Peize Liu St. Peter's College University of Oxford # Problem Sheet 1 C2.6: Introduction to Schemes ### Question 1 - i) For ring R, and radical ideals $\mathfrak{a}, \mathfrak{b} \subseteq R$, prove that $\mathfrak{a} \subseteq \mathfrak{b} \iff \mathbb{V}(\mathfrak{a}) \supset \mathbb{V}(\mathfrak{b})$. - ii) Show that the presheaf of constant real functions is not a sheaf on X when X = 2 points with the discrete topology. - iii) Show that the sheafification of the presheaf of constant functions is the sheaf of locally constant functions. (Optional: What happens in the case $X = \mathbb{Q}$?) - iv) Show that a scheme X is irreducible \iff every non-empty open subset is dense. - v) Show that *R* is Noetherian \implies every subset of Spec *R* is quasi-compact. i) The direction " \Longrightarrow " is trivial. For the " \Longleftrightarrow " direction, suppose that $\mathbb{V}(\mathfrak{b}) \subseteq \mathbb{V}(\mathfrak{a})$ and $a \not\subseteq b$. Then we pick Proof. $r \in \mathfrak{a}$ such that $r \notin \mathfrak{b}$. Then $r \neq 0 \in R/\mathfrak{b}$. Since \mathfrak{b} is a radical ideal, the nilradical Nil $(R/\mathfrak{b}) = \{0\}$ So there exists $\mathfrak{p} \in \operatorname{Spec} R$ such that $\mathfrak{b} \subseteq \mathfrak{p}$ and $r \notin \mathfrak{p}$. The condition $\mathbb{V}(\mathfrak{b}) \subseteq \mathbb{V}(\mathfrak{a})$ implies that $\mathfrak{a} \subseteq \mathfrak{p}$. So $r \in \mathfrak{a}$ implies that $r \in \mathfrak{p}$. We obtain a contradication. Therefore we have $\mathfrak{a} \subseteq \mathfrak{b}$. - ii) Let $F: \mathsf{Top}X \to \mathsf{Ab}$ be the presheaf of constant functions on X. Let $s_1 \in F(\{1\})$ and $s_2 \in F(\{2\})$ be the realvalued functions such that $s_1(1) = 1 \neq 2 = s_2(2)$. Then $\{s_1, s_2\}$ agrees on the overlap $\{1\} \cap \{2\} = \emptyset$. But if there exists $s \in F(X) = F(\{1\} \cup \{2\})$ such that $s|_1 = s_1$ and $s|_2 = s_2$, then s is not constant on $\{1,2\}$. So F is not a sheaf. - iii) Let $F: \mathsf{Top}X \to \mathsf{Ab}$ be the presheaf of constant functions on X. Let F^+ be the sheafification of F. Let U be open in X and $s: U \to \bigsqcup_{x \in U} F_x$ in $F^+(U)$. By definition, for any $x \in U$, there exist $V \subseteq U$ with $x \in V$ and $t \in F(V)$ such that $s(y) = t_v \in F_v$ for all $y \in V$. Since $t \in F(V)$ is a constant function, $t : V \to \mathbb{R}$ is given by $t(y) = c_V$ for some $c_V \in \mathbb{R}$. Hence $s(y) = t_V = c_V$ for $y \in V$. That is, s is constant on V, which is an open neighbourhood of x. That proves that s is a locally constant function. We deduce that F^+ is the sheaf of locally constant functions. - iv) The statement is true for any topological space X. If X is reducible, then $X = X_1 \cup X_2$ for closed sets $X_1, X_2 \subsetneq X$. Then $X \setminus X_1$ is a non-empty open set of X. The closure $$\overline{X_1 \setminus X_1} \subseteq X_2 \subsetneq X$$ since X_2 is closed. So $X \setminus X_1$ is not dense in X. Conversely, suppose that X has a non-empty non-dense open subset *U*. Then $\overline{U} \neq X$. We have $X = \overline{U} \cup (X \setminus U)$. So *X* is reducible. v) Let $\{\mathfrak{p}_i\}_{i\in I}\subseteq\operatorname{Spec} R$. We claim that there exists $i_1,...,i_n\in I$ such that $$\sum_{i \in I} \mathfrak{p}_i = \sum_{k=1}^n \mathfrak{p}_{i_k}$$ Since R is Noetherian, $\sum_{i \in I} \mathfrak{p}_i$ is finitely generated. Let $r_1, ..., r_n \in R$ be the generators. For each r_k , since $r_k \in \sum_{i \in I} \mathfrak{p}_i$, we have $r_k = \sum_{j=1}^{\ell_k} s_j$, where $s_j \in \mathfrak{p}_j$ for some $j \in I$. Therefore, by relabeling, we may assume that $r_1, ..., r_n$ generates $\sum_{i \in I} \mathfrak{p}_i$, where each $r_k \in \mathfrak{p}_{i_k}$. This proves our claim. Let $A \subseteq \operatorname{Spec} R$. We shall prove that A is compact¹. Suppose that $\{U_i\}_{i\in I}$ is an open cover of A. Let $\mathbb{V}(\mathfrak{p}_i) :=$ Spec $R \setminus U_i$. Then $\bigcap_{i \in I} \mathbb{V}(\mathfrak{p}_i) \cap A = \emptyset$. But $$\bigcap_{i \in I} \mathbb{V}(\mathfrak{p}_i) = \mathbb{V}\left(\sum_{i \in I} \mathfrak{p}_i\right) = \mathbb{V}\left(\sum_{k=1}^n \mathfrak{p}_{i_k}\right) = \bigcap_{k=1}^n \mathbb{V}(\mathfrak{p}_{i_k})$$ So $\bigcap_{k=1}^{n} \mathbb{V}(\mathfrak{p}_{i_k}) \cap A = \emptyset$. In order words, $\{U_{i_1},...,U_{i_n}\}$ is a finite subcover. Hence A is compact. yes but something in geometry over a people don't sparter man they're thinkeling about a given space: algebraic is analytic. Using prosi-compact helps. $^{^{1}}$ I shall use compact for quasi-compact as these words mean the same thing (Hausdorff property is not a part of the definition of compactness.) ### **Question 2** Let (X, \mathcal{O}_X) be a scheme. For $s \in \mathcal{O}_X(U)$, show that $s_x = 0 \in \mathcal{O}_{X,x}$ for all x implies that s = 0. Prove that X is reduced \iff all stalks $\mathcal{O}_{X,x}$ are reduced. *Proof.* For each $x \in U$, since $s_x = 0 \in \mathcal{O}_{X,x}$, there exists open $W \subseteq U$ with $x \in W$ such that $s|_W = 0|_W = 0$. The local-to-global condition of sheaf \mathcal{O}_X suggests that s = 0. Suppose that *X* is reduced. Then for each open set *U*, $\mathcal{O}_X(U)$ is a reduced ring. The stalk at $x \in X$ is the ring $$\mathcal{O}_{X,x} = \varinjlim_{U \ni x} \mathcal{O}_X(U)$$ To prove that $\mathcal{O}_{X,x}$ is reduced, we simply need to prove that the direct limit of a directed system of reduced rings is reduced. This follows from Exercise 2.22 of *Atiyah & MacDonald*. Let us write out the details. For $U \ni x$, let $\varphi_U : \mathscr{O}_X(U) \to \mathscr{O}_{X,x}$ be the natural map. Suppose that $\alpha \in \operatorname{Nil}(\mathscr{O}_{X,x})$. Then there exists open $U \subseteq X$ and $\beta \in \mathscr{O}_X(U)$ such that $\alpha = \varphi_U(\beta)$. If $\alpha^n = 0$, then $\varphi(\beta^n) = 0$. Hence there exists open $V \subseteq U$ such that the restriction map $\rho_{UV} : \mathscr{O}_X(U) \to \mathscr{O}_X(V)$ satisfies that $\rho_{UV}(\beta^n) = \rho_{UV}(\beta)^n = 0$. Since $\operatorname{Nil}(\mathscr{O}_X(V)) = \{0\}$, we have $\rho_{UV}(\beta) = 0$. But this implies that $\alpha = \varphi_U(\beta) = \varphi_V \circ \rho_{UV}(\beta) = 0$. Hence $\operatorname{Nil}(\mathscr{O}_{X,x}) = \{0\}$. $\mathscr{O}_{X,x}$ is reduced as claim. $$\mathscr{O}_{X}(U) \xrightarrow{\rho_{UV}} \mathscr{O}_{X}(V)$$ $$\varphi_{U} \swarrow \varphi_{V}$$ $$\mathscr{O}_{X,x}$$ Conversely, suppose that all stalks of \mathcal{O}_X are reduced. Let $U \subseteq X$ be an open set, and let $s \in \text{Nil}(\mathcal{O}_X(U))$. Then $s^n = 0$ for some $n \in \mathbb{N}$. Under the natural map we have $s_x^n = \varphi_{U,x}(s^n) = 0$ for all $x \in U$. Since $\mathcal{O}_{X,x}$ is reduced, we have $s_x = 0$ for all $x \in U$. By the first part we have s = 0. Hence $\mathcal{O}_X(U)$ is reduced. We conclude that the scheme X is reduced. ## **Question 3** Let $X = \operatorname{Spec} R$. Prove that - i) X is irreducible \iff R has a unique minimal prime \mathfrak{p} (hint: nilradical) \iff X has a unique generic point \mathfrak{p} . - ii) X is reduced and irreducible \iff R is an integral domain (you may assume as known that localisation preserves the "reduced" property) *Proof.* i) We prove the first equivalence. Let Nil(R) be the nilradical of R. By definition it is contained in every prime ideal of R. Then R has a unique minimal prime ideal if and only if Nil(R) is prime. Suppose that Nil(R) is not prime. Then there exist $r, s \notin Nil(R)$ such that $rs \in Nil(R)$. Then $\langle rs \rangle \subseteq Nil(R)$, and $$\operatorname{Spec} R = \mathbb{V}(\langle rs \rangle) = \mathbb{V}(\langle r \rangle \langle s \rangle) = \mathring{\mathbb{V}}(r) \cup \mathbb{V}(s)$$ Since V(r) and V(s) are proper closed subsets of Spec R, Spec R is reducible. Conversely, suppose that Spec R is reducible. Then there exist $\mathfrak{p}_1,\mathfrak{p}_2\in\operatorname{Spec} R$ such that $X=\mathbb{V}(\mathfrak{p}_1)\cup\mathbb{V}(\mathfrak{p}_2)$ and $\mathbb{V}(\mathfrak{p}_1),\mathbb{V}(\mathfrak{p}_2)\neq X$. So there exist $r_1\in\mathfrak{p}_1$ and $r_2\in\mathfrak{p}_2$ such that $r_1,r_2\notin\operatorname{Nil}(R)$. But note that $$X = \mathbb{V}(\mathfrak{p}_1) \cup \mathbb{V}(\mathfrak{p}_2) = \mathbb{V}(\mathfrak{p}_1 \cap \mathfrak{p}_2) \Longrightarrow \mathfrak{p}_1 \cap \mathfrak{p}_2 = \mathrm{Nil}(R)$$ So $r_1r_2 \in \mathfrak{p}_1 \cap \mathfrak{p}_2 = \operatorname{Nil}(R)$. Hence $\operatorname{Nil}(R)$ is not prime. The second equivalence is tautological: $$X$$ has a unique generic point $\mathfrak{p} \iff \mathbb{V}(\mathfrak{p}) = X$ $\iff \forall \, \mathfrak{q} \in \operatorname{Spec} R \colon \, \mathfrak{p} \subseteq \mathfrak{q}$ $\iff R$ has a unique minimal prime ideal \mathfrak{p} ii) First we note that reducedness is a local property. That is, R is reduced if and only if R_p is reduced for each $p \in \operatorname{Spec} R$. Let us prove this as a revision of commutative algebra. crese of ser Suppose that R is not reduced. Let $x \in \text{Nil}(R) \setminus \{0\}$. Consider the annihilator $\text{Ann}_R(x) := \{y \in R : xy = 0\}$ which is an ideal of R. Since $1 \notin \text{Ann}_R(x)$, there exists a maximal ideal \mathfrak{m} such that $\text{Ann}_R(x) \subseteq \mathfrak{m}$. Let $\varphi : R \to R_{\mathfrak{m}}$ be the natural map sending r to r/1. Suppose that $\varphi(x) = 0$. There there exists $y \notin \mathfrak{m}$ such that xy = 0, which is impossible by our construction. Hence $\varphi(x) \neq 0$. Since x is nilpotent, $x^n = 0$ for some $n \in \mathbb{N}$. Hence $\varphi(x)^n = 0$ and $\varphi(x) \in \text{Nil}(R_{\mathfrak{m}}) \setminus \{0\}$. The localisation $R_{\mathfrak{m}}$ is not reduced. Conversely, suppose that R is reduced. For each $\mathfrak{p} \in \operatorname{Spec} R$, let $\varphi : R \to R_{\mathfrak{p}}$ be the natural map. By Corollary 3.3 of *Atiyah & MacDonald*, $\operatorname{Nil}(R_{\mathfrak{p}}) = \varphi(\operatorname{Nil}(R)) = \varphi(\{0\}) = \{0\}$. Hence $R_{\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in \operatorname{Spec} R$. Return to the question. From Question 2 we have X is reduced $\iff \mathcal{O}_{X,\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in X \iff R_{\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in \operatorname{Spec} R \iff R$ is reduced Now we note from part (i) that X is reduced and irreducible if and only if $Nil(R) = \{0\}$ and it is prime. But since $R \cong R/\{0\}$, then R is an integral domain if and only if $\{0\}$ is a prime ideal. We thus finish the proof. \square # **Question 4** Let (X, \mathcal{O}) be a scheme. i) If R is a local ring, show that $$\operatorname{Mor}(\operatorname{Spec} R, X) \xrightarrow{1:1} \bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{local rings}}(\mathscr{O}_{x}, R)$$ *Hint:* for φ : $m \mapsto x$ show that $x \in \overline{\varphi(p)}$ for any p. ii) If K is a field, show that Mor(Spec K, X) and $$\operatorname{Mor}(\operatorname{Spec} K, X) \xleftarrow{1:1} \bigsqcup_{x \in X} \{ \text{field extensions } \kappa(x) \hookrightarrow K \}$$ $(\kappa(x) := \mathcal{O}_x/\mathfrak{m}_x$, where \mathfrak{m}_x is the unique maximal ideal of \mathcal{O}_x .) iii) The **Zariski tangent space** at x is defined as $T_x = (\mathfrak{m}_x/\mathfrak{m}_x^2)^*$ (dual over the field $\kappa(x) = \mathcal{O}_x/\mathfrak{m}_x$). Let X be a scheme over a field k, meaning that we are given a morphism $X \to \operatorname{Spec} k$. Convince yourself that this means that locally X is the Spec of a k-algebra, not just the Spec of a ring. Show that $$\operatorname{Mor}(\operatorname{Spec}(k[\varepsilon]/\varepsilon^2), X) \overset{1:1}{\longleftrightarrow} \bigsqcup_{\substack{x \in X : \kappa(x) \cong k \\ \text{as } k\text{-algebras}}} \operatorname{T}_x$$ (On the LHS, we mean morphisms of schemes over k, so they commute with maps to Spec k, and maps of sheaves are k-algebra homomorphisms.) Remark. If locally X is the Spec of finitely generated k-algebras, and k is algebraically closed, then $\kappa(x) \cong k$ at closed points $x \in X$. Comment on what happens for $X = \operatorname{Spec}(k[x]/x^2)$. (*Compare Sec. 0.2 of Notes.*) *Proof.* i) Recall that a morphism of schemes from Spec R to X is $(f, f^{\#})$, where $f : \operatorname{Spec} R \to X$ is continuous, and $f^{\#} : \mathscr{O} \to f_{*}\mathscr{O}_{\operatorname{Spec} R}$ is a morphism of sheaves of rings, and for each $\mathfrak{p} \in \operatorname{Spec} R$, the map $f^{\#}_{\mathfrak{p}} : \mathscr{O}_{f(\mathfrak{p})} \to \mathscr{O}_{\operatorname{Spec} R, \mathfrak{p}} = R_{\mathfrak{p}}$ is a homomorphism of local rings. Let \mathfrak{m} be the maximal ideal of R. First we note that the natural map $\varphi: R \to R_{\mathfrak{m}}$ is a local ring isomorphism, because $R \setminus \mathfrak{m}$ is the set of units of R. If $(f, f^{\#})$ is a scheme morphism from Spec R to X, then at $f(\mathfrak{m})$, we have the local ring homomorphism $f_{\mathfrak{m}}^{\#}: \mathcal{O}_{f(\mathfrak{m})} \to R_{\mathfrak{m}} \cong R$. Hence $(f, f^{\#})$ determines $(f(\mathfrak{m}), f_{\mathfrak{m}}^{\#}) \in \coprod_{X \in X} \operatorname{Hom}_{\operatorname{local rings}}(\mathcal{O}_{X}, R)$. We denote the map $(f, f^{\#}) \mapsto ((f(\mathfrak{m}), f_{\mathfrak{m}}^{\#}))$ by \mathscr{F} . On the other hand, we fix $x \in X$ and let $\rho : \mathcal{O}_X \to R$ be a local ring homomorphism. Let U be an open neighbourhood of x. Since (X,\mathcal{O}) is a scheme, $(U,\mathcal{O}|_U) \cong (S,\operatorname{Spec} S)$ as locally ringed spaces for some ring S. On the stalk of x we have the local ring isomorphism $\sigma_{x}^{\#} : S_{\mathfrak{q}} = \mathcal{O}_x$ where $\mathfrak{q} \in \operatorname{Spec} S$. Consider the composition the stalk of x we have the local ring isomorphism $\sigma_x^\#: S_\mathfrak{q} \to \mathscr{O}_x$ where $\mathfrak{q} \in \operatorname{Spec} S$. Consider the composition ring homomorphism $\psi\colon S \xrightarrow{\varphi} S_\mathfrak{q} \xrightarrow{\sigma_x^\#} \mathscr{O}_x \xrightarrow{p} R$. Then ψ induces a morphism of locally ringed spaces $(\widetilde{f},\widetilde{f}^\#)$ from $\operatorname{Spec} R$ to $U \subseteq X$. We denote the map $(x,\rho) \mapsto (\widetilde{f},\widetilde{f}^\#)$ by \mathscr{G} . It remains to show that $\mathcal{F} \circ \mathcal{G} = \mathrm{id}$ and $\mathcal{G} \circ \mathcal{F} = \mathrm{id}$. Let $(\widetilde{f}(\mathfrak{m}), \widetilde{f}_{\mathfrak{m}}^{\#}) = \mathscr{F} \circ \mathscr{G}(x, \rho)$. We shall show that $\widetilde{f}(\mathfrak{m}) = x$ and $\widetilde{f}_{\mathfrak{m}}^{\#} = \rho$. Note that the homeomorphism $\sigma : U \to \operatorname{Spec} S$ sends x to \mathfrak{q} . On the stalks, $\widetilde{f} = \sigma^{-1} \circ \operatorname{Spec} \psi$ becomes the map $\rho \circ \sigma_x : S_{\mathfrak{q}} \to R \cong R_{\mathfrak{m}}$. So $$\widetilde{f}(\mathfrak{m}) = \sigma^{-1} \circ (\operatorname{Spec} \psi)(\mathfrak{m}) = \sigma^{-1}(\mathfrak{q}) = x$$ And $$\widetilde{f}_{\mathfrak{m}}^{\#}=\psi_{\mathfrak{m}}^{\#}\circ(\sigma^{-1})_{\mathfrak{q}}^{\#}=\rho\circ\sigma_{x}^{\#}\circ(\sigma^{-1})_{\mathfrak{q}}^{\#}=\rho$$ Let $(\widetilde{f}, \widetilde{f}^{\#}) = \mathcal{G} \circ \mathcal{F}(f, f^{\#})$. We shall show that $f = \widetilde{f}$ and $f^{\#} = \widetilde{f}^{\#}$. Let $x = f(\mathfrak{m})$. For any $\mathfrak{p} \in \operatorname{Spec} R$, since $\mathfrak{m} \in \overline{\{\mathfrak{p}\}} = \mathbb{V}(\mathfrak{p})$, we have $$x = f(\mathfrak{m}) \in f(\overline{\{\mathfrak{p}\}}) \subseteq \overline{\{f(\mathfrak{p})\}}$$ We claim that $f(\operatorname{Spec} R) \subseteq U$ for any open neighbourhood U of x. Suppose not. There is $\mathfrak{p} \in \operatorname{Spec} R$ such that $f(\mathfrak{p}) \in X \setminus U$. Note that $X \setminus U$ is closed. Therefore $$x \in \overline{\{f(\mathfrak{p})\}} \subseteq X \setminus U$$ which is a contradication. Next we fix U as in the definition of \widetilde{f} (so we also fix an isomorphism $\sigma: U \to \operatorname{Spec} S$.) Then $\sigma \circ f$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$. Since the functor $\operatorname{Spec} S$. Ring $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$. Since the functor $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$. Since the functor $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of locally ringed spaces from $\operatorname{Spec} S$ is a morphism of local ringed spaces from $\operatorname{Spec} S$ is a $$(\operatorname{Spec} \xi)_{\mathfrak{m}}^{\#} \circ \varphi(s) = (\operatorname{Spec} \xi)_{\mathfrak{m}}^{\#} \left(\frac{s}{1}\right) = \frac{\xi(s)}{\xi(1)} = \xi(s)$$ We conclude that there is a bijective correspondence: $$\operatorname{Mor}(\operatorname{Spec} R, X) \stackrel{1:1}{\longleftrightarrow} \bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{local rings}}(\mathcal{O}_x, R)$$ ii) We note that for a field K, the prime specturm $\operatorname{Spec} K = \{\{0\}\}$, K is a local ring with maximal ideal $\{0\}$. Suppose that $\varphi : \mathcal{O}_x \to K$ is a local ring homomorphism. Then by definition $\ker \varphi = \varphi^{-1}(\{0\}) = \mathfrak{m}_x$. By the universal property of quotient ring, there exists a unique ring homomorphism $\psi : \kappa(x) := \mathcal{O}_x/\mathfrak{m}_x \to K$ such that $\psi \circ \pi = \varphi$. $$\begin{array}{ccc} \mathcal{O}_x & \xrightarrow{\varphi} & K \\ \pi \downarrow & & \exists ! \psi \end{array}$$ Since $\ker \varphi \neq \mathcal{O}_x$, $\psi \neq 0$. Hence $\psi : \kappa(x) \to K$ is a field extension. Furthermore, the assignment $\varphi \mapsto \psi$ is bijective. Hence we have the bijective correspondence $$\bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{local\,rings}}(\mathscr{O}_x,K) \overset{1:1}{\longleftrightarrow} \bigsqcup_{x \in X} \{ \text{field extensions } \kappa(x) \hookrightarrow K \}$$ Combining with the result of (i), we obtain the claimed correspondence of (ii). iii) First, we claim that $R := k[\varepsilon]/\langle \varepsilon^2 \rangle$ is a local ring with maximal ideal $\langle \varepsilon \rangle$. Let $\mathfrak{p} \in \operatorname{Spec} k[\varepsilon]$ such that $\pi(\mathfrak{p}) \neq 0 \in \operatorname{Spec} k[\varepsilon]$ *R*. Then $\langle \varepsilon^2 \rangle \subseteq \mathfrak{p}$. Since \mathfrak{p} is prime, $\varepsilon \in \mathfrak{p}$. Hence $\langle \varepsilon \rangle \subseteq \pi(\mathfrak{p})$. But $\langle \varepsilon \rangle$ is maximal in *R*, because $R/\langle \varepsilon \rangle \cong k$ is a field. Hence $\mathfrak{p} = \langle \varepsilon \rangle \in \operatorname{Spec} R$. We deduce that *R* is local, and $\operatorname{Spec} R = \{\langle \varepsilon \rangle\}$. Let $\operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x,R)$ be the set of maps $\varphi:\mathscr{O}_x\to R$ which are both k-algebra homomorphisms and local ring homomorphisms. Let $x \in X$ such that $\kappa(x) \cong k$ as k-algebras. We claim that there is a bijective correspondence: $$\operatorname{Hom}_{\operatorname{loc}}^{k}(\mathscr{O}_{x},R) \longleftrightarrow \operatorname{Hom}_{\kappa(x)}(\mathfrak{m}_{x}/\mathfrak{m}_{x}^{2},\kappa(x)) =: (\mathfrak{m}_{x}/\mathfrak{m}_{x}^{2})^{\vee}$$ Let $\varphi \in \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R)$. by definition $\varphi(\mathfrak{m}_x) \subseteq \varepsilon$. Then $\varphi(\mathfrak{m}_x^2) \subseteq \langle \varepsilon \rangle^2 = \langle \varepsilon^2 \rangle = \{0\}$. Hence φ restricting on \mathfrak{m}_x induces the map $\widetilde{\varphi} \in \operatorname{Hom}_{\operatorname{loc}}^k(\mathfrak{m}_x/\mathfrak{m}_x^2, R)$ with $\operatorname{im} \widetilde{\varphi} \subseteq \langle \varepsilon \rangle / \langle \varepsilon^2 \rangle$. Let $\sigma : R \twoheadrightarrow k$ be the k-linear map given by $a + b\varepsilon \mapsto b$./Then $\sigma \circ \widetilde{\varphi} \in (\mathfrak{m}_x/\mathfrak{m}_x^2)^{\vee}$ as a k-linear map. Conversely, let $f \in (\mathfrak{m}_x/\mathfrak{m}_x^2)^{\vee}$. Consider the k-linear map $g : \mathfrak{m}_x \to k\varepsilon$ given by the composition $$\mathfrak{m}_{x} \xrightarrow{\pi} \mathfrak{m}_{x}/\mathfrak{m}_{x}^{2} \xrightarrow{f} \kappa(x) \xrightarrow{\cong} k\varepsilon \sqrt{$$ Consider the short exact sequence of *k*-vector spaces: $$0 \longrightarrow \mathfrak{m}_x \longrightarrow \mathscr{O}_x \longrightarrow \mathscr{O}_x/\mathfrak{m}_x \longrightarrow 0$$ Since k is a field, the sequence splits. So there exists a retraction $r: \mathcal{O}_x \to \mathfrak{m}_x$. Hence we can construct a k-linear map $\psi: \mathcal{O}_x \to k \oplus k\varepsilon \cong k[\varepsilon]/\langle \varepsilon^2 \rangle$ such that the following diagram commutes and hence gives a splitting of the short exact sequence above. $$0 \longrightarrow \mathfrak{m}_{x} \xrightarrow{r} \mathscr{O}_{x} \xrightarrow{\pi_{x}} \mathscr{O}_{x}/\mathfrak{m}_{x} \longrightarrow 0$$ $$g \downarrow \qquad \downarrow \psi \qquad \downarrow \cong$$ $$0 \longrightarrow k\varepsilon \longrightarrow k \oplus k\varepsilon \longrightarrow k \longrightarrow 0$$ $$\stackrel{\stackrel{\circ}{=}}{\underset{k[\varepsilon]}{}}/\langle \varepsilon^{2} \rangle$$ More explicitly, $\psi(s) = \pi_x(s) + g \circ r(s)\varepsilon$. But we note that by construction ψ is also a ring homomorphism, and $\psi(\mathfrak{m}_x) \subseteq k\varepsilon = \langle \varepsilon \rangle$. Therefore $\psi \in \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R)$. We can explicitly verify that we have constructed mutually inverse maps $\varphi \mapsto \sigma \circ \widetilde{\varphi}$ and $f \mapsto \psi$. Therefore our claim is proven. Let $x \in X$ such that $\kappa(x) \not\equiv k$. Then the only k-algebra homomorphism from $\kappa(x)$ to k is the zero map. Suppose there is $\varphi \in \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R)$. Then we can construct a k-algebra homomorphism ψ as in the following diagram: $$\begin{array}{ccc} \mathscr{O}_{x} & \xrightarrow{\varphi} & R & \xrightarrow{\pi} & k \\ \pi_{x} \downarrow & & & & \exists! \psi \\ \kappa(x) & & & & & & & \\ \end{array}$$ Therefore $\psi = 0$. We have $\operatorname{im} \varphi \subseteq \ker \pi = \langle \varepsilon \rangle$. This is impossible as $1 \in \operatorname{im} \varphi$. Hence $\operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R) = \varnothing$. In summary, we have the bijective correspondence $$\bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R) \overset{1:1}{\longleftrightarrow} \bigsqcup_{\substack{x \in X : \kappa(x) \cong k \\ \operatorname{as } k\text{-algebras}}} \operatorname{T}_x$$ Finally, the essentially same proof as in (i) shows that there is a bijective correspondence $$\operatorname{Mor}(\operatorname{Spec}(k[\varepsilon]/\varepsilon^2), X) \stackrel{\text{1:1}}{\longleftrightarrow} \bigsqcup_{x \in X} \operatorname{Hom}_{\operatorname{loc}}^k(\mathscr{O}_x, R)$$ which establishes the claimed result in (iii). ### Question 5. A non-affine scheme In topology, a classic example of a non-Hausdorff space that locally looks Euclidean is the line with two origins: $$(\mathbb{R} \times \{1\} \sqcup \mathbb{R} \times \{2\})/((x,1) \sim (x,2) \text{ for } x \neq 0)$$ Note that $\sigma_1 = (0,1) \neq (0,2) = \sigma_2$ are two origins, but the space near σ_i is still homeomorphic to \mathbb{R} via $\mathbb{R} \times \{i\}$. It is not Hausdorff since any two neighbourhoods of σ_1, σ_2 intersect. In algebraic geometry, Spec k[x] is the line k with the Zariski topology and Spec $k[x]_{(x)}$ is the germ of the line at $0 \in k$. i) Let $R := k[x]_{(x)}$. Show that Spec $R = \{(0), (x)\}$ with $$\mathcal{O}_{\operatorname{Spec} R}: \qquad \varnothing \longrightarrow 0$$ $$\operatorname{Spec} R \longrightarrow R$$ $$D_x = \{(0)\} \longrightarrow k(x) = \operatorname{Frac} R$$ ii) Let $X = \{\sigma_1, \sigma_2, \ell\}$ with the basis of open sets $D_1 = \{\sigma_1, \ell\}$, $D_2 = \{\sigma_2, \ell\}$, $D_{12} = \{\ell\}$. Define the presheaf \mathcal{O} by $\mathcal{O}(X) = \mathcal{O}(D_1) = \mathcal{O}(D_2) = k[x]_{(x)}$, $\mathcal{O}(D_{12}) = k(x) = \operatorname{Frac}(k[x]_{(x)})$, $\mathcal{O}(\varnothing) = 0$, and the restriction homomorphisms are given by id: $\mathcal{O}(X) \to \mathcal{O}(D_i)$ and inclusion $\mathcal{O}(X) \to \mathcal{O}(D_{12})$. Show that (X, \mathcal{O}) is a scheme that is not affine. Proof. i) Since $k[x]/\langle x\rangle \cong k$ is a field, $\langle x\rangle$ is a maximal ideal of k[x]. Hence $R=k[x]_{\langle x\rangle}$ is a local ring. We know that $\operatorname{Spec} R=\{\varphi(\mathfrak{p})\colon \mathfrak{p}\in\operatorname{Spec} k[x],\ \mathfrak{p}\subseteq\langle x\rangle\}$. For $\mathfrak{p}\in\operatorname{Spec} k[x]$ such that $\mathfrak{p}\subseteq\langle x\rangle$, let $f(x)\in\mathfrak{p}$. Then f(x)=xg(x) for some $g\in k[x]$. Since $x\notin\mathfrak{p}$ and \mathfrak{p} is prime, $g\in\mathfrak{p}$. Hence $f(x)=x^2h(x)$ for some $h\in k[x]$. Therefore we must have f=0. Hence $\mathfrak{p}=\{0\}$. We have thus shown that $\operatorname{Spec} R=\{\{0\},\langle x\rangle\}$. The Zariski open subsets are $D_0=\varnothing$, $D_1=\operatorname{Spec} R$, and $D_x=\{\{0\}\}$. By the construction of $\mathscr{O}_{\operatorname{Spec} R}$, we have $$\mathcal{O}_{\operatorname{Spec} R}(\varnothing) = R_0 = \{0\}, \qquad \mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R) = R_1 = R, \qquad \mathcal{O}_{\operatorname{Spec} R}(D_x) = R_x$$ We claim that $R_x \cong k(x)$. For $f \in k[x] \setminus \{0\}$, let $f(x) = x^m g(x)$, where gcd(g(x), x) = 1. Then $1/g(x) \in R = k[x]_{\langle x \rangle}$. And $1/f(x) = (1/g(x))/x^m \in R_x$. Hence R_x is the field Frac k[x] = k(x). ii) It is straightforward to verify that \mathcal{O} is a sheaf and (X,\mathcal{O}) is a locally ringed space. By (i), we note that on the open set D_i , i = 1, 2, $(D_i, \mathcal{O}|_{D_i}) \cong (\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec} R})$ as locally ringed spaces. Therefore (X,\mathcal{O}) is a scheme. Suppose that X is an affine scheme. Then $(X,\mathcal{O}) \cong (\operatorname{Spec} S, \mathcal{O}_{\operatorname{Spec} S})$ for some ring S. Then $k[x]_{\langle x \rangle} = \mathcal{O}(X) \cong S$. But then $\operatorname{Spec} S$ has only two elements, whereas X has three elements. They cannot be homeomorphic topological spaces. Contradication. So X is not an affine scheme. ### **Question 6** Let A, B be Abelian categories. i) Show that $h^X := \text{Hom}_A(X, -) : A \to Ab$ is a left exact functor. - ii) Show that if $h^X(A) \to h^X(B) \to h^X(C)$ is exact at $h^X(B)$ for all $X \in A$, then $A \to B \to C$ is exact at B. - iii) Show that $h^{\bullet}: A \to Ab^A$ is a fully faithful contravariant functor, called **contravariant Yoneda embedding**. - iv) Let $F: A \to B$ be a left adjoint functor to $G: B \to A$. Prove that F is right exact and G is left exact. Remark: (iii) and (iv) also hold if Ab is replaced by Set, except the last statement about exactness becomes: F preserves colimits and G preserves limits. *Proof.* i) Suppose that we have a short exact sequence in A: $$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$ In a general Abelian category, the exactness at B is equivalent to that $g \circ f = 0$ and coker $f \circ \ker g = 0$. The sequence above is exact if and only if $f = \ker g$ and $g = \operatorname{coker} f$. Applying the functor h^X , we need to show the exactness of $$0 \longrightarrow \operatorname{Hom}(X,A) \xrightarrow{h^X f} \operatorname{Hom}(X,B) \xrightarrow{h^X g} \operatorname{Hom}(X,C)$$ Since f is a monomorphism, $h^X f(\alpha) = f \circ \alpha = 0$ implies that $\alpha = 0$. Hence $h^X f$ is injective. Hence $h^X f$ is a monomorphism. The sequence is exact at Hom(X,A). Since $g \circ f = 0$, $h^X g \circ h^X f = h^X (g \circ f) = 0$. Let $\alpha \in \operatorname{Hom}(X, B)$ with $h^X g(\alpha) = g \circ \alpha = 0$. By the universal property of $f = \ker g : A \to B$, there exists a unique map $\widetilde{\alpha} : X \to A$ such that $\alpha = f \circ \widetilde{\alpha} = h^X f(\widetilde{\alpha})$. Hence $\ker h^X g = \operatorname{Im} h^X f$. The sequence is exact at $\operatorname{Hom}(X, B)$. We deduce that h^X is left exact. ii) First we take X = A and id \in Hom(A, A). By exactness at Hom(A, B), we have $h^X(g) \circ h^X(f) = h^X(g \circ f) = 0$. Hence $g \circ f \circ \text{id} = h^X(g \circ f) = 0$. Hence $g \circ f \circ \text{id} = h^X(g \circ f) = 0$. Let $\ker g: K \to B$ be the kernel of $g: B \to C$, and let $\operatorname{coker} f: B \to Z$ be the cokernel of $f: A \to B$. Since $g \circ \ker g = h^K g(\ker g) = 0$, by exactness at $\operatorname{Hom}(K, B)$, there exists $\alpha \in \operatorname{Hom}(K, A)$ such that $\ker g = h^K(\alpha) = f \circ \alpha$. On the other hand, since $g \circ f = 0$, by the universal property of $\operatorname{coker} f$, there exists a unique $\beta \in \operatorname{Hom}(C, Z)$ such that $\beta \circ g = \operatorname{coker} f$, as shown in the following diagram: Therefore coker $f \circ \ker g = \beta \circ g \circ f \circ \alpha = \emptyset$. We deduce that $A \xrightarrow{f} B \xrightarrow{g} C$ is exact at B. iii) iv) For $X \in \text{Obj}(A)$ and $Y \in \text{Obj}(B)$, the adjunction $F \dashv G$ implies the isomorphism of Abelian groups $$\operatorname{Hom}_{\mathsf{A}}(F(X), Y) = \operatorname{Hom}_{\mathsf{B}}(X, G(Y))$$ Suppose that the following is a short exact sequence in B: $$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$ For each X, we apply the left exact functor $h^{F(X)}$. So we have the exact sequence $$0 \longrightarrow \operatorname{Hom}(F(X),A) \xrightarrow{h^{F(X)}f} \operatorname{Hom}(F(X),B) \xrightarrow{h^{F(X)}g} \operatorname{Hom}(F(X),C)$$ By functoriality of adjunction, this implies that the following sequence is exact: $$0 \longrightarrow \operatorname{Hom}(X, G(A)) \xrightarrow{h^X G(f)} \operatorname{Hom}(X, G(B)) \xrightarrow{h^X G(g)} \operatorname{Hom}(X, G(C))$$ By (ii) we deduce that the following sequence is exact: $$0 \longrightarrow G(A) \xrightarrow{G(f)} G(B) \xrightarrow{G(g)} G(C) \longrightarrow 0$$ Hence *G* is left exact. From the adjunction $F \dashv G$ we have the adjunction $G^{\mathrm{op}} \dashv F^{\mathrm{op}}$. Hence $F^{\mathrm{op}} : B^{\mathrm{op}} \to A^{\mathrm{op}}$ is a right adjoint, which is left exact. Therefore F is right exact.