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Question 1

The free surface of a fluid moving in two dimensions is given parametrically by r(x, t) = (x, η(x, t)). Show that a unit
normal to the surface is

n =
1√

1 + η2x
(−ηx, 1),

and deduce that the velocity of the surface normal to itself is given by

∂r

∂t
· n =

ηt√
1 + η2x

.

Hence show that the kinematic condition that the velocity of the fluid normal to the surface equals the velocity of the surface
normal to itself leads to the boundary condition

v =
∂η

∂t
+ u

∂η

∂x
on y = η.

Deduce that fluid particles on the free surface stay on the free surface.

Proof. Let y = η(x, t). The tangent vector:

τ =

(
dx

ds
,
dy

ds

)
=

(
dx√

dx2 + dy2
,

dy√
dx2 + dy2

)
=

(
1√

1 + η2x
,

ηx√
1 + η2x

)
The normal vector (on the LHS of the tangent vector):

n · τ = 0 =⇒ n =
1√

1 + η2x
(−ηx, 1)

The normal velocity of the surface:

vn =
∂r

∂t
· n = (0, ηt) ·

1√
1 + η2x

(−ηx, 1) =
ηt√
1 + η2x

By the kinematic condition, we must have vn = u · n on y = η, where

u · n = (u, v) · 1√
1 + η2x

(−ηx, 1) =
−ηxu+ v√

1 + η2x

Combining the two equations, we have:

v = ηxu+ ηt =
∂η

∂t
+ u

∂η

∂x
on y = η.

Changing the partial derivative to convective derivative via
∂

∂t
=

D

Dt
− u ·∇, we have:

Dy

Dt
= v =

Dη

Dt
− u ·∇η + u

∂η

∂x
=

Dη

Dt
=⇒ D

Dt
(y − η) = 0

Hence the particle with y = η at some time will stay on the free surface forever.

Question 2

Consider small two-dimensional water waves on the free surface of an incompressible irrotational fluid with a velocity
potential φ(x, y, t), which satisfies Laplace’s equation. Suppose that the free surface has equation y = η(x, t), the water
has depth h, and the bottom is at y = −h. Show that we can choose φ such that the boundary conditions

∂φ

∂y
=
∂η

∂t
+
∂φ

∂x

∂η

∂x
,

∂φ

∂t
+

1

2
|∇φ|2 + gη = 0

are satisfied on the free surface y = η. Show that, when the problem is linearized by neglecting quadratic terms, these
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boundary conditions are simplified to

∂φ

∂y
=
∂η

∂t
,

∂φ

∂t
+ gη = 0

on y = 0. Show that travelling harmonic waves, with η = A cos(kx− ωt) and φ = f(y) sin(kx− ωt), are possible provided
ω2 = gk tanh(kh). Find and sketch the particle paths.

Proof. The velocity potential φ satisfies that
∂φ

∂x
= u and

∂φ

∂y
= v. The kinematic boundary condition on y = η is given by:

∂φ

∂y
=
∂η

∂t
+
∂φ

∂x

∂η

∂x

Since the fluid is incompressible and irrotational, it satisfies the Bernoulli Theorem everywhere:

∂φ

∂t
+
p

ρ
+

1

2
|∇φ|2 + gy = F (t)

for some scalar field F (t). At y = η, p = patm is the atmospheric pressure. We choose F (t) =
patm
ρ
. The dynamic

boundary condition becomes:

∂φ

∂t
+

1

2
|∇φ|2 + gη = 0

To linearize the boundary conditions, we first use non-dimensionalization:

η = Aη∗ x = λx∗ u = Aωu∗ v = Aωv∗ φ = Aωλφ∗ = 2πAcφ∗ t∗ = t/ω

whereA is the amplitude of the wave, ω is the frequency, and λ is the wave length. For smal disturbance, wemay assume
that A/λ� 1. The boundary conditions become:

Aω
∂φ∗

∂y∗
= Aω

∂η∗

∂t∗
+Aω · A

λ
· ∂φ

∗

∂x∗
∂η∗

∂x∗
, Aω2λ

∂φ∗

∂t∗
+A2ω2 1

2
|∇φ∗|2 +Agη∗ = 0

Negelcting the terms of order O(A2), we obtain the boundary conditions on y = η:

∂φ

∂y
=
∂η

∂t
,

∂φ

∂t
+ gη = 0

Furthermore, by expanding all quantities into Taylor series of η and neglecting the non-linear terms, the boundary
conditions becomes

∂φ

∂y
=
∂η

∂t
,

∂φ

∂t
+ gη = 0 on y = 0

We substitute the travelling harmonic wave solutions η = A cos(kx−ωt) and φ = f(y) sin(kx−ωt) (they can be obtained
by separation of variables) into the Laplace equation:

f ′′ − k2f = 0

and into the boundary conditions:

f ′(0) = Aω ωf(0) = Ag

In addition the boundary condition at the base needs to be satisfied:

∂φ

∂y
= 0 on y = −h =⇒ f ′(−h) = 0

The solution is f(y) = B cosh(k(y+h)) for some constantB. The boundary conditions on the free surface give the linear
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equations: (
ω −k sinh(kh)
g −ω cosh(kh)

)(
A

B

)
=

(
0

0

)

The equations admit non-trivial solutions if the determinant is zero. From this we obtain the dispersion relation:

ω2 = gk tanh(kh)

The particles on the surface moves vertically, whose paths are describe by y(t) = η(x, t) = A cos(kx− ωt).

Question 3

Inviscid incompressible fluid of density ρ2 occupies the region y > 0 and lies vertically above a simliar fluid of greater den-
sity ρ1 in y < 0. Small ampltiude waves perturb the interface between the fluids so that its equation becomes y = η(x, t).
Assuming η and the fluid velocites to be small, derive three boundary conditions relating η and the velocity potentials φ1,
φ2 of the two fluids at y = 0. If η(x, t) = A cos(kx− ωt), with k > 0, show that

ω2 =

(
ρ1 − ρ2
ρ1 + ρ2

)
gk

Proof. Suppose that φ1 and φ2 are the velocity potential of the two fluids. Kinematic boundary condition:

∂η

∂t
+
∂φ1
∂x

∂η

∂x
=
∂φ1
∂y

=
∂φ2
∂y

=
∂η

∂t
+
∂φ2
∂x

∂η

∂x
on y = η

After linearization, it becomes
∂η

∂t
=
∂φ1
∂y

=
∂φ2
∂y

on y = 0

By Bernoulli’s Theorem,

∂φ1
∂t

+
p1
ρ1

+
1

2
|∇φ1|2 + gy = F1(t)

∂φ2
∂t

+
p2
ρ2

+
1

2
|∇φ2|2 + gy = F2(t)

On y = η, the pressure p1 = p2. We have

ρ1

(
∂φ1
∂t

+
1

2
|∇φ1|2 + gη − F1(t)

)
= ρ2

(
∂φ2
∂t

+
1

2
|∇φ2|2 + gη − F2(t)

)
We can choose the scalar fields F1(t), F2(t) such that ρ1F1(t) = ρ2F2(t). After linearization, the dynamic boundary
condition becomes

ρ1

(
∂φ1
∂t

+ gη

)
= ρ2

(
∂φ2
∂t

+ gη

)
on y = 0

In addition, if the fluid is sufficiently deep, we can employ the far field approximation:

∇φ1 → 0 as y → −∞ ∇φ2 → 0 as y → +∞

These are the boundary conditions satisifed by η, φ1, and φ2.

If η(x, t) = A cos(kx − ωt), then the velocity potentials have the form φ1(x, y, t) = Beky sin(kx − ωt), φ2(x, y, t) =

Ce−ky sin(kx− ωt). Substitute them into the boundary conditions:Aω = Bk = −Ck

ρ1(−ωB + gA) = ρ2(−ωC + gA)
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or (
ω −k

−(ρ1 − ρ2)g (ρ1 + ρ2)ω

)(
A

B

)
=

(
0

0

)

The equations admit non-trivial solutions if the determinant is zero. From this we obtain the dispersion relation:

ω2 =
ρ1 − ρ2
ρ1 + ρ2

gk

Question 4

Suppose now that there is a surface tension T between the two fluids of question 3 and that ρ1 < ρ2. Derive the linearized
boundary conditions to be satisfied at y = 0. Show that the frequency ω is now related to the wave number k by the
equation

(ρ1 + ρ2)ω
2 = k(Tk2 − (ρ2 − ρ1)g).

Deduce that the waves are unstable if their wavelength λ exceeds a critical value

λc = 2π

√
T

(ρ2 − ρ1)g
.

Proof. Suppose that the pressure of each fluid on the surface is p1 and p2 respectively. We need tomodify the dynamic boundary
condition by taking the suface tension T into account. The balance of forces on the surface:∫ x=b

x=a

(p2 − p1)n ds = (Tτ )x=b
x=a

where

ds =
√

1 + η2x dx τ =
1√

1 + η2x

(
1

ηx

)
n =

1√
1 + η2x

(
−ηx
1

)

Taking the derivative with respect to x at both sides:

(p2 − p1)n =
T√
1 + η2x

∂τ

∂x

By definition of the curvature κ, κn = dτ/ds. We obtain:

p2 − p1 = Tκ

After linearizationm κ ≈ ηxx. The dynamic boundary boundary condition becomes p2 − p1 = Tηxx. Combine this with
Bernoulli’s Theorem we obtain:

ρ1

(
∂φ1
∂t

+ gη

)
− ρ2

(
∂φ2
∂t

+ gη

)
= Tηxx on y = 0

We substitute the travelling harmonic wave η(x, t) = A cos(kx − ωt), φ1(x, y, t) = Beky sin(kx − ωt), and φ2(x, y, t) =

−Be−ky sin(kx− ωt) into the equation:

ρ1(−ωB + gA)− ρ2(ωB + gA) = −TAk2
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Hence (
ω −k

Tk2 + (ρ1 − ρ2)g −(ρ1 + ρ2)ω

)(
A

B

)
=

(
0

0

)

The equations admit non-trivial solutions if the determinant is zero. From this we obtain the dispersion relation:

(ρ1 + ρ2)ω
2 = k(Tk2 − (ρ2 − ρ1)g)

The waves are unstable if ω is imaginary. In this case k(Tk2 − (ρ1 − ρ2)g) < 0. Hence

λ > λc =
2π

k
= 2π

√
T

(ρ2 − ρ1)g

Question 5

Water flows steadily with speed U over a corrugated bed y = −h + ε cos(kx), where ε � h, so that there is a time-
independent disturbance η(x) to the free surface, which would be at y = 0 but for the corrugations. By writing the velocity
components as

u = U +
∂φ

∂x
, v =

∂φ

∂y
,

where φ(x, y) denotes the velocity potential of the disturbance to the uniform flow, show that the linearized boundary
conditions are

∂φ

∂y
= U

dη

dx
, U

∂φ

∂x
+ gη = 0 on y = 0,

∂φ

∂y
= −Ukε sin(kx) on y = −h,

and hence find η(x), Deduce that crests on the free surface occur immediately above troughs on the bed if

U2 <
g

k
tanh(kh),

but that crests on the surface overlie the crests on the bed if this inequality is reversed.

Proof. Considering the uniform flow, the modified kinematic boundary condition now reads:

∂φ

∂y
=
∂η

∂t
+

(
U +

∂φ

∂x

)
∂η

∂x
=

(
U +

∂φ

∂x

)
dη

dx
on y = η

After linearization it becomes:

∂φ

∂y
= U

dη

dx
on y = 0

By Bernoulli’s Theorem:

p

ρ
+

1

2
|Uex +∇φ|2 + gη = F on y = η

We put F =
p

ρ
+

1

2
U2. Neglecting the non-linear terms, we obtain:

U
∂φ

∂x
+ gη = 0 on y = 0
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Lastly, we need to determine the boundary condition imposed by the bed. The equation of the bed is γ(x) = −h +

ε cos(kx). Then the normal vector

n =
1√

1 + γ2x

(
−γx
1

)
=

1√
1 + ε2k2 sin2(kx)

(
εk sin(kx)

1

)

On y = γ(x), (Uex +∇φ) · n = 0. (
U +

∂φ

∂x

)
εk sin(kx) +

∂φ

∂y
= 0

We may assume that U � ∂φ/∂x. After linearization we obtain

∂φ

∂y
= −Ukε sin(kx) on y = −h

Suppose that η(x) = A cos(kx) +B sin(kx) and φ(x, y) = (Ceky +De−ky) cos(kx) + (Eeky +Ge−ky) sin(kx). Substituting
into the boundary condition at y = −h:

∂φ

∂y
= −Ukε sin(kx) =⇒ Ce−kh −Dekh = 0, Ee−kh −Gekh = −Uε

Alternatively we write φ(x, y) = C ′ cosh(k(y+h)) cos(kx)+(D′ cosh(k(y+h))−Uε sinh(k(y+h))) sin(kx). The boundary
conditions at y = 0:

∂φ

∂y
= U

dη

dx
=⇒ C ′k sinh(kh) cos(kx) + (D′k sinh(kh)− kUε cosh(kh)) sin(kx) = Uk(−A sin(kx) +B cos(kx))

=⇒ C ′ sinh(kh) = UB, D′ sinh(kh)− Uε cosh(kh) = −UA

U
∂φ

∂x
+ gη = 0 =⇒ −UC ′k cosh(kh) sin(kx) + Uk(D′ cosh(kh)− Uε sinh(kh)) cos(kx) = −gA cos(kx)− gB sin(kx)

=⇒ UC ′k cosh(kh) = gB, Uk(D′ cosh(kh)− Uε sinh(kh)) = −gA

Therefore (
U − sinh(kh)

g −Uk cosh(kh)

)(
B

C ′

)
=

(
0

0

) (
U sinh(kh)

g Uk cosh(kh)

)(
A

D′

)
=

(
Uε cosh(kh)

U2εk sinh(kh)

)

If U2 6= g

k
tanh(kh), then the system has only trivial solution: A = B = C ′ = 0,D′ = Uε.

(There must be some problems in the solution but I cannot find it...)


