=1}^n \mathbb{V}(\mathfrak{p}_{i_k})$$

So $\bigcap_{k=1}^{n} \mathbb{V}(\mathfrak{p}_{i_k}) \cap A = \emptyset$. In order words, $\{U_{i_1},...,U_{i_n}\}$ is a finite subcover. Hence A is compact.

yes but something in geometry over a people don't sparter man they're thinkeling about a given space: algebraic is analytic. Using prosi-compact helps.

 $^{^{1}}$ I shall use compact for quasi-compact as these words mean the same thing (Hausdorff property is not a part of the definition of compactness.)

Question 2

Let (X, \mathcal{O}_X) be a scheme. For $s \in \mathcal{O}_X(U)$, show that $s_x = 0 \in \mathcal{O}_{X,x}$ for all x implies that s = 0. Prove that X is reduced \iff all stalks $\mathcal{O}_{X,x}$ are reduced.

Proof. For each $x \in U$, since $s_x = 0 \in \mathcal{O}_{X,x}$, there exists open $W \subseteq U$ with $x \in W$ such that $s|_W = 0|_W = 0$. The local-to-global condition of sheaf \mathcal{O}_X suggests that s = 0.

Suppose that *X* is reduced. Then for each open set *U*, $\mathcal{O}_X(U)$ is a reduced ring. The stalk at $x \in X$ is the ring

$$\mathcal{O}_{X,x} = \varinjlim_{U \ni x} \mathcal{O}_X(U)$$

To prove that $\mathcal{O}_{X,x}$ is reduced, we simply need to prove that the direct limit of a directed system of reduced rings is reduced. This follows from Exercise 2.22 of *Atiyah & MacDonald*. Let us write out the details.

For $U \ni x$, let $\varphi_U : \mathscr{O}_X(U) \to \mathscr{O}_{X,x}$ be the natural map. Suppose that $\alpha \in \operatorname{Nil}(\mathscr{O}_{X,x})$. Then there exists open $U \subseteq X$ and $\beta \in \mathscr{O}_X(U)$ such that $\alpha = \varphi_U(\beta)$. If $\alpha^n = 0$, then $\varphi(\beta^n) = 0$. Hence there exists open $V \subseteq U$ such that the restriction map $\rho_{UV} : \mathscr{O}_X(U) \to \mathscr{O}_X(V)$ satisfies that $\rho_{UV}(\beta^n) = \rho_{UV}(\beta)^n = 0$. Since $\operatorname{Nil}(\mathscr{O}_X(V)) = \{0\}$, we have $\rho_{UV}(\beta) = 0$. But this implies that $\alpha = \varphi_U(\beta) = \varphi_V \circ \rho_{UV}(\beta) = 0$. Hence $\operatorname{Nil}(\mathscr{O}_{X,x}) = \{0\}$. $\mathscr{O}_{X,x}$ is reduced as claim.

$$\mathscr{O}_{X}(U) \xrightarrow{\rho_{UV}} \mathscr{O}_{X}(V)$$

$$\varphi_{U} \swarrow \varphi_{V}$$

$$\mathscr{O}_{X,x}$$

Conversely, suppose that all stalks of \mathcal{O}_X are reduced. Let $U \subseteq X$ be an open set, and let $s \in \text{Nil}(\mathcal{O}_X(U))$. Then $s^n = 0$ for some $n \in \mathbb{N}$. Under the natural map we have $s_x^n = \varphi_{U,x}(s^n) = 0$ for all $x \in U$. Since $\mathcal{O}_{X,x}$ is reduced, we have $s_x = 0$ for all $x \in U$. By the first part we have s = 0. Hence $\mathcal{O}_X(U)$ is reduced. We conclude that the scheme X is reduced.

Question 3

Let $X = \operatorname{Spec} R$. Prove that

- i) X is irreducible \iff R has a unique minimal prime \mathfrak{p} (hint: nilradical) \iff X has a unique generic point \mathfrak{p} .
- ii) X is reduced and irreducible \iff R is an integral domain (you may assume as known that localisation preserves the "reduced" property)

Proof. i) We prove the first equivalence. Let Nil(R) be the nilradical of R. By definition it is contained in every prime ideal of R. Then R has a unique minimal prime ideal if and only if Nil(R) is prime.

Suppose that Nil(R) is not prime. Then there exist $r, s \notin Nil(R)$ such that $rs \in Nil(R)$. Then $\langle rs \rangle \subseteq Nil(R)$, and

$$\operatorname{Spec} R = \mathbb{V}(\langle rs \rangle) = \mathbb{V}(\langle r \rangle \langle s \rangle) = \mathring{\mathbb{V}}(r) \cup \mathbb{V}(s)$$

Since V(r) and V(s) are proper closed subsets of Spec R, Spec R is reducible.

Conversely, suppose that Spec R is reducible. Then there exist $\mathfrak{p}_1,\mathfrak{p}_2\in\operatorname{Spec} R$ such that $X=\mathbb{V}(\mathfrak{p}_1)\cup\mathbb{V}(\mathfrak{p}_2)$ and $\mathbb{V}(\mathfrak{p}_1),\mathbb{V}(\mathfrak{p}_2)\neq X$. So there exist $r_1\in\mathfrak{p}_1$ and $r_2\in\mathfrak{p}_2$ such that $r_1,r_2\notin\operatorname{Nil}(R)$. But note that

$$X = \mathbb{V}(\mathfrak{p}_1) \cup \mathbb{V}(\mathfrak{p}_2) = \mathbb{V}(\mathfrak{p}_1 \cap \mathfrak{p}_2) \Longrightarrow \mathfrak{p}_1 \cap \mathfrak{p}_2 = \mathrm{Nil}(R)$$

So $r_1r_2 \in \mathfrak{p}_1 \cap \mathfrak{p}_2 = \operatorname{Nil}(R)$. Hence $\operatorname{Nil}(R)$ is not prime.

The second equivalence is tautological:

$$X$$
 has a unique generic point $\mathfrak{p} \iff \mathbb{V}(\mathfrak{p}) = X$
 $\iff \forall \, \mathfrak{q} \in \operatorname{Spec} R \colon \, \mathfrak{p} \subseteq \mathfrak{q}$
 $\iff R$ has a unique minimal prime ideal \mathfrak{p}

ii) First we note that reducedness is a local property. That is, R is reduced if and only if R_p is reduced for each $p \in \operatorname{Spec} R$. Let us prove this as a revision of commutative algebra.

crese of ser

Suppose that R is not reduced. Let $x \in \text{Nil}(R) \setminus \{0\}$. Consider the annihilator $\text{Ann}_R(x) := \{y \in R : xy = 0\}$ which is an ideal of R. Since $1 \notin \text{Ann}_R(x)$, there exists a maximal ideal \mathfrak{m} such that $\text{Ann}_R(x) \subseteq \mathfrak{m}$. Let $\varphi : R \to R_{\mathfrak{m}}$ be the natural map sending r to r/1. Suppose that $\varphi(x) = 0$. There there exists $y \notin \mathfrak{m}$ such that xy = 0, which is impossible by our construction. Hence $\varphi(x) \neq 0$. Since x is nilpotent, $x^n = 0$ for some $n \in \mathbb{N}$. Hence $\varphi(x)^n = 0$ and $\varphi(x) \in \text{Nil}(R_{\mathfrak{m}}) \setminus \{0\}$. The localisation $R_{\mathfrak{m}}$ is not reduced.

Conversely, suppose that R is reduced. For each $\mathfrak{p} \in \operatorname{Spec} R$, let $\varphi : R \to R_{\mathfrak{p}}$ be the natural map. By Corollary 3.3 of *Atiyah & MacDonald*, $\operatorname{Nil}(R_{\mathfrak{p}}) = \varphi(\operatorname{Nil}(R)) = \varphi(\{0\}) = \{0\}$. Hence $R_{\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in \operatorname{Spec} R$.

Return to the question. From Question 2 we have

X is reduced $\iff \mathcal{O}_{X,\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in X \iff R_{\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in \operatorname{Spec} R \iff R$ is reduced

Now we note from part (i) that X is reduced and irreducible if and only if $Nil(R) = \{0\}$ and it is prime. But since $R \cong R/\{0\}$, then R is an integral domain if and only if $\{0\}$ is a prime ideal. We thus finish the proof. \square

Question 4

Let (X, \mathcal{O}) be a scheme.

i) If R is a local ring, show that

$$\operatorname{Mor}(\operatorname{Spec} R, X) \xrightarrow{1:1} \bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{local rings}}(\mathscr{O}_{x}, R)$$

Hint: for φ : $m \mapsto x$ show that $x \in \overline{\varphi(p)}$ for any p.

ii) If K is a field, show that Mor(Spec K, X) and

$$\operatorname{Mor}(\operatorname{Spec} K, X) \xleftarrow{1:1} \bigsqcup_{x \in X} \{ \text{field extensions } \kappa(x) \hookrightarrow K \}$$

 $(\kappa(x) := \mathcal{O}_x/\mathfrak{m}_x$, where \mathfrak{m}_x is the unique maximal ideal of \mathcal{O}_x .)

iii) The **Zariski tangent space** at x is defined as $T_x = (\mathfrak{m}_x/\mathfrak{m}_x^2)^*$ (dual over the field $\kappa(x) = \mathcal{O}_x/\mathfrak{m}_x$). Let X be a scheme over a field k, meaning that we are given a morphism $X \to \operatorname{Spec} k$. Convince yourself that this means that locally X is the Spec of a k-algebra, not just the Spec of a ring. Show that

$$\operatorname{Mor}(\operatorname{Spec}(k[\varepsilon]/\varepsilon^2), X) \overset{1:1}{\longleftrightarrow} \bigsqcup_{\substack{x \in X : \kappa(x) \cong k \\ \text{as } k\text{-algebras}}} \operatorname{T}_x$$

(On the LHS, we mean morphisms of schemes over k, so they commute with maps to Spec k, and maps of sheaves are k-algebra homomorphisms.)

Remark. If locally X is the Spec of finitely generated k-algebras, and k is algebraically closed, then $\kappa(x) \cong k$ at closed points $x \in X$.

Comment on what happens for $X = \operatorname{Spec}(k[x]/x^2)$. (*Compare Sec. 0.2 of Notes.*)

Proof. i) Recall that a morphism of schemes from Spec R to X is $(f, f^{\#})$, where $f : \operatorname{Spec} R \to X$ is continuous, and $f^{\#} : \mathscr{O} \to f_{*}\mathscr{O}_{\operatorname{Spec} R}$ is a morphism of sheaves of rings, and for each $\mathfrak{p} \in \operatorname{Spec} R$, the map $f^{\#}_{\mathfrak{p}} : \mathscr{O}_{f(\mathfrak{p})} \to \mathscr{O}_{\operatorname{Spec} R, \mathfrak{p}} = R_{\mathfrak{p}}$ is a homomorphism of local rings.

Let \mathfrak{m} be the maximal ideal of R. First we note that the natural map $\varphi: R \to R_{\mathfrak{m}}$ is a local ring isomorphism, because $R \setminus \mathfrak{m}$ is the set of units of R. If $(f, f^{\#})$ is a scheme morphism from Spec R to X, then at $f(\mathfrak{m})$, we have the local ring homomorphism $f_{\mathfrak{m}}^{\#}: \mathcal{O}_{f(\mathfrak{m})} \to R_{\mathfrak{m}} \cong R$. Hence $(f, f^{\#})$ determines $(f(\mathfrak{m}), f_{\mathfrak{m}}^{\#}) \in \coprod_{X \in X} \operatorname{Hom}_{\operatorname{local rings}}(\mathcal{O}_{X}, R)$. We denote the map $(f, f^{\#}) \mapsto ((f(\mathfrak{m}), f_{\mathfrak{m}}^{\#}))$ by \mathscr{F} .

On the other hand, we fix $x \in X$ and let $\rho : \mathcal{O}_X \to R$ be a local ring homomorphism. Let U be an open neighbourhood of x. Since (X,\mathcal{O}) is a scheme, $(U,\mathcal{O}|_U) \cong (S,\operatorname{Spec} S)$ as locally ringed spaces for some ring S. On the stalk of x we have the local ring isomorphism $\sigma_{x}^{\#} : S_{\mathfrak{q}} = \mathcal{O}_x$ where $\mathfrak{q} \in \operatorname{Spec} S$. Consider the composition

the stalk of x we have the local ring isomorphism $\sigma_x^\#: S_\mathfrak{q} \to \mathscr{O}_x$ where $\mathfrak{q} \in \operatorname{Spec} S$. Consider the composition ring homomorphism $\psi\colon S \xrightarrow{\varphi} S_\mathfrak{q} \xrightarrow{\sigma_x^\#} \mathscr{O}_x \xrightarrow{p} R$. Then ψ induces a morphism of locally ringed spaces $(\widetilde{f},\widetilde{f}^\#)$ from $\operatorname{Spec} R$ to $U \subseteq X$. We denote the map $(x,\rho) \mapsto (\widetilde{f},\widetilde{f}^\#)$ by \mathscr{G} .

It remains to show that $\mathcal{F} \circ \mathcal{G} = \mathrm{id}$ and $\mathcal{G} \circ \mathcal{F} = \mathrm{id}$.

Let $(\widetilde{f}(\mathfrak{m}), \widetilde{f}_{\mathfrak{m}}^{\#}) = \mathscr{F} \circ \mathscr{G}(x, \rho)$. We shall show that $\widetilde{f}(\mathfrak{m}) = x$ and $\widetilde{f}_{\mathfrak{m}}^{\#} = \rho$. Note that the homeomorphism $\sigma : U \to \operatorname{Spec} S$ sends x to \mathfrak{q} . On the stalks, $\widetilde{f} = \sigma^{-1} \circ \operatorname{Spec} \psi$ becomes the map $\rho \circ \sigma_x : S_{\mathfrak{q}} \to R \cong R_{\mathfrak{m}}$. So

$$\widetilde{f}(\mathfrak{m}) = \sigma^{-1} \circ (\operatorname{Spec} \psi)(\mathfrak{m}) = \sigma^{-1}(\mathfrak{q}) = x$$

And

$$\widetilde{f}_{\mathfrak{m}}^{\#}=\psi_{\mathfrak{m}}^{\#}\circ(\sigma^{-1})_{\mathfrak{q}}^{\#}=\rho\circ\sigma_{x}^{\#}\circ(\sigma^{-1})_{\mathfrak{q}}^{\#}=\rho$$

Let $(\widetilde{f}, \widetilde{f}^{\#}) = \mathcal{G} \circ \mathcal{F}(f, f^{\#})$. We shall show that $f = \widetilde{f}$ and $f^{\#} = \widetilde{f}^{\#}$. Let $x = f(\mathfrak{m})$. For any $\mathfrak{p} \in \operatorname{Spec} R$, since $\mathfrak{m} \in \overline{\{\mathfrak{p}\}} = \mathbb{V}(\mathfrak{p})$, we have

$$x = f(\mathfrak{m}) \in f(\overline{\{\mathfrak{p}\}}) \subseteq \overline{\{f(\mathfrak{p})\}}$$

We claim that $f(\operatorname{Spec} R) \subseteq U$ for any open neighbourhood U of x. Suppose not. There is $\mathfrak{p} \in \operatorname{Spec} R$ such that $f(\mathfrak{p}) \in X \setminus U$. Note that $X \setminus U$ is closed. Therefore

$$x \in \overline{\{f(\mathfrak{p})\}} \subseteq X \setminus U$$

which is a contradication. Next we fix U as in the definition of \widetilde{f} (so we also fix an isomorphism $\sigma: U \to \operatorname{Spec} S$.) Then $\sigma \circ f$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$. Since the functor $\operatorname{Spec} S$. Ring $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$. Since the functor $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$. Since the functor $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of local ringed spaces from $\operatorname{Spec} S$ is a

$$(\operatorname{Spec} \xi)_{\mathfrak{m}}^{\#} \circ \varphi(s) = (\operatorname{Spec} \xi)_{\mathfrak{m}}^{\#} \left(\frac{s}{1}\right) = \frac{\xi(s)}{\xi(1)} = \xi(s)$$

We conclude that there is a bijective correspondence:

$$\operatorname{Mor}(\operatorname{Spec} R, X) \stackrel{1:1}{\longleftrightarrow} \bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{local rings}}(\mathcal{O}_x, R)$$

ii) We note that for a field K, the prime specturm $\operatorname{Spec} K = \{\{0\}\}$, K is a local ring with maximal ideal $\{0\}$. Suppose that $\varphi : \mathcal{O}_x \to K$ is a local ring homomorphism. Then by definition $\ker \varphi = \varphi^{-1}(\{0\}) = \mathfrak{m}_x$. By the universal property of quotient ring, there exists a unique ring homomorphism $\psi : \kappa(x) := \mathcal{O}_x/\mathfrak{m}_x \to K$ such that $\psi \circ \pi = \varphi$.

$$\begin{array}{ccc}
\mathcal{O}_x & \xrightarrow{\varphi} & K \\
\pi \downarrow & & \exists ! \psi
\end{array}$$

Since $\ker \varphi \neq \mathcal{O}_x$, $\psi \neq 0$. Hence $\psi : \kappa(x) \to K$ is a field extension. Furthermore, the assignment $\varphi \mapsto \psi$ is bijective. Hence we have the bijective correspondence

$$\bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{local\,rings}}(\mathscr{O}_x,K) \overset{1:1}{\longleftrightarrow} \bigsqcup_{x \in X} \{ \text{field extensions } \kappa(x) \hookrightarrow K \}$$
 Combining with the result of (i), we obtain the claimed correspondence of (ii).

iii) First, we claim that $R := k[\varepsilon]/\langle \varepsilon^2 \rangle$ is a local ring with maximal ideal $\langle \varepsilon \rangle$. Let $\mathfrak{p} \in \operatorname{Spec} k[\varepsilon]$ such that $\pi(\mathfrak{p}) \neq 0 \in \operatorname{Spec} k[\varepsilon]$ *R*. Then $\langle \varepsilon^2 \rangle \subseteq \mathfrak{p}$. Since \mathfrak{p} is prime, $\varepsilon \in \mathfrak{p}$. Hence $\langle \varepsilon \rangle \subseteq \pi(\mathfrak{p})$. But $\langle \varepsilon \rangle$ is maximal in *R*, because $R/\langle \varepsilon \rangle \cong k$ is a field. Hence $\mathfrak{p} = \langle \varepsilon \rangle \in \operatorname{Spec} R$. We deduce that *R* is local, and $\operatorname{Spec} R = \{\langle \varepsilon \rangle\}$.

Let $\operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x,R)$ be the set of maps $\varphi:\mathscr{O}_x\to R$ which are both k-algebra homomorphisms and local ring homomorphisms. Let $x \in X$ such that $\kappa(x) \cong k$ as k-algebras. We claim that there is a bijective correspondence:

$$\operatorname{Hom}_{\operatorname{loc}}^{k}(\mathscr{O}_{x},R) \longleftrightarrow \operatorname{Hom}_{\kappa(x)}(\mathfrak{m}_{x}/\mathfrak{m}_{x}^{2},\kappa(x)) =: (\mathfrak{m}_{x}/\mathfrak{m}_{x}^{2})^{\vee}$$

Let $\varphi \in \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R)$. by definition $\varphi(\mathfrak{m}_x) \subseteq \varepsilon$. Then $\varphi(\mathfrak{m}_x^2) \subseteq \langle \varepsilon \rangle^2 = \langle \varepsilon^2 \rangle = \{0\}$. Hence φ restricting on \mathfrak{m}_x induces the map $\widetilde{\varphi} \in \operatorname{Hom}_{\operatorname{loc}}^k(\mathfrak{m}_x/\mathfrak{m}_x^2, R)$ with $\operatorname{im} \widetilde{\varphi} \subseteq \langle \varepsilon \rangle / \langle \varepsilon^2 \rangle$. Let $\sigma : R \twoheadrightarrow k$ be the k-linear map given by $a + b\varepsilon \mapsto b$./Then $\sigma \circ \widetilde{\varphi} \in (\mathfrak{m}_x/\mathfrak{m}_x^2)^{\vee}$ as a k-linear map.

Conversely, let $f \in (\mathfrak{m}_x/\mathfrak{m}_x^2)^{\vee}$. Consider the k-linear map $g : \mathfrak{m}_x \to k\varepsilon$ given by the composition

$$\mathfrak{m}_{x} \xrightarrow{\pi} \mathfrak{m}_{x}/\mathfrak{m}_{x}^{2} \xrightarrow{f} \kappa(x) \xrightarrow{\cong} k\varepsilon \sqrt{$$

Consider the short exact sequence of *k*-vector spaces:

$$0 \longrightarrow \mathfrak{m}_x \longrightarrow \mathscr{O}_x \longrightarrow \mathscr{O}_x/\mathfrak{m}_x \longrightarrow 0$$

Since k is a field, the sequence splits. So there exists a retraction $r: \mathcal{O}_x \to \mathfrak{m}_x$. Hence we can construct a k-linear map $\psi: \mathcal{O}_x \to k \oplus k\varepsilon \cong k[\varepsilon]/\langle \varepsilon^2 \rangle$ such that the following diagram commutes and hence gives a splitting of the short exact sequence above.

$$0 \longrightarrow \mathfrak{m}_{x} \xrightarrow{r} \mathscr{O}_{x} \xrightarrow{\pi_{x}} \mathscr{O}_{x}/\mathfrak{m}_{x} \longrightarrow 0$$

$$g \downarrow \qquad \downarrow \psi \qquad \downarrow \cong$$

$$0 \longrightarrow k\varepsilon \longrightarrow k \oplus k\varepsilon \longrightarrow k \longrightarrow 0$$

$$\stackrel{\stackrel{\circ}{=}}{\underset{k[\varepsilon]}{}}/\langle \varepsilon^{2} \rangle$$

More explicitly, $\psi(s) = \pi_x(s) + g \circ r(s)\varepsilon$. But we note that by construction ψ is also a ring homomorphism, and $\psi(\mathfrak{m}_x) \subseteq k\varepsilon = \langle \varepsilon \rangle$. Therefore $\psi \in \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R)$.

We can explicitly verify that we have constructed mutually inverse maps $\varphi \mapsto \sigma \circ \widetilde{\varphi}$ and $f \mapsto \psi$. Therefore our claim is proven.

Let $x \in X$ such that $\kappa(x) \not\equiv k$. Then the only k-algebra homomorphism from $\kappa(x)$ to k is the zero map. Suppose there is $\varphi \in \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R)$. Then we can construct a k-algebra homomorphism ψ as in the following diagram:

$$\begin{array}{ccc}
\mathscr{O}_{x} & \xrightarrow{\varphi} & R & \xrightarrow{\pi} & k \\
\pi_{x} \downarrow & & & & \exists! \psi \\
\kappa(x) & & & & & & & \\
\end{array}$$

Therefore $\psi = 0$. We have $\operatorname{im} \varphi \subseteq \ker \pi = \langle \varepsilon \rangle$. This is impossible as $1 \in \operatorname{im} \varphi$. Hence $\operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R) = \varnothing$. In summary, we have the bijective correspondence

$$\bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R) \overset{1:1}{\longleftrightarrow} \bigsqcup_{\substack{x \in X : \kappa(x) \cong k \\ \operatorname{as } k\text{-algebras}}} \operatorname{T}_x$$

Finally, the essentially same proof as in (i) shows that there is a bijective correspondence

$$\operatorname{Mor}(\operatorname{Spec}(k[\varepsilon]/\varepsilon^2), X) \stackrel{\text{1:1}}{\longleftrightarrow} \bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R)$$

which establishes the claimed result in (iii).

Question 5. A non-affine scheme

In topology, a classic example of a non-Hausdorff space that locally looks Euclidean is the line with two origins:

$$(\mathbb{R} \times \{1\} \sqcup \mathbb{R} \times \{2\})/((x,1) \sim (x,2) \text{ for } x \neq 0)$$

Note that $\sigma_1 = (0,1) \neq (0,2) = \sigma_2$ are two origins, but the space near σ_i is still homeomorphic to \mathbb{R} via $\mathbb{R} \times \{i\}$. It is not Hausdorff since any two neighbourhoods of σ_1, σ_2 intersect.

In algebraic geometry, Spec k[x] is the line k with the Zariski topology and Spec $k[x]_{(x)}$ is the germ of the line at $0 \in k$.

i) Let $R := k[x]_{(x)}$. Show that Spec $R = \{(0), (x)\}$ with

$$\mathcal{O}_{\operatorname{Spec} R}: \qquad \varnothing \longrightarrow 0$$

$$\operatorname{Spec} R \longrightarrow R$$

$$D_x = \{(0)\} \longrightarrow k(x) = \operatorname{Frac} R$$

ii) Let $X = \{\sigma_1, \sigma_2, \ell\}$ with the basis of open sets $D_1 = \{\sigma_1, \ell\}$, $D_2 = \{\sigma_2, \ell\}$, $D_{12} = \{\ell\}$. Define the presheaf \mathcal{O} by $\mathcal{O}(X) = \mathcal{O}(D_1) = \mathcal{O}(D_2) = k[x]_{(x)}$, $\mathcal{O}(D_{12}) = k(x) = \operatorname{Frac}(k[x]_{(x)})$, $\mathcal{O}(\varnothing) = 0$, and the restriction homomorphisms are given by id: $\mathcal{O}(X) \to \mathcal{O}(D_i)$ and inclusion $\mathcal{O}(X) \to \mathcal{O}(D_{12})$. Show that (X, \mathcal{O}) is a scheme that is not affine.

Proof. i) Since $k[x]/\langle x\rangle \cong k$ is a field, $\langle x\rangle$ is a maximal ideal of k[x]. Hence $R=k[x]_{\langle x\rangle}$ is a local ring. We know that $\operatorname{Spec} R=\{\varphi(\mathfrak{p})\colon \mathfrak{p}\in\operatorname{Spec} k[x],\ \mathfrak{p}\subseteq\langle x\rangle\}$. For $\mathfrak{p}\in\operatorname{Spec} k[x]$ such that $\mathfrak{p}\subseteq\langle x\rangle$, let $f(x)\in\mathfrak{p}$. Then f(x)=xg(x) for some $g\in k[x]$. Since $x\notin\mathfrak{p}$ and \mathfrak{p} is prime, $g\in\mathfrak{p}$. Hence $f(x)=x^2h(x)$ for some $h\in k[x]$. Therefore we must have f=0. Hence $\mathfrak{p}=\{0\}$. We have thus shown that $\operatorname{Spec} R=\{\{0\},\langle x\rangle\}$. The Zariski open subsets are $D_0=\varnothing$, $D_1=\operatorname{Spec} R$, and $D_x=\{\{0\}\}$. By the construction of $\mathscr{O}_{\operatorname{Spec} R}$, we have

$$\mathcal{O}_{\operatorname{Spec} R}(\varnothing) = R_0 = \{0\}, \qquad \mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R) = R_1 = R, \qquad \mathcal{O}_{\operatorname{Spec} R}(D_x) = R_x$$

We claim that $R_x \cong k(x)$. For $f \in k[x] \setminus \{0\}$, let $f(x) = x^m g(x)$, where gcd(g(x), x) = 1. Then $1/g(x) \in R = k[x]_{\langle x \rangle}$. And $1/f(x) = (1/g(x))/x^m \in R_x$. Hence R_x is the field Frac k[x] = k(x).

ii) It is straightforward to verify that \mathcal{O} is a sheaf and (X,\mathcal{O}) is a locally ringed space. By (i), we note that on the open set D_i , i = 1, 2, $(D_i, \mathcal{O}|_{D_i}) \cong (\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec} R})$ as locally ringed spaces. Therefore (X,\mathcal{O}) is a scheme.

Suppose that X is an affine scheme. Then $(X,\mathcal{O}) \cong (\operatorname{Spec} S, \mathcal{O}_{\operatorname{Spec} S})$ for some ring S. Then $k[x]_{\langle x \rangle} = \mathcal{O}(X) \cong S$. But then $\operatorname{Spec} S$ has only two elements, whereas X has three elements. They cannot be homeomorphic topological spaces. Contradication. So X is not an affine scheme.

Question 6

Let A, B be Abelian categories.

i) Show that $h^X := \text{Hom}_A(X, -) : A \to Ab$ is a left exact functor.

- ii) Show that if $h^X(A) \to h^X(B) \to h^X(C)$ is exact at $h^X(B)$ for all $X \in A$, then $A \to B \to C$ is exact at B.
- iii) Show that $h^{\bullet}: A \to Ab^A$ is a fully faithful contravariant functor, called **contravariant Yoneda embedding**.
- iv) Let $F: A \to B$ be a left adjoint functor to $G: B \to A$. Prove that F is right exact and G is left exact.

Remark: (iii) and (iv) also hold if Ab is replaced by Set, except the last statement about exactness becomes: F preserves colimits and G preserves limits.

Proof. i) Suppose that we have a short exact sequence in A:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

In a general Abelian category, the exactness at B is equivalent to that $g \circ f = 0$ and coker $f \circ \ker g = 0$. The sequence above is exact if and only if $f = \ker g$ and $g = \operatorname{coker} f$.

Applying the functor h^X , we need to show the exactness of

$$0 \longrightarrow \operatorname{Hom}(X,A) \xrightarrow{h^X f} \operatorname{Hom}(X,B) \xrightarrow{h^X g} \operatorname{Hom}(X,C)$$

Since f is a monomorphism, $h^X f(\alpha) = f \circ \alpha = 0$ implies that $\alpha = 0$. Hence $h^X f$ is injective. Hence $h^X f$ is a monomorphism. The sequence is exact at Hom(X,A).

Since $g \circ f = 0$, $h^X g \circ h^X f = h^X (g \circ f) = 0$. Let $\alpha \in \operatorname{Hom}(X, B)$ with $h^X g(\alpha) = g \circ \alpha = 0$. By the universal property of $f = \ker g : A \to B$, there exists a unique map $\widetilde{\alpha} : X \to A$ such that $\alpha = f \circ \widetilde{\alpha} = h^X f(\widetilde{\alpha})$. Hence $\ker h^X g = \operatorname{Im} h^X f$. The sequence is exact at $\operatorname{Hom}(X, B)$.

We deduce that h^X is left exact.

ii) First we take X = A and id \in Hom(A, A). By exactness at Hom(A, B), we have $h^X(g) \circ h^X(f) = h^X(g \circ f) = 0$. Hence $g \circ f \circ \text{id} = h^X(g \circ f) = 0$. Hence $g \circ f \circ \text{id} = h^X(g \circ f) = 0$.

Let $\ker g: K \to B$ be the kernel of $g: B \to C$, and let $\operatorname{coker} f: B \to Z$ be the cokernel of $f: A \to B$. Since $g \circ \ker g = h^K g(\ker g) = 0$, by exactness at $\operatorname{Hom}(K, B)$, there exists $\alpha \in \operatorname{Hom}(K, A)$ such that $\ker g = h^K(\alpha) = f \circ \alpha$. On the other hand, since $g \circ f = 0$, by the universal property of $\operatorname{coker} f$, there exists a unique $\beta \in \operatorname{Hom}(C, Z)$ such that $\beta \circ g = \operatorname{coker} f$, as shown in the following diagram:

Therefore coker $f \circ \ker g = \beta \circ g \circ f \circ \alpha = \emptyset$. We deduce that $A \xrightarrow{f} B \xrightarrow{g} C$ is exact at B.

iii)

iv) For $X \in \text{Obj}(A)$ and $Y \in \text{Obj}(B)$, the adjunction $F \dashv G$ implies the isomorphism of Abelian groups

$$\operatorname{Hom}_{\mathsf{A}}(F(X), Y) = \operatorname{Hom}_{\mathsf{B}}(X, G(Y))$$

Suppose that the following is a short exact sequence in B:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

For each X, we apply the left exact functor $h^{F(X)}$. So we have the exact sequence

$$0 \longrightarrow \operatorname{Hom}(F(X),A) \xrightarrow{h^{F(X)}f} \operatorname{Hom}(F(X),B) \xrightarrow{h^{F(X)}g} \operatorname{Hom}(F(X),C)$$

By functoriality of adjunction, this implies that the following sequence is exact:

$$0 \longrightarrow \operatorname{Hom}(X, G(A)) \xrightarrow{h^X G(f)} \operatorname{Hom}(X, G(B)) \xrightarrow{h^X G(g)} \operatorname{Hom}(X, G(C))$$

By (ii) we deduce that the following sequence is exact:

$$0 \longrightarrow G(A) \xrightarrow{G(f)} G(B) \xrightarrow{G(g)} G(C) \longrightarrow 0$$

Hence *G* is left exact.

From the adjunction $F \dashv G$ we have the adjunction $G^{\mathrm{op}} \dashv F^{\mathrm{op}}$. Hence $F^{\mathrm{op}} : B^{\mathrm{op}} \to A^{\mathrm{op}}$ is a right adjoint, which is left exact. Therefore F is right exact.