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Question 1

The free surface of a fluid moving in two dimensions is given parametrically by r(z,¢) = (z,n(x,t)). Show that a unit
normal to the surface is
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and deduce that the velocity of the surface normal to itself is given by
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Hence show that the kinematic condition that the velocity of the fluid normal to the surface equals the velocity of the surface
normal to itself leads to the boundary condition
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Deduce that fluid particles on the free surface stay on the free surface.

Proof. Lety = n(x,t). The tangent vector:
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The normal vector (on the LHS of the tangent vector):
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The normal velocity of the surface:
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By the kinematic condition, we must have v,, = w - n on y = n, where
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Combining the two equations, we have:
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Changing the partial derivative to convective derivative via Frial vl V, we have:
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Hence the particle with y = r at some time will stay on the free surface forever.

Question 2

Consider small two-dimensional water waves on the free surface of an incompressible irrotational fluid with a velocity
potential ¢(x,y,t), which satisfies Laplace’s equation. Suppose that the free surface has equation y = n(z,t), the water
has depth &, and the bottom is at y = —h. Show that we can choose ¢ such that the boundary conditions
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are satisfied on the free surface y = 7. Show that, when the problem is linearized by neglecting quadratic terms, these



boundary conditions are simplified to
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on y = 0. Show that travelling harmonic waves, with n = A cos(kxz — wt) and ¢ = f(y) sin(kx — wt), are possible provided
w? = gktanh(kh). Find and sketch the particle paths.
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Proof. The velocity potential ¢ satisfies that il and M = v. The kinematic boundary condition on y = 7 is given by:
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Since the fluid is incompressible and irrotational, it satisfies the Bernoulli Theorem everywhere:
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for some scalar field F(t). Aty = 1, p = patm is the atmospheric pressure. We choose F(t) = Patm e dynamic
boundary condition becomes:
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To linearize the boundary conditions, we first use non-dimensionalization:
n=An* T = \1* u = Awu* v = Awv* ¢ = AwA¢* = 2w Aco* " =t/w

where A is the amplitude of the wave, w is the frequency, and ) is the wave length. For smal disturbance, we may assume
that A/\ < 1. The boundary conditions become:
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Negelcting the terms of order O(A?2), we obtain the boundary conditions on y = 7:
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Furthermore, by expanding all quantities into Taylor series of  and neglecting the non-linear terms, the boundary
conditions becomes
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We substitute the travelling harmonic wave solutions n = A cos(kx — wt) and ¢ = f(y) sin(kz — wt) (they can be obtained
by separation of variables) into the Laplace equation:
f// _ ka =0

and into the boundary conditions:
f(0) = Aw wf(0) = Ag

In addition the boundary condition at the base needs to be satisfied:
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The solution is f(y) = B cosh(k(y+h)) for some constant B. The boundary conditions on the free surface give the linear



equations:
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The equations admit non-trivial solutions if the determinant is zero. From this we obtain the dispersion relation:
w? = gk tanh(kh)

The particles on the surface moves vertically, whose paths are describe by y(t) = n(z,t) = A cos(kz — wt). O

Question 3

Inviscid incompressible fluid of density p, occupies the region y > 0 and lies vertically above a simliar fluid of greater den-
sity p; in y < 0. Small ampltiude waves perturb the interface between the fluids so that its equation becomes y = n(z, ).
Assuming n and the fluid velocites to be small, derive three boundary conditions relating n and the velocity potentials ¢,
¢o of the two fluids at y = 0. If n(z, t) = A cos(kx — wt), with k£ > 0, show that
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Proof. Suppose that ¢; and ¢, are the velocity potential of the two fluids. Kinematic boundary condition:
On 0919y _0¢1 _ O¢a _ On  O¢s On

ot " Oxox Oy oy 0t owox MY
After linearization, it becomes
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By Bernoulli’s Theorem,
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On y = 7, the pressure p; = p,. We have
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We can choose the scalar fields Fi(t), F»(t) such that p; Fi(t) = poF5(¢t). After linearization, the dynamic boundary

condition becomes
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In addition, if the fluid is sufficiently deep, we can employ the far field approximation:
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These are the boundary conditions satisifed by 7, ¢1, and ¢,.
If n(x,t) = Acos(kx — wt), then the velocity potentials have the form ¢ (z,y,t) = Be*¥sin(kx — wt), ¢a(z,y,t) =

Ce~ %Y sin(kx — wt). Substitute them into the boundary conditions:
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The equations admit non-trivial solutions if the determinant is zero. From this we obtain the dispersion relation:
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Question 4

Suppose now that there is a surface tension 7' between the two fluids of question 3 and that p; < p,. Derive the linearized
boundary conditions to be satisfied at y = 0. Show that the frequency w is now related to the wave number % by the
equation

(p1 + p2)w? = k(Tk* = (po — p1)g).

Deduce that the waves are unstable if their wavelength )\ exceeds a critical value

Ao = 2y | —
(p2 —p1)g

Proof. Suppose that the pressure of each fluid on the surface is p; and p, respectively. We need to modify the dynamic boundary
condition by taking the suface tension 7" into account. The balance of forces on the surface:
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Taking the derivative with respect to = at both sides:
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By definition of the curvature x, kn = d7/ds. We obtain:
p2—p1 =Tk

After linearizationm x = 7),,. The dynamic boundary boundary condition becomes p> — p; = Tn,,. Combine this with
Bernoulli’s Theorem we obtain:
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We substitute the travelling harmonic wave 7(z,t) = Acos(kx — wt), ¢1(x,y,t) = Be*sin(kz — wt), and ¢y(z,y,t) =
—Be~ ™ sin(kx — wt) into the equation:

p1(—wB + gA) — po(wB + gA) = —T Ak?



Hence
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The equations admit non-trivial solutions if the determinant is zero. From this we obtain the dispersion relation:

(p1+ p2)w?® = E(Tk* — (p2 — p1)9)

The waves are unstable if w is imaginary. In this case k(Tk? — (p1 — p2)g) < 0. Hence
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Question 5
Water flows steadily with speed U over a corrugated bed y = —h + ¢ cos(kz), where ¢ < h, so that there is a time-

independent disturbance 7(x) to the free surface, which would be at y = 0 but for the corrugations. By writing the velocity
components as
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where ¢(x,y) denotes the velocity potential of the disturbance to the uniform flow, show that the linearized boundary
conditions are
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and hence find 7(x), Deduce that crests on the free surface occur immediately above troughs on the bed if
U? < %tanh(kh),

but that crests on the surface overlie the crests on the bed if this inequality is reversed.

Proof. Considering the uniform flow, the modified kinematic boundary condition now reads:
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After linearization it becomes:
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By Bernoulli’s Theorem:
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We put F = Py §U 2. Neglecting the non-linear terms, we obtain:
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Lastly, we need to determine the boundary condition imposed by the bed. The equation of the bed is v(z) = —h +
¢ cos(kx). Then the normal vector
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We may assume that U >> 0¢/dx. After linearization we obtain
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Suppose that n(z) = Acos(kx) + Bsin(kz) and ¢(z, y) = (Cek¥ + De=*) cos(kx) + (Ee*¥ + Ge™*¥) sin(kx). Substituting
into the boundary condition at y = —h:
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Alternatively we write ¢(x, y) = C’ cosh(k(y+h)) cos(kxz) 4+ (D’ cosh(k(y+h)) — Uesinh(k(y + h))) sin(kz). The boundary

conditions at y = 0:
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= ('sinh(kh) = UB, D'sinh(kh) — Uecosh(kh) = —UA
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= UC'kcosh(kh) = gB, Uk(D' cosh(kh) — Uesinh(kh)) = —gA
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IfU? +# %tanh(kh), then the system has only trivial solution: A = B =C’" =0, D' = Ue.

Therefore

(There must be some problems in the solution but I cannot find it...) O



