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Question 1
i) Forring R, and radical ideals a,b € R, prove thatac b < V(a) > V(b).

ii) Show that the presheaf of constant real functions is not a sheaf on X when X = 2 points with the discrete
topology. ’

iii) Show that the sheafification of the presheaf of constant functions is the sheaf of locally constant functions.
(Optional: What happens in the case X = Q ?)
iv) Show that a scheme X is irreducible <= every non-empty open subset is dense.

v) Show that R is Noetherian = every subset of Spec R is quasi-compact.

Proof. i) The direction “ = ” is trivial. For the “ <= ” direction, suppose that V(b) < V(a) and a SZ b. Then we pick
r € asuch that r ¢ b. Then r # 0 € R/b. Since b is a radical ideal, the nilradical Nil(R/b) = {OM/So there exists
p € SpecR such that b € p and r ¢ p>The condition V(b) < V(a) implies that a < p. So r € a implies that r € p.
We obtain a contradication. Therefore we have a < b. \]

ii) Let F: TopX — Ab be the presheaf of constant functions on X. Let s; € F({1}) and sy € F({2}) be the real-
valued functions such that s;(1) =1 # 2 = s»(2). Then {s;, 52} agrees on the overlap {1} N {2} = &. But if there
exists s € F(X) = F({1} u{2}) such that s|; = s; and s|, = s», then s is not constant on {1,2}. So F is not a sheaf. \/

iii) Let F: TopX — Ab be the presheaf of constant functions on X. Let F* be the sheafification of F. Let U be
openin X and s: U — | ey Fx in F*(U). By definition, for any x € U, there exist V < U with x € V and
t € F(V) such that s(y) = t, € Fy, for all y € V. Since 7 € F(V) is a constant function, ¢: V — R is given by
t(y) = cy for some cy € R. Hence s(y) = ty, = cy for y € V. That is, s is constant on V, which is an open
neighbourhood of x. That pro@at s is a locally constant function. We deduce that F* is the sheaf of
locally constant functions.

iv) The statement is true for any topological space X.

If X isreducible, then X = X; U X5 for closed sets X;, X> C X. Then X\ X is a non-empty open set of X. The
closure
X\ XX, CX

since X> is closed. So X\ X is not dense in X. Conversely, suppose that X has a non-empty non-dense open
subset U. Then U # X. We have X = U U (X \ U). So X is reducible. \/

v) Let{p;},.; < SpecR. We claim that there exists i, ..., i, € I such that
n
dPi= ) P
iel k=1

Since R is Noetherian, ) ;c;p; is finitely generated. Let ry,...,7; € R be the generators. For each rg, since
Tk €Y ierPi, wehave ry = Z?’;l sj, where s; € p; for some j € I. Therefore, by relabeling, we may assume that
r1,.., I'n generates Y ;c;p;, where each ri € p;,. This proves our claim.

Let A < SpecR. We shall prove that A is compact!. Suppose that {U;};c; is an open cover of A. Let V(p;) :=
Spec R\ U;. Then N;c; V(p;) N A= . But

n n
AVe) =Y pi|=Vv|Y pik) = V(i)
iel iel k=1 k=1
So ﬂZ:l \/(p,-k) N A= g. In order words, {U;,, ..., U;,} is a finite subcover. Hence A is compact. O

11 shall use compact for quasi-compact as these words mean the same thing (Hausdorff property is not a part of the definition of compactness.)
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Question 2

Let (X,0x) be a scheme. For s € Ox(U), show that sy = 0 € Ox , for all x implies that s = 0. Prove that X is reduced
<= all stalks Oy are reduced.

Proof. For each x € U, since s, = 0 € Oy y, there exists open W < U with x € W such that s|y, = 0|y, = 0. The local-to-
global condition of sheaf Oy suggests that s = 0. \/

Suppose that X is reduced. Then for each open set U, Ox (U) is a reduced ring. The stalk at x € X is the ring

Ox x= h_I)n@)X(U)
Usx

To prove that Oy is reduced, we simply need to prove that the direct limit of a directed system of reduced rings
is reduced. This follows from Exercise 2.22 of Atiyah & MacDonald. Let us write out the details.

For U > x, let ¢y : Ox(U) — O, be the natural map. Suppose that a € Nil(Ox, ). Then there exists open U < X
and B € Ox(U) such that a = gy (f). If a” =0, then ¢(f") = 0. Hence there exists open V < U such that the
restriction map pyy : Ox(U) — Ox (V) satisfies that pyy(8") = pyv(B)™ = 0. Since Nil(Gx(V)) = {0}, we have
puv(B) = 0. But this implies that @ = ¢y () = @y o pyy(B) = 0. Hence Nil(@x x) = {0}. O is reduced as claim. \/

ox () POV 6x(v)

N

@X,x

Conversely, suppose that all stalks of @x are reduced. Let U < X be an open set, and let s € Nil(@x(U)). Then
s" =0 for some n € N. Under the natural map we have s? = ¢y «(s"*) =0 for all x € U. Since Oy y is reduced, we
have s, =0 for all x € U. By the first part we have s = 0. Hence Ox (U) is reduced. We conclude that the scheme X
is reduced. \j’ O

Question 3
Let X = SpecR. Prove that
i) Xisirreducible <= R has a unique minimal prime p (hint: nilradical) <= X has a unique generic point p.
ii) X is reduced and irreducible <= R is an integral domain (you may assume as known that localisation pre-

serves the “reduced” property)

Proof. i) We prove the first equivalence. Let Nil(R) be the nilradical of R. By definition it is contained in every prime
ideal of R. Then R has a unique minimal prime ideal if and only if Nil(R) is prime.

Suppose that Nil(R) is not prime. Then there exist r, s ¢ Nil(R) such that rs e Nil(R). Then (rs) € Nil(R), and
SpecR=V((rs)) = V{r{s)) = V(r)uV(s)

Since V(r) and V(s) are proper closed subsets of Spec R, Spec R is reducible. \/

Conversely, suppose that Spec R is reducible. Then there exist p;,p» € Spec R such that X = V(p1) UV (p2) and
V(p1), V(p2) # X. So there exist r; € p; and r;, € p, such that 11, r, ¢ Nil(R). But note that

X =V(p1)uV(p2) =V(p,Np2) = p1Np, =Nil(R)

So r1rp € p1 Npo = Nil(R). Hence Nil(R) is not prime. \/



The second equivalence is tautological:

X has a unique generic pointp <= V(p) =X
< VqeSpecR: pcq

< R has a unique minimal prime ideal p

ii) First we note that reducedness is a local property. That is, R is reduced if and only if Ry, is reduced for each
p € SpecR. Let us prove this as a revision of commutative algebra.

Suppose that R is not reduced. Let x € Nil(R) \{0}. Consider the annihilator Anng(x) := { YER: xy= 0} which
is an ideal of R. Since 1 ¢ Anng(x), there exists a maximal ideal m such that Anng(x) cm. Let ¢ : R — R, be

‘LA the natural map sending r to r/1. Suppose that ¢(x) = 0. There there exists y ¢ m such that xy = 0, which is

impossible by our construction. Hence ¢(x) # 0. Since x is nilpotent, x" = 0 for some n € N. Hence ¢(x)" =0
and ¢(x) € Nil(Ry) \ {0}. The localisation Ry, is not reduced.

Conversely, suppose that R is reduced. For each p € SpecR, let ¢ : R — Ry, be the natural map. By Corollary
3.3 of Atiyah & MacDonald, Nil(Ry,) = ¢(Nil(R)) = ¢({0}) = {0}. Hence Ry, is reduced for all p € SpecR.

Return to the question. From Question 2 we have
" Xisreduced < Ox,p is reduced for allp € X < R, is reduced for all p € SpecR < R is reduced

Now we note from part (i) that X is reduced and irreducible if and only if Nil(R) = {0} and it is prime. But
since R = R/{0}, then R is an integral domain if and only if {0} is a prime ideal. We thus finish the p\?of. O

Question 4

Let (X,0) be a scheme.

i)

i)

iif)

If R is alocal ring, show that

Mor(SpecR, X) M |_| Homyocal rings @, R)
xeX

Hint: for ¢ : m — x show that x € @(p) for any p.

If K is a field, show that Mor(Spec K, X) and

Mor(SpecK, X) <u> | | {field extensions x (x) — K}
xeX

(K (x) := Ox/my, wheremy is the unique maximal ideal of O ,.)

The Zariski tangent space at x is defined as Ty = (m,/ mi)* (dual over the field x(x) = O/my). Let X be a
scheme over a field k, meaning that we are given a morphism X — Spec k. Convince yourself that this means
that locally X is the Spec of a k-algebra, not just the Spec of a ring. Show that

Mor(Spec(k[e]/€%), X) PEEN ("
xeX: k(x)=k
as k-algebras

(On the LHS, we mean morphisms of schemes over k, so they commute with maps to Speck, and maps of
sheaves are k-algebra homomorphisms.)

Remark. If locally X is the Spec of finitely generated k-algebras, and k is algebraically closed, then x(x) = k at
closed points x € X.

Comment on what happens for X = Spec(k|[x]/ x2). (Compare Sec. 0.2 of Notes.)



Proof.

i) Recall that a morphism of schemes from SpecR to X is (f, f*), where f : Spec R — X is continuous, and f7 :

ii)

O — f«Ospecr is a morphism of sheaves of rings, and for each p € SpecR, the map flf :0fp) — OspecRryp = Ry
is a homomorphism of local rings.

Let m be the maximal ideal of R. First we n?}e that the natural map ¢ : R — Ry, is a local ring isomor-
phism, because R \m is the set of units of R.VIf (f, f*) is a scheme morphism from SpecR to X, then at
f(m), we have the local ring homomorphism f7 : @) — Rm = R. Hence (f, f*) determines (f(m), f#) €
Llxex Homiocal rings (Ox, R). We denote the map (f, f#) — ((f(m), fnﬁ)) by F. V

On the other hand, we fix x € X and let p : 0, — R be alocal ring homomorphism. Let U be an open neigh-
bourhood of x. Since (X,0) is a scheme, (U,0|y) = (S SpecS) as locally ringed spaces for some ring S. On
the stalk of x we have the local ring 1som0rphlsm o Sq — O where q € SpecS. Consider the composi-

Y
tion ring homomorphismy: S F\ % > R . Then v induces zir\orphism of locally ringed
spaces (f, f*) from SpecR to U < X. We denote the map (x, p) — (f, ) by €.

It remains to show that % o€ =id and & oF = =id.

Let (f(m), flﬁ) = F 0% (x,p). We shall show that f(m) = x and f?ﬁ = p. Note that the homeomorphismo: U —
Spec S sends x to q. On the stalks, f = 0! o Specy becomes the map pooy: Sq— R=Rp. So

f(m) =0 1o (Specy)(m) = o ! (q) =

And

fa=vholo™y=poalo@™=p
Let (f,f#) = CoF(f, f"). We shall show that f = fand = f#. Let x = f(m). For any p € SpecR, since
me {p} = V(p), we have

x=fm) e f(ph) < {(f (p)}

We claim that f(Spec R) < U for any open neighbourhood U of x. Suppose not. There is p € Spec R such that
f () € X\ U. Note that X\ U is closed. Therefore

xe{f(MeX\U \/

which is a contradication. Next we fix U as in the definition of f (so we also fix an isomorphism o : U —
SpecS.) Then o o f is a morphism of locally ringed spaces from SpecR to SpecS. Since the/functor Spec :
Ring®P — Aff is full, there exists a ring homomorphism ¢ : S — R such that o o f = Specé&Y We claim that
¢ = . Note that we have defined v to be f og% o = (o0 )% o = (Specé)%, o . It remains to prove that
(Specé)’ﬁ1 o =¢. Thisis easy: for se S,

5(s)

(Specé)io(p(s) = (Specf)i(i) f(l) =¢&(s)

We conclude that there is a bijective correspondence:

Mor(Spec R, X) M I_l Homyjgcal rings(@x;R)
xeX
We note that for a field K, the prime specturm SpecK = {{O}LL/K is a local ring with maximal ideal {0}.
Suppose that ¢ : @ — K is a local ring homomorphism. Then by definition ker¢g = ¢~1({0}) = m,. By the
universal property of quotient ring, there exists a unique ring homomorphism v : x(x) := Gx/my — K such
thatyom=¢.

@ﬁ[(

// |1//

K(x)



1ii)

Since kerg # O, w # 0. Hence y : x(x) — K is a field extension. Furthermore, the assignment ¢ — v is
bijective. Hence we have the bijective correspondence

|| Homyocal rings (O, K) PEEN | | {field extensions x (x) — K}

xeX xeX -
Combining with the result of (i), we obtain the claimed correspondence of (ii).

First, we claim that R := k[e]/ <£2> is a local ring with maximal ideal (€). Let p € Speck[e] such that z(p) #0 €
R. Then (%) cp. Since p is prime, ¢ € p. Hence (¢) < 7(p). But (¢) is maximal in R, because R/ (¢) = k is a
field. Hence p = (€) € Spec R. We deduce that R is local, and Spec R = {{¢)}.

Let Hom .(Ox, R) be the set of maps ¢ : O — R which are both k-algebra homomorphisms and local ring
homomorphlsms Let x € X such that x(x) = k as k-algebras. We claim that there is a bijective correspon-
dence:

Hom{ (O, R) — Homyy) (my/m2,x(x)) =: (my/m2)"

Letgpe Hom .(Ox, R). by definition ¢(my) < &. Then pm2) c (e)? = (&%) = {0}. Hence ¢ restricting on m
induces the map pe Hom Joc (my/m2, R) with im@ < (e) / (¢*). Let o : R — k be the k-linear map given by
a+ be H\l_)/Then oo@ e (my/m2)V as a k-linear map.

Conversely, let f € (m,/m2)Y. Consider the k-linear map g : m, — ke given by the composition

my —2 m,/m2 f) K(x) — ke \/
Consider the short exact sequence of k-vector spaces:

0 > my > Oy > Ox/my — 0

Since k is a field, the sequence splits. So there exists a retraction r : 0, — m,. Hence we can construct
a k-linear map v : O — k @ ke = k[e]/ (€?) such that the following diagram commutes and hence gives a
splitting of the short exact sequence above.

Ome:@’x%@xlmxHO

g v \ f

0 > ke > ko ke

~
o

~

klel/ {&*)

More explicitly, w(s) = m4(s) + g o r(s)e. But we note that by construction v is also a ring homomorphism,
and y(my) ke = (€). Therefore ¢ € HomX (G, R).

loc

We can explicitly verify that we have constructed mutually inverse maps ¢ — oo @ and f — . Therefore

our claim is proven \Z

Let x € X such that x(x) Z k. Then the only k-algebra homomorphism from x(x) tok is the zero map. Sup-
pose there is ¢ € Hom .(Ox, R). Then we can construct a k-algebra homomorphism ¥ as in the following
diagram:

‘ Oy —)Rﬁk
”x\L - EI!q/

K(x)

Therefore 1 = 0. We have im¢ < kern = (¢). This is impossible as 1 € im¢. Hence Hom (Ox,R) =2. In
summary, we have the bijective correspondence



1:1
|| Hom{;c(@’x,}?) —= L] T«
xeX xeX: k(x)=k
as k-algebras

Finally, the essentially same proof as in (i) shows that there is a bijective correspondence

Mor(Spec(klel/e2), X) <L | | Homf (@, R)
xeX

which establishes the claimed result in (iii). O

Question 5. A non-affine scheme

In topology, a classic example of a non-Hausdorff space that locally looks Euclidean is the line with two origins:

Rx {1FUR % {2})/((x,1) ~ (x,2) for x #0)
Note that o, = (0,1) # (0,2) = 0, are two origins, but the space near o ; is still homeomorphic to R via R x {i}. It is not
Hausdorff since any two neighbourhoods of 01,0, intersect.

In algebraic geometry, Spec k[x] is the line k with the Zariski topology and Spec k[x](y) is the germ of the line at
O€ k.

i) Let R:= k[x](y. Show that Spec R = {(0), (x)} with
OspecR g ——— > 0
SpecR ——— R
D, ={(0)} — k(x)=FracR

ii) Let X = {01,072, ¢} with the basis of open sets D; = {01,¢}, D2 = {02, ¢}, D12 = {¢}. Define the presheaf & by
O(X) =0(D1) =0 (D3) = kl[x](x), O(Dy2) = k(x) = Frac(k[x]y)), ©(2) = 0, and the restriction homomorphisms
are given by id : 0(X) — @ (D;) and inclusion 0 (X) — @ (D;). Show that (X, ) is a scheme that is not affine.

Proof. i) Since k[x]/(x) = k is a field, (x) is a maximal ideal of k[x]. Hence R = k[x]y) is a local ring. We know that
SpecR = {(p(p): peSpecklx], pc (x)}. For p € Spec k[x] such that p C (x), let f(x) € p. Then f(x) = xg(x) for
some g € k[x]. Since x ¢ p and p is prime, g € p. Hence f(x) = x*>h(x) for some h € k[x]. Therefore we must
have f = 0. Hence p = {0}. We have thus shown that Spec R = {{0}, {(x)}. The Zariski open subsets are Dy = &,
Dy =SpecR, and Dy = {{0}}. By the construction of Ospec r, we have

@SpecR(@) = Ry = {0}, 6SpecR(SpeCR) =R =R, @SpecR(Dx) =Ry
We claim that Ry = k(x). For f € k[x]\ {0}, let f(x) = x™ g(x), where gcd(g(ai)/x) =1. Then1l/g(x) € R =
k[xl¢xy. And 1/ f(x) = (1/g(x))/x™ € Ry. Hence R, is the field Frac k[x] = k(x).

ii) Itis straightforward to verify that @ is a sheaf and (X, @) is a locally ringed space. By (i), we note that on the
openset D;, i = 1,2, (D;,0|p,) = (Spec R, Ospecr) as locally ringed spaces. Therefore (X, 0) is a scheme.

Suppose that X is an affine scheme. Then (X, 0) = (Spec S, Ospec s) for somering S. Then k[x](y = O(X) = S.
But then SpecS has only two elements, whereas X has three elements.\Z‘hey cannot be homeomorphic
topological spaces. Contradication. So X is not an affine scheme. O

Question 6
Let A, B be Abelian categories.

i) Show that #* := Homa (X, -) : A — Ab is a left exact functor.



ii) Show that if h*(A) — h*(B) — h*(C) is exact at hX(B) for all X € A, then A — B — C is exact at B.

iii) Show that /*: A — Ab” is a fully faithful contravariant functor, called contravariant Yoneda embedding.

iv) Let F: A — B be aleft adjoint functor to G : B — A. Prove that F is right exact and G is left exact.

Remark: (iii) and (iv) also hold if Ab is replaced by Set, except the last statement about exactness becomes: F preserves
colimits and G preserves limits.

Proof. i)

if)

iif)

iv)

Suppose that we have a short exact sequence in A:

0 > A f)B g>C > 0

In a general Abelian categ(‘)ry, the exactness at B is equivalent to that go f = 0 and coker f okerg = 0. The
sequence above is exact if and only if f = ker g and g = coker f.

Applying the functor h*, we need to show the exactness of

hX hX
0 —— Hom(X, A) —f> Hom (X, B) J Hom(X, C)

Since f is a monomorphism, ¥ f(a) = f o a = 0 implies \t?at a = 0. Hence hX f is injective. Hence h*X f is a
monomorphism. The sequence is exact at Hom(X, A).

Since go f =0, hXgoh®Xf = hX(go f) = 0. Let @ € Hom(X, B) with hXg(a) = goa = 0. By the universal
property of f =kerg: A — B, there exists a unique map & : X — A such that @ = fo& = h* f(&). Hence
ker hXg = im hX f. The sequence is exact at Hom(X, B). J

We deduce that h¥ is left exact.

First we take X = A and id € Hom(A, A). By exactness at Hom(A, B), we have h*(g) o hX(f) = hX(go f) = 0.
Hence go foid=h*(go f) =0. Hence gof =0. -

Let kerg : K — B be the kernel of g: B — C, and let coker f : B — Z be the cokernel of f: A — B. Since go
kerg = hXg(ker g) = 0, by exactness at Hom(K, B), there exists a« € Hom(K, A) such that ker g = hX (@) = foa.
On the other hand, since g o f =0, by the universal property of coker f, there exists a unique € Hom(C, Z)
such that o g = coker f, as shown in the following diagram:

K

y lker g
f

A— B i) C
cokerfl //
v 3B
Z

Therefore coker fokerg=fogofoa :JO). We deduce that A i) B i} Cis exactat B.

\
N

For X € Obj(A) and Y € Obj(B), the adjunction F - G implies the isomorphism of Abelian groups
Homa (F(X),Y) = Homg (X, G(Y))

Suppose that the following is a short exact sequence in B:

0 > A f)B g>C > 0

For each X, we apply the left exact functor hFﬁ(/ So we have the exact sequence



REO KFX)
0 —— Hom(F(X), A) —f> Hom(F(X), B) 4 Hom(F(X),C)

By functoriality of adjunction, this implies that the following sequence is exact:

G WG
0 — Hom(X,G(A)) —(fi Hom(X, G(B)) —(gﬁ Hom(X, G(C)) \/

By (ii) we deduce that the following sequence is exact:

G G
0 > G(A) (f; G(B) ﬂ GIC) — 0 \/

Hence G is left exact.

From the adjunction F 4 G we have the adjunction G°? 4 F°P. Hence F°P : B°? — A°P is a right adjoint,

which is left exact. Therefore F is right exact. O



