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Question 1

i) For ring R, and radical ideals a,b⊆ R, prove that a⊆ b ⇐⇒ V(a) ⊃V(b).

ii) Show that the presheaf of constant real functions is not a sheaf on X when X = 2 points with the discrete
topology.

iii) Show that the sheafification of the presheaf of constant functions is the sheaf of locally constant functions.

(Optional: What happens in the case X =Q ?)

iv) Show that a scheme X is irreducible ⇐⇒ every non-empty open subset is dense.

v) Show that R is Noetherian =⇒ every subset of SpecR is quasi-compact.

Proof. i) The direction “ =⇒ ” is trivial. For the “ ⇐= ” direction, suppose that V(b) ⊆ V(a) and a � b. Then we pick
r ∈ a such that r ∉ b. Then r �= 0 ∈ R/b. Since b is a radical ideal, the nilradical Nil(R/b) = {0}. So there exists
p ∈ SpecR such that b⊆ p and r ∉ p. The condition V(b) ⊆V(a) implies that a⊆ p. So r ∈ a implies that r ∈ p.
We obtain a contradication. Therefore we have a⊆ b.

ii) Let F : TopX → Ab be the presheaf of constant functions on X . Let s1 ∈ F ({1}) and s2 ∈ F ({2}) be the real-
valued functions such that s1(1) = 1 �= 2 = s2(2). Then {s1, s2} agrees on the overlap {1}∩ {2} =∅. But if there
exists s ∈ F (X ) = F ({1}∪{2}) such that s|1 = s1 and s|2 = s2, then s is not constant on {1,2}. So F is not a sheaf.

iii) Let F : TopX → Ab be the presheaf of constant functions on X . Let F+ be the sheafification of F . Let U be
open in X and s : U → �

x∈U Fx in F+(U ). By definition, for any x ∈ U , there exist V ⊆ U with x ∈ V and
t ∈ F (V ) such that s(y) = ty ∈ Fy for all y ∈ V . Since t ∈ F (V ) is a constant function, t : V → R is given by
t (y) = cV for some cV ∈ R. Hence s(y) = ty = cV for y ∈ V . That is, s is constant on V , which is an open
neighbourhood of x. That proves that s is a locally constant function. We deduce that F+ is the sheaf of
locally constant functions.

iv) The statement is true for any topological space X .

If X is reducible, then X = X1∪X2 for closed sets X1, X2 � X . Then X \ X1 is a non-empty open set of X . The
closure

X \ X1 ⊆ X2 � X

since X2 is closed. So X \ X1 is not dense in X . Conversely, suppose that X has a non-empty non-dense open
subset U . Then U �= X . We have X =U ∪ (X \U ). So X is reducible.

v) Let
�
pi

�
i∈I ⊆ SpecR. We claim that there exists i1, ..., in ∈ I such that

�
i∈I

pi =
n�

k=1
pik

Since R is Noetherian,
�

i∈I pi is finitely generated. Let r1, ...,rn ∈ R be the generators. For each rk , since
rk ∈�

i∈I pi , we have rk =��k

j=1 s j , where s j ∈ p j for some j ∈ I . Therefore, by relabeling, we may assume that
r1, ...,rn generates

�
i∈I pi , where each rk ∈ pik . This proves our claim.

Let A ⊆ SpecR. We shall prove that A is compact1. Suppose that {Ui }i∈I is an open cover of A. Let V(pi ) :=
SpecR \Ui . Then

�
i∈I V(pi )∩ A =∅. But

�
i∈I
V(pi ) =V

��
i∈I

pi

�
=V

�
n�

k=1
pik

�
=

n�
k=1

V
�
pik

�

So
�n

k=1V
�
pik

�∩ A =∅. In order words, {Ui1 , ...,Uin } is a finite subcover. Hence A is compact.

1I shall use compact for quasi-compact as these words mean the same thing (Hausdorff property is not a part of the definition of compactness.)
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Question 2

Let (X ,OX ) be a scheme. For s ∈OX (U ), show that sx = 0 ∈ OX ,x for all x implies that s = 0. Prove that X is reduced
⇐⇒ all stalks OX ,x are reduced.

Proof. For each x ∈ U , since sx = 0 ∈ OX ,x , there exists open W ⊆ U with x ∈ W such that s|W = 0|W = 0. The local-to-
global condition of sheaf OX suggests that s = 0.

Suppose that X is reduced. Then for each open set U , OX (U ) is a reduced ring. The stalk at x ∈ X is the ring

OX ,x = lim−−→
U�x

OX (U )

To prove that OX ,x is reduced, we simply need to prove that the direct limit of a directed system of reduced rings
is reduced. This follows from Exercise 2.22 of Atiyah & MacDonald. Let us write out the details.

For U � x, let ϕU : OX (U ) → OX ,x be the natural map. Suppose that α ∈ Nil(OX ,x ). Then there exists open U ⊆ X
and β ∈ OX (U ) such that α = ϕU (β). If αn = 0, then ϕ(βn) = 0. Hence there exists open V ⊆ U such that the
restriction map ρUV : OX (U ) → OX (V ) satisfies that ρUV (βn) = ρUV (β)n = 0. Since Nil(OX (V )) = {0}, we have
ρUV (β) = 0. But this implies that α=ϕU (β) =ϕV ◦ρUV (β) = 0. Hence Nil(OX ,x ) = {0}. OX ,x is reduced as claim.

OX (U ) OX (V )

OX ,x

ρUV

ϕU ϕV

Conversely, suppose that all stalks of OX are reduced. Let U ⊆ X be an open set, and let s ∈ Nil(OX (U )). Then
sn = 0 for some n ∈N. Under the natural map we have sn

x = ϕU ,x (sn) = 0 for all x ∈U . Since OX ,x is reduced, we
have sx = 0 for all x ∈U . By the first part we have s = 0. Hence OX (U ) is reduced. We conclude that the scheme X
is reduced.

Question 3

Let X = SpecR. Prove that

i) X is irreducible ⇐⇒ R has a unique minimal prime p (hint: nilradical) ⇐⇒ X has a unique generic point p.

ii) X is reduced and irreducible ⇐⇒ R is an integral domain (you may assume as known that localisation pre-
serves the “reduced” property)

Proof. i) We prove the first equivalence. Let Nil(R) be the nilradical of R. By definition it is contained in every prime
ideal of R. Then R has a unique minimal prime ideal if and only if Nil(R) is prime.

Suppose that Nil(R) is not prime. Then there exist r, s ∉ Nil(R) such that r s ∈ Nil(R). Then 〈r s〉 ⊆ Nil(R), and

SpecR =V(〈r s〉) =V(〈r 〉〈s〉) =V(r )∪V(s)

Since V(r ) and V(s) are proper closed subsets of SpecR, SpecR is reducible.

Conversely, suppose that SpecR is reducible. Then there exist p1,p2 ∈ SpecR such that X =V(p1)∪V(p2) and
V(p1),V(p2) �= X . So there exist r1 ∈ p1 and r2 ∈ p2 such that r1,r2 ∉ Nil(R). But note that

X =V(p1)∪V(p2) =V(p1∩p2) =⇒ p1 ∩p2 = Nil(R)

So r1r2 ∈ p1 ∩p2 = Nil(R). Hence Nil(R) is not prime.
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The second equivalence is tautological:

X has a unique generic point p ⇐⇒ V(p) = X

⇐⇒ ∀q ∈ SpecR : p⊆ q

⇐⇒ R has a unique minimal prime ideal p

ii) First we note that reducedness is a local property. That is, R is reduced if and only if Rp is reduced for each
p ∈ SpecR. Let us prove this as a revision of commutative algebra.

Suppose that R is not reduced. Let x ∈ Nil(R)\{0}. Consider the annihilator AnnR (x) := �
y ∈ R : x y = 0

�
which

is an ideal of R. Since 1 ∉ AnnR (x), there exists a maximal ideal m such that AnnR (x) ⊆m. Let ϕ : R → Rm be
the natural map sending r to r /1. Suppose that ϕ(x) = 0. There there exists y ∉m such that x y = 0, which is
impossible by our construction. Henceϕ(x) �= 0. Since x is nilpotent, xn = 0 for some n ∈N. Henceϕ(x)n = 0
and ϕ(x) ∈ Nil(Rm) \ {0}. The localisation Rm is not reduced.

Conversely, suppose that R is reduced. For each p ∈ SpecR, let ϕ : R → Rp be the natural map. By Corollary
3.3 of Atiyah & MacDonald, Nil(Rp) =ϕ(Nil(R)) =ϕ({0}) = {0}. Hence Rp is reduced for all p ∈ SpecR.

Return to the question. From Question 2 we have

X is reduced ⇐⇒ OX ,p is reduced for all p ∈ X ⇐⇒ Rp is reduced for all p ∈ SpecR ⇐⇒ R is reduced

Now we note from part (i) that X is reduced and irreducible if and only if Nil(R) = {0} and it is prime. But
since R ∼= R/{0}, then R is an integral domain if and only if {0} is a prime ideal. We thus finish the proof.

Question 4

Let (X ,O ) be a scheme.

i) If R is a local ring, show that

Mor(SpecR, X )
�

x∈X
Homlocal rings(Ox ,R)1 : 1

Hint: for ϕ : m �→ x show that x ∈ϕ(p) for any p.

ii) If K is a field, show that Mor(SpecK , X ) and

Mor(SpecK , X )
�

x∈X
{field extensions κ(x) �→ K }1 : 1

(κ(x) :=Ox /mx , where mx is the unique maximal ideal of Ox .)

iii) The Zariski tangent space at x is defined as Tx = (mx /m2
x )∗ (dual over the field κ(x) = Ox /mx ). Let X be a

scheme over a field k, meaning that we are given a morphism X → Speck. Convince yourself that this means
that locally X is the Spec of a k-algebra, not just the Spec of a ring. Show that

Mor(Spec(k[ε]/ε2), X )
�

x∈X : κ(x)∼=k
as k-algebras

Tx
1 : 1

(On the LHS, we mean morphisms of schemes over k, so they commute with maps to Speck, and maps of
sheaves are k-algebra homomorphisms.)

Remark. If locally X is the Spec of finitely generated k-algebras, and k is algebraically closed, then κ(x) ∼= k at
closed points x ∈ X .

Comment on what happens for X = Spec(k[x]/x2). (Compare Sec. 0.2 of Notes.)
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Proof. i) Recall that a morphism of schemes from SpecR to X is ( f , f #), where f : SpecR → X is continuous, and f # :
O → f∗OSpecR is a morphism of sheaves of rings, and for each p ∈ SpecR, the map f #

p : O f (p) →OSpecR,p = Rp

is a homomorphism of local rings.

Let m be the maximal ideal of R. First we note that the natural map ϕ : R → Rm is a local ring isomor-
phism, because R \m is the set of units of R. If ( f , f #) is a scheme morphism from SpecR to X , then at
f (m), we have the local ring homomorphism f #

m : O f (m) → Rm
∼= R. Hence ( f , f #) determines ( f (m), f #

m) ∈�
x∈X Homlocal rings(Ox ,R). We denote the map ( f , f #) �→ (( f (m), f #

m)) by ℱ.

On the other hand, we fix x ∈ X and let ρ : Ox → R be a local ring homomorphism. Let U be an open neigh-
bourhood of x. Since (X ,O ) is a scheme, (U ,O |U ) ∼= (S,SpecS) as locally ringed spaces for some ring S. On
the stalk of x we have the local ring isomorphism σ#

x : Sq → Ox where q ∈ SpecS. Consider the composi-

tion ring homomorphismψ: S Sq Ox R
ϕ σ#

x ρ
. Thenψ induces a morphism of locally ringed

spaces ( �f , �f #) from SpecR to U ⊆ X . We denote the map (x,ρ) �→ ( �f , �f #) by 𝒢.

It remains to show that ℱ ◦𝒢 = id and 𝒢 ◦ℱ = id.

Let ( �f (m), �f #
m) =ℱ◦𝒢(x,ρ). We shall show that �f (m) = x and �f #

m = ρ. Note that the homeomorphismσ : U →
SpecS sends x to q. On the stalks, �f =σ−1 ◦Specψ becomes the map ρ ◦σx : Sq → R ∼= Rm. So

�f (m) =σ−1 ◦ (Specψ)(m) =σ−1(q) = x

And
�f #
m =ψ#

m ◦ (σ−1)#
q = ρ ◦σ#

x ◦ (σ−1)#
q = ρ

Let ( �f , �f #) = 𝒢 ◦ℱ( f , f #). We shall show that f = �f and f # = �f #. Let x = f (m). For any p ∈ SpecR, since
m ∈ {p} =V(p), we have

x = f (m) ∈ f ({p}) ⊆ { f (p)}

We claim that f (SpecR) ⊆U for any open neighbourhood U of x. Suppose not. There is p ∈ SpecR such that
f (p) ∈ X \U . Note that X \U is closed. Therefore

x ∈ { f (p)} ⊆ X \U

which is a contradication. Next we fix U as in the definition of �f (so we also fix an isomorphism σ : U →
SpecS.) Then σ ◦ f is a morphism of locally ringed spaces from SpecR to SpecS. Since the functor Spec :
Ringop → Aff is full, there exists a ring homomorphism ξ : S → R such that σ ◦ f = Specξ. We claim that
ξ =ψ. Note that we have defined ψ to be f #

m ◦σ#
x ◦ϕ = (σ◦ f )#

m ◦ϕ = (Specξ)#
m ◦ϕ. It remains to prove that

(Specξ)#
m ◦ϕ= ξ. This is easy: for s ∈ S,

(Specξ)#
m ◦ϕ(s) = (Specξ)#

m

� s

1

�
= ξ(s)

ξ(1)
= ξ(s)

We conclude that there is a bijective correspondence:

Mor(SpecR, X )
�

x∈X
Homlocal rings(Ox ,R)1 : 1

ii) We note that for a field K , the prime specturm SpecK = {{0}}. K is a local ring with maximal ideal {0}.
Suppose that ϕ : Ox → K is a local ring homomorphism. Then by definition kerϕ = ϕ−1({0}) =mx . By the
universal property of quotient ring, there exists a unique ring homomorphism ψ : κ(x) := Ox /mx → K such
that ψ◦π=ϕ.

Ox K

κ(x)

ϕ

π ∃!ψ
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Since kerϕ �= Ox , ψ �= 0. Hence ψ : κ(x) → K is a field extension. Furthermore, the assignment ϕ �→ ψ is
bijective. Hence we have the bijective correspondence

�
x∈X

Homlocal rings(Ox ,K )
�

x∈X
{field extensions κ(x) �→ K }1 : 1

Combining with the result of (i), we obtain the claimed correspondence of (ii).

iii) First, we claim that R := k[ε]/
�
ε2

�
is a local ring with maximal ideal 〈ε〉. Let p ∈ Speck[ε] such that π(p) �= 0 ∈

R. Then
�
ε2

� ⊆ p. Since p is prime, ε ∈ p. Hence 〈ε〉 ⊆ π(p). But 〈ε〉 is maximal in R, because R/〈ε〉 ∼= k is a
field. Hence p= 〈ε〉 ∈ SpecR. We deduce that R is local, and SpecR = {〈ε〉}.

Let Homk
loc(Ox ,R) be the set of maps ϕ : Ox → R which are both k-algebra homomorphisms and local ring

homomorphisms. Let x ∈ X such that κ(x) ∼= k as k-algebras. We claim that there is a bijective correspon-
dence:

Homk
loc(Ox ,R) ←→ Homκ(x)(mx /m2

x ,κ(x)) =: (mx /m2
x )∨

Let ϕ ∈ Homk
loc(Ox ,R). by definition ϕ(mx ) ⊆ ε. Then ϕ(m2

x ) ⊆ 〈ε〉2 = �
ε2

� = {0}. Hence ϕ restricting on mx

induces the map �ϕ ∈ Homk
loc(mx /m2

x ,R) with im �ϕ ⊆ 〈ε〉/
�
ε2

�
. Let σ : R � k be the k-linear map given by

a +bε �→ b. Then σ◦ �ϕ ∈ (mx /m2
x )∨ as a k-linear map.

Conversely, let f ∈ (mx /m2
x )∨. Consider the k-linear map g :mx → kε given by the composition

mx mx /m2
x κ(x) kεπ f ∼=

Consider the short exact sequence of k-vector spaces:

0 mx Ox Ox /mx 0

Since k is a field, the sequence splits. So there exists a retraction r : Ox → mx . Hence we can construct
a k-linear map ψ : Ox → k ⊕kε ∼= k[ε]/

�
ε2

�
such that the following diagram commutes and hence gives a

splitting of the short exact sequence above.

0 mx Ox Ox /mx 0

0 kε k ⊕kε k 0

k[ε]/
�
ε2

�

ι

πx

ψg ∼=

r

∼=

More explicitly, ψ(s) = πx (s)+ g ◦ r (s)ε. But we note that by construction ψ is also a ring homomorphism,
and ψ(mx ) ⊆ kε= 〈ε〉. Therefore ψ ∈ Homk

loc(Ox ,R).

We can explicitly verify that we have constructed mutually inverse maps ϕ �→ σ ◦ �ϕ and f �→ ψ. Therefore
our claim is proven.

Let x ∈ X such that κ(x) �∼= k. Then the only k-algebra homomorphism from κ(x) to k is the zero map. Sup-
pose there is ϕ ∈ Homk

loc(Ox ,R). Then we can construct a k-algebra homomorphism ψ as in the following
diagram:

Ox R k

κ(x)

ϕ π

πx ∃!ψ

Therefore ψ = 0. We have imϕ ⊆ kerπ = 〈ε〉. This is impossible as 1 ∈ imϕ. Hence Homk
loc(Ox ,R) =∅. In

summary, we have the bijective correspondence



6

�
x∈X

Homk
loc(Ox ,R)

�
x∈X : κ(x)∼=k
as k-algebras

Tx
1 : 1

Finally, the essentially same proof as in (i) shows that there is a bijective correspondence

Mor(Spec(k[ε]/ε2), X )
�

x∈X
Homk

loc(Ox ,R)1 : 1

which establishes the claimed result in (iii).

Question 5. A non-affine scheme

In topology, a classic example of a non-Hausdorff space that locally looks Euclidean is the line with two origins:

(R× {1}�R× {2})/((x,1) ∼ (x,2) for x �= 0)

Note that σ1 = (0,1) �= (0,2) =σ2 are two origins, but the space near σi is still homeomorphic to R via R× {i }. It is not
Hausdorff since any two neighbourhoods of σ1,σ2 intersect.

In algebraic geometry, Speck[x] is the line k with the Zariski topology and Speck[x](x) is the germ of the line at
0 ∈ k.

i) Let R := k[x](x). Show that SpecR = {(0), (x)} with

OSpecR : ∅ 0

SpecR R

Dx = {(0)} k(x) = FracR

ii) Let X = {σ1,σ2,�} with the basis of open sets D1 = {σ1,�}, D2 = {σ2,�}, D12 = {�}. Define the presheaf O by
O (X ) =O (D1) =O (D2) = k[x](x), O (D12) = k(x) = Frac(k[x](x)), O (∅) = 0, and the restriction homomorphisms
are given by id : O (X ) →O (Di ) and inclusion O (X ) →O (D12). Show that (X ,O ) is a scheme that is not affine.

Proof. i) Since k[x]/〈x〉 ∼= k is a field, 〈x〉 is a maximal ideal of k[x]. Hence R = k[x]〈x〉 is a local ring. We know that
SpecR = �

ϕ(p) : p ∈ Speck[x], p⊆ 〈x〉�. For p ∈ Speck[x] such that p� 〈x〉, let f (x) ∈ p. Then f (x) = xg (x) for
some g ∈ k[x]. Since x ∉ p and p is prime, g ∈ p. Hence f (x) = x2h(x) for some h ∈ k[x]. Therefore we must
have f = 0. Hence p= {0}. We have thus shown that SpecR = {{0},〈x〉}. The Zariski open subsets are D0 =∅,
D1 = SpecR, and Dx = {{0}}. By the construction of OSpecR , we have

OSpecR (∅) = R0 = {0} , OSpecR (SpecR) = R1 = R, OSpecR (Dx ) = Rx

We claim that Rx
∼= k(x). For f ∈ k[x] \ {0}, let f (x) = xm g (x), where gcd(g (x), x) = 1. Then 1/g (x) ∈ R =

k[x]〈x〉. And 1/ f (x) = (1/g (x))/xm ∈ Rx . Hence Rx is the field Frack[x] = k(x).

ii) It is straightforward to verify that O is a sheaf and (X ,O ) is a locally ringed space. By (i), we note that on the
open set Di , i = 1,2, (Di ,O |Di

) ∼= (SpecR,OSpecR ) as locally ringed spaces. Therefore (X ,O ) is a scheme.

Suppose that X is an affine scheme. Then (X ,O ) ∼= (SpecS,OSpecS) for some ring S. Then k[x]〈x〉 =O (X ) ∼= S.
But then SpecS has only two elements, whereas X has three elements. They cannot be homeomorphic
topological spaces. Contradication. So X is not an affine scheme.

Question 6

Let A,B be Abelian categories.

i) Show that hX := HomA(X ,−) :A→Ab is a left exact functor.
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ii) Show that if hX (A) → hX (B) → hX (C ) is exact at hX (B) for all X ∈A, then A → B →C is exact at B .

iii) Show that h• :A→AbA is a fully faithful contravariant functor, called contravariant Yoneda embedding.

iv) Let F :A→B be a left adjoint functor to G :B→A. Prove that F is right exact and G is left exact.

Remark: (iii) and (iv) also hold ifAb is replaced by Set, except the last statement about exactness becomes: F preserves
colimits and G preserves limits.

Proof. i) Suppose that we have a short exact sequence in A:

0 A B C 0
f g

In a general Abelian category, the exactness at B is equivalent to that g ◦ f = 0 and coker f ◦ker g = 0. The
sequence above is exact if and only if f = ker g and g = coker f .

Applying the functor hX , we need to show the exactness of

0 Hom(X , A) Hom(X ,B) Hom(X ,C )
hX f hX g

Since f is a monomorphism, hX f (α) = f ◦α= 0 implies that α= 0. Hence hX f is injective. Hence hX f is a
monomorphism. The sequence is exact at Hom(X , A).

Since g ◦ f = 0, hX g ◦hX f = hX (g ◦ f ) = 0. Let α ∈ Hom(X ,B) with hX g (α) = g ◦α = 0. By the universal
property of f = ker g : A → B , there exists a unique map �α : X → A such that α = f ◦ �α = hX f (�α). Hence
kerhX g = imhX f . The sequence is exact at Hom(X ,B).

We deduce that hX is left exact.

ii) First we take X = A and id ∈ Hom(A, A). By exactness at Hom(A,B), we have hX (g )◦hX ( f ) = hX (g ◦ f ) = 0.
Hence g ◦ f ◦ id = hX (g ◦ f ) = 0. Hence g ◦ f = 0.

Let ker g : K → B be the kernel of g : B → C , and let coker f : B → Z be the cokernel of f : A → B . Since g ◦
ker g = hK g (ker g ) = 0, by exactness at Hom(K ,B), there existsα ∈ Hom(K , A) such that ker g = hK (α) = f ◦α.
On the other hand, since g ◦ f = 0, by the universal property of coker f , there exists a unique β ∈ Hom(C , Z )
such that β◦ g = coker f , as shown in the following diagram:

K

A B C

Z

ker g

coker f

f g

α

∃!β

Therefore coker f ◦ker g =β◦ g ◦ f ◦α= 0. We deduce that A B C
f g

is exact at B .

iii)

iv) For X ∈ Obj(A) and Y ∈ Obj(B), the adjunction F �G implies the isomorphism of Abelian groups

HomA(F (X ),Y ) = HomB(X ,G(Y ))

Suppose that the following is a short exact sequence in B:

0 A B C 0
f g

For each X , we apply the left exact functor hF (X ). So we have the exact sequence
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0 Hom(F (X ), A) Hom(F (X ),B) Hom(F (X ),C )
hF (X ) f hF (X )g

By functoriality of adjunction, this implies that the following sequence is exact:

0 Hom(X ,G(A)) Hom(X ,G(B)) Hom(X ,G(C ))
hX G( f ) hX G(g )

By (ii) we deduce that the following sequence is exact:

0 G(A) G(B) G(C ) 0
G( f ) G(g )

Hence G is left exact.

From the adjunction F � G we have the adjunction Gop � F op. Hence F op : B op → Aop is a right adjoint,
which is left exact. Therefore F is right exact.


