
Peize Liu
St. Peter’s College

University of Oxford

Problem Sheet 1

C7.6: General Relativity II

26 January, 2022



1

Section A: Introductory

Question 1. Tensor Field

Let M be a smooth manifold and recall that X∞(M) denotes the space of vector fields and Ω1(M) the space
of covector fields (1-forms). Show that a map

τ : Ω1(M)× · · · × Ω1(M)︸ ︷︷ ︸
k times

×X∞(M)× · · · × X∞(M)︸ ︷︷ ︸
` times

→ C∞(M)

is induced by a (k, `)-tensor field if, and only if, it is multilinear over C∞(M). Similarly a map

τ : Ω1(M)× · · · × Ω1(M)︸ ︷︷ ︸
k times

×X∞(M)× · · · × X∞(M)︸ ︷︷ ︸
` times

→ X∞(M)

is induced by a (k + 1, `)-tensor field if, and only if, it is multilinear over C∞(M).

Question 2. Lie Bracket

Let M be a smooth manifold.

(a) Let X,Y, Z ∈ X∞(M). Prove the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

(b) Let ∇ be an affine connection on M . Show that the torsion T (X,Y ) := ∇XY− ∇YX − [X,Y ] is a
(1, 2)-tensor field. Here X,Y ∈ X∞(M).

(c) (c) Is the Lie bracket [·, ·] : X∞(M)× X∞(M)→ X∞(M) an affine connection?

Proof. (a) The Lie bracket is the commutator of vector fields: [X,Y ] = X ◦ Y − Y ◦X. So

[X, [Y, Z]] + [Y, [Z,X]] = [X,Y Z − ZY ] + [Y,ZX −XZ]

= XY Z −XZY − Y ZX + ZY X + Y ZX − Y XZ − ZXY +XZY

= XY Z + ZY X − Y XZ − ZXY
= [[X,Y ], Z]

which implies the Jacobi identity.

(b) It suffice to show that T (X,Y ) is a C∞(M)-linear. Since T (X,Y ) = −T (Y,X), it suffices to show this
in the first slot. For f ∈ C∞(M),

T (fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f∇XY − f∇YX − Y (f) ·X − (fX ◦ Y − Y (f) ·X − fY ◦X)

= f(∇XY −∇YX − [X,Y ]) = fT (X,Y )

So T : Γ(TM)× Γ(TM)→ Γ(TM) is induced by the type-(1, 2) tensor field T .

(c) Suppose that the Lie bracket is indeed an affine connection. Then for any f ∈ C∞(M) and X,Y ∈
Γ(TM),

fLXY = LfXY = −LY (fX) = −(fLYX + Y (f) ·X) = fLXY − Y (f) ·X
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which implies that Y (f) ·X = 0. This is absurd (just take X = Y = ∂x, f(x) = x on M = R).

Section B: Core

Question 3. Riemann Tensor

Let X,Y, Z ∈ X∞(M) be smooth vector fields on a Lorentzian manifold (M, g). Show that

(∇∇Z)(X,Y )− (∇∇Z)(Y,X) = ∇X (∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z,

where ∇ is the Levi-Civita connection. I.e. the left- and right-hand sides are equivalent definitions of the
Riemann curvature tensor R(X,Y )Z. In (abstract) index notation, this can be written as

∇µ∇νZλ −∇ν∇µZλ = RλρµνZ
ρ

Proof. Let Tr
sM := TM ⊗ · · · ⊗ TM︸ ︷︷ ︸

r

⊗T∗M ⊗ · · · ⊗ T∗M︸ ︷︷ ︸
s

be the type-(r, s) tensor bundle, and Γ(Tr
sM) be the

algebra of its sections.

Recall that ∇Z ∈ Γ(T1
1M) is given by ∇Z(X, η) = η(∇XZ) for any X ∈ Γ(TM) and η ∈ Γ(T∗M). Then

∇∇Z is a type-(1, 2) tensor field in the following way:

(∇∇Z)(X,Y ) := ∇X(∇Z)(Y ) = tr(∇X(∇Z)⊗ Y )

= tr(∇X(∇Z ⊗ Y )−∇Z ⊗∇XY )

= ∇X∇Y Z − tr(∇Z ⊗∇XY )

where tr is the contraction of indices (in an unambiguous way). Therefore we have

(∇∇Z)(X,Y )− (∇∇Z)(Y,X) = ∇X∇Y Z −∇Y∇XZ − tr(∇Z ⊗ (∇XY −∇YX))

= ∇X∇Y Z −∇Y∇XZ − tr(∇Z ⊗ [X,Y ]) (∇ is torsion-free)

= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

I cannot follow the logic of abstract index equation here. How can we just throw away the Lie bracket without
choosing an orthonormal system of local coordinates? 1

If we work in a local chart {x0, ..., xn} such that g(∂i, ∂j) = ηij . Then [∂i, ∂j ] = 0. And we have the Rieman
curvature in terms of the components:

∇µ∇νZλ −∇ν∇µZλ = RλρµνZ
ρ

Question 4. Parallel Transport

Let (M, g) be a Lorentzian or Riemannian manifold, consider a point p ∈M and let xµ be a local coordinate
system centred at p (i.e. xµ(p) = 0 ). Let X,Y, Z ∈ TpM be three tangent vectors. Let 0 < ε, δ � 1 be very
small. We first parallelly propagate Z along the curve γ, i.e. first from 0 along the straight coordinate line
to εXµ and then along the straight coordinate line to εXµ + δY µ to obtain the vector Zγ(εX + δY ). Next
we parallelly propagate Z along the curve γ′, i.e. first from 0 to δY µ and then to εXµ + δY µ, both along
straight coordinate lines. Denote the resulting vector by Zγ′(εX + δY ).

1My suspicion is supported by this wiki page: www.wikiwand.com/en/Tetrad_formalism#/Manipulation_of_indices

www.wikiwand.com/en/Tetrad_formalism#/Manipulation_of_indices
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Show that to leading order in ε and δ we have

Zλγ (εX + δY )− Zλγ′(εX + δY ) = −εδRλραβ(0)ZρXαY β

thus giving another interpretation of curvature. [Hint: Can you justify that the parallel transport of Z from
0 to εXµ is to leading order Zµ − εΓµνρ(0)XνZρ ? ]

Proof. Let γ : (−t0, t0)→M be the curve with xµ ◦γ(ε) = 0+εXµ+O(ε2). Then ẋµ ◦γ(ε) = Xµ+O(ε). Suppose
that Z(t) is a parallel tangent vector field along γ. Then the covariant derivative is given by:

0 = ∇γ̇Z =

(
dZλ[γ(t)]

dt
+ ΓλµνX

µZν
)
∂λ

In an asymptotic expansion Z(ε) = Z + εZ ′+O(ε2), we find that at O(1) we have (Z ′)λ = −Γλµν(0)XµZν .
Therefore the Z is parallelly transported to (Zλ − εΓλµν(0)XµZν)∂λ.

Next we can compute the parallel transport of Z along the two prescribed curves (to the second order):

Zλγ (εX + δY ) = Zλ(εX)− δΓλµν(εX)Y µ(εX)Zν(εX)

= Zλ − εΓλµν(0)XµZν − δ(Γλµν(0) + εXη∂ηΓ
λ
µν(0))(Y µ − εΓµαβ(0)XαY β)

(
Zν − εΓνσρ(0)XσZρ

)
= Zλ − (εXµ + δY µ)Γλµν(0)Zν + εδΓλµν(0)

(
Γνσρ(0)XσY µZρ + Γµσρ(0)XσY ρZν

)
+ εδXηY µZν∂ηΓ

λ
µν(0)

= Zλ − (εXµ + δY µ)Γλµν(0)Zν + εδXµY νZρ
(

Γλνσ(0)Γσµρ(0) + Γλσρ(0)Γσµν(0) + ∂µΓλνρ(0)
)

For simplicity we suppress the dependence on the coordinates. To the second order, we have

Zλγ (εX + δY )− Zλγ′(εX + δY ) = εδ(XµY ν −XνY µ)Zρ
(

ΓλνσΓσµρ + ΓλσρΓ
σ
µν + ∂µΓλνρ

)
= εδXµY νZρ

(
ΓλνσΓσµρ + ∂µΓλνρ − ΓλµσΓσνρ − ∂νΓλµρ

)
(torsion-free: Γρµν = Γρνµ)

If we take the component equation obtained in Question 3, and expand all covariant derivatives (which is
as painful as the calculations above), then we shall find the Riemann curvature in terms of the Christoffel
symbols:

Rλρνµ = 2
(
∂[νΓλµ]ρ − Γλσ[νΓσµ]ρ

)
= ΓλµσΓσνρ − ΓλνσΓσµρ + ∂νΓλµρ − ∂µΓλνρ

Therefore we deduce that

Zλγ (εX + δY )− Zλγ′(εX + δY ) = −εδRλρνµ(0)XµY νZρ

Question 5. Lie Derivative

Let M be a smooth manifold and let X,Y be smooth vector fields. Show that for a general (k, `)-tensor field
T we have the following identity for the Lie derivative:

LX (LY T )− LY (LXT ) = L[X,Y ]T.

Proof. If we can invoke the result that LXY = [X,Y ], which is proven in the lectures, then the equation we want
is just Jacobi identity in disguise:

[X, [Y, T ]] + [Y, [T,X]] + [T, [X,Y ]] = 0 ⇐⇒ [X, [Y, T ]]− [Y, [X,T ]] = [[X,Y ], T ]

⇐⇒ LX (LY T )− LY (LXT ) = L[X,Y ]T
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Question 6. Killing Vectors

(a) Let (M, g) be an n-dimensional Lorentzian (or Riemannian) manifold. Use the equation

∇a∇bKc = RdabcKd (3)

from the lectures to show that the maximum number of linearly independent Killing vector fields (KVF)

on M is
n(n+ 1)

2
.

[Hint: Derive a system of ODEs with initial data given at a point p in M .]

(b) Consider 4-dimensional Minkowski spacetime. Write down equation (3) in standard Cartesian coordi-
nates and derive the 10-dimensional space of Killing vectors on Minkowski spacetime. Choose the basis
vectors such that they form the infinitesimal generators of translations and Lorentz transformations.

Proof. (a) The phrasing of the question is a bit confusing, as we can only have n C∞(M)-linearly independent
vector fields on an n-dimensional manifold. I think it really asks to find 1

2n(n+1) R-linearly independent
Killing vector fields.

Fix p ∈M . Suppose that K is a Killing vector field. We shall prove that, if K(p) = 0 and ∇K|p = 0,
then K = 0 on the connected component of p in M .2

The Killing equation (3) in coordinate-independent form is given by

(∇∇K)(X,Y ) = R(X,K)Y

We define on the bundle TM ⊕ End(TM) ∼= TM ⊕ T1
1M a new connection D:

DX(Y, σ) := (∇XY − σ(X),∇Xσ −R(X,Y ))

Note that by Killing equation, we have

DX(K,∇K) = (∇XK −∇XK,∇X∇K −R(X,K)) = 0

for all X ∈ Γ(TM). Then (K,∇K) is a parallel section of D.

We take q ∈ M lying in the same path component of p, and a curve γ joining p and q. Then
Dγ̇(K,∇K) = 0 on γ. This is a system of first-order ODEs with the initial condition (K,∇K)|p = 0.
By Picard’s theorem it admits the unique solution (K,∇K) = 0 on γ. Hence K(q) = 0. This shows
that {q ∈M : K(q) = 0} is an open and closed set, and hence it is the connected component of p in
M .

Finally, we take a local trivialisation U⊕Rn⊕Rn2 of TM⊕End(TM) in a neighbourhood U of p ∈M .
If K is a Killing field, then ∇µKν = −∇νKµ. So the local matrix of ∇K at p is anti-symmetric. It
follows that

V := span
{

(K,∇K)|p ∈ U ⊕ Rn ⊕ Rn
2
: LKg = 0

}
, dimV 6 n+

1

2
n(n− 1) =

1

2
n(n+ 1)

Let m = 1
2n(n + 1). Suppose that K1, ...,Km are R-linearly independent Killing vector fields on

M . Then they form a basis of V at p ∈ M . If K0 is another Killing vector field, then there exists
a1, ..., am ∈ R such that (Km,∇Km)|p =

∑m
i=1 ai(Ki,∇Ki)|p. The previous argument shows that

K0 =
∑m

i=1 aiKi on the connected component of M . Moreover, if M is connected, then it has at most
2I found this lovely coordinate-independent proof from math.stackexchange.com/questions/374054.

math.stackexchange.com/questions/374054
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m = 1
2n(n+ 1) linearly independent Killing vector fields.

(b) The Minkowski spacetime (M4, η) is flat. In the standard Cartesian coordinates, the Killing equations
become ∂µ∂νKλ = 0. So Kµ = cµ + aνµxν , where cµ, aνµ ∈ R, and aµν = −aνµ. They span a
10-dimensional vector bundle of Killing vector fields.

The four translations are generated by Kµ = ∂µ for µ ∈ {0, 1, 2, 3}. The six generators of the Lorentz
algebra are given by Lµν = xµ∂ν − xν∂µ for 0 6 µ < ν 6 3 (L01, L02, L03 generate the Lorentz boosts,
and L12, L13, L23 generate the rigid rotations).

Question 7. Locally Inertial Coordinates

This problem introduces and discusses locally inertial coordinates, which can be used by a freely falling
observer to make contact with special relativity. We will make use of them later in the course when we
discuss the observation of gravitational waves.

Let (M, g) be a (3 + 1)-dimensional Lorentzian manifold.

(a) Let yµ be a coordinate system around a point p ∈M . Show that

∂λgµν(p) = 0 ∀λ, µ, ν ∈ {0, . . . , 3} ⇐⇒ Γλµν(p) = 0 ∀λ, µ, ν ∈ {0, . . . , 3}

(b) Let γ : I → M be an affinely parameterised timelike geodesic with g(γ̇, γ̇) = −1, i.e. the worldline of
a freely falling observer, parameterised by proper time. Consider a proper time s0 ∈ I and consider
an orthonormal Lorentz frame e0 := γ̇ (s0) , e1, e2, e3 ∈ Tγ(s0)M , i.e. we have g (eµ, eν) = ηµν with
ηµν = diag(−1, 1, 1, 1). Parallelly propagate the Lorentz frame eµ along γ such that ∇γ̇eµ = 0 holds.
Introduce the mapping (

x0, x1, x2, x3
)
7→ expγ(x0)

(
x1e1 + x2e2 + x3e3

)
∈M.

(Recall from GR I that the exponential map expp : TpM ⊇ U → M at basepoint p maps the tangent

vector X to expp(X) := σ(1), where σ : [0, 1]→M is the unique geodesic with σ(0) = p and σ̇(0) = X.)

Show that in a small neighbourhood of γ (s0) these are coordinates and that in these coordinates the
metric takes the form

g = −
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

+O
(
r2
)
dxµ ⊗ dxν ,

where r2 =
(
x1
)2

+
(
x2
)2

+
(
x3
)2. We call such coordinates locally inertial coordinates.

(c) Let γ : I → M be a timelike curve parametrised by proper time. Assume there exists a coordinate
system xµ in a neighbourhood of some point γ (s0) such that in these coordinates γ(s) = (s, 0, 0, 0) and

g = −
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

+O
(
r2
)
dxµ ⊗ dxν

holds, where r is as above. Show that, in particular, γ must be an affinely parametrised geodesic and
that ∂1, ∂2, ∂3 are parallel along γ.

Proof. (a) Let ∇ be the Levi-Civita connection. The compatibility equation ∇g = 0 in local coordinates:

Γλµν =
1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν) (∗)

∂λgµν = Γσλµgσν + Γσλνgµσ (∗∗)
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So “ =⇒ ” follows from (∗) and “ ⇐= ” follows from (∗∗).

(b) Let ϕ−1 : (R4, η) ∼= Tγ(s0)M →M be the map:

ϕ−1(x0, x1, x2, x3) = expγ(x0)(x
iei) = expγ(s0)((x

0 − s0)e0 + xiei)

We claim that ϕ−1 is a local diffeomorphism. For a complete proof, see Theorem 3.7 of C3.11 Rie-
mannian Geometry. Then the inverse ϕ : U → (R4, η) defines a coordinate chart on M , with the
frame vector fields {eµ}. We need to show that ∂λgµν = 0 at γ(s0). By (a) it suffices to show that the
Christoffel symbols vanishes at γ(s0).

For V = V µeµ, let αV : [0, ε] → M be the unique geodesic such that αV (0) = γ(s0) and α̇V (0) = V .
Then by definition αV (s) = expγ(s0)(sV ). Hence ϕ ◦ αV (s) = (sV 0 + s0, sV

1, sV 2, sV 3). The geodesic
equation:

d2(ϕ ◦ αV (s))λ

ds2
+ Γλµν(s)

d(ϕ ◦ αV (s))µ

dst

d(ϕ ◦ αV (s))ν

ds
= 0

at s = 0 gives
Γλµν(γ(s0))V

µV ν = 0

Since Γλµν is symmetric in the lower indices, and V is arbitrary, we deduce that Γλµν(γ(s0)) = 0.
Therefore near γ(s0) the metric takes the form

g = ηµνdxµdxν +O(r2)dxµdxν

(c) The Christoffel symbols vanishes at γ(s0).

Section C: Optional

Question 8. Inner Product of Two-Forms

Let (M, g) be an n-dimensional Riemannian manifold.

(a) Let p ∈ M and denote with Λ2T ∗pM the space of all 2-covectors at p that are antisymmetric, i.e. all
ω ∈ T ∗pM ⊗ T ∗pM such that ωab = −ωba. Moreover, for α, β ∈ T ∗pM we define the wedge product
α∧ β := α⊗ β − β ⊗α ∈ Λ2T ∗pM . Let α1, . . . , αn be an orthonormal basis (ONB) for T ∗pM . Show that
αi ∧ αj with 1 6 i < j 6 n is a basis of Λ2T ∗pM and thus Λ2T ∗pM is n(n−1)

2 dimensional.

(b) Show that for α, β, γ, δ ∈ T ∗pM the mapping

〈α ∧ β, γ ∧ δ〉 := det

(
g−1(α, γ) g−1(α, δ)

g−1(β, γ) g−1(β, δ)

)

induces an inner product on Λ2T ∗pM , with respect to which αi ∧ αj , 1 6 i < j 6 n is an ONB. Also
show that for ω, ρ ∈ Λ2T ∗pM one has 〈ω, ρ〉 = gikgjlωijρkl.

(c) Consider the Riemann curvature tensor as a (2, 2)-tensor Rijkl and show that it is a self-adjoint linear
map R : Λ2T ∗pM → Λ2T ∗pM with respect to the inner product 〈·, ·〉.

(d) Show that if (M, g) is connected and has n(n+1)
2 linearly independent Killing vector fields that then

the Riemannian curvature tensor is of the form Rijkl = 2Cgk[igj]l = C (gkigjl − gkjgil) with C being a
constant.



7

[Hint: You may use that an isometry φ : M →M preserves the Riemann tensor, i.e. (φ∗R)ijkl = Rijkl.]

Where in GR I have you encountered such spaces? One can indeed show further that manifolds whose
Riemann tensor is of the above form with the same constant C are locally isometric.

Proof. (a)


