Peize Liu
St. Peter’s College
University of Oxford

Problem Sheet 1
C7.6: General Relativity II

26 January, 2022



Section A: Introductory

Question 1. Tensor Field

Let M be a smooth manifold and recall that X°°(M) denotes the space of vector fields and Q!(M) the space
of covector fields (1-forms). Show that a map

7 QY M) x - x QY M) x X°(M) x -+ x X%°(M) — C°°(M)

k times £ times

is induced by a (k, ¢)-tensor field if, and only if, it is multilinear over C°°(M). Similarly a map

T QN (M) x - x QUMY x X°(M) x -+ x X°(M) — X°(M)

k times £ times

is induced by a (k + 1, ¢)-tensor field if, and only if, it is multilinear over C*°(M).

Question 2. Lie Bracket
Let M be a smooth manifold.

(a) Let X,Y,Z € X°>°(M). Prove the Jacobi identity

(XY 2N+ Y [Z, X)) + 2, (X, Y]] =0

(b) Let V be an affine connection on M. Show that the torsion T'(X,Y) := VxY— Vy X — [X,Y] is a
(1,2)-tensor field. Here X,Y € X*>°(M).

(c) (c) Is the Lie bracket [-, ] : X>°(M) x X*°(M) — X°°(M) an affine connection?

Proof. (a) The Lie bracket is the commutator of vector fields: [X,Y]=XoY —Y o X. So

=XYZ-XZY - YZX+ZYX+YZX -YXZ - ZXY +XZY
=XYZ+ZYX -YXZ - ZXY

= [[X,Y], Z] /
which implies the Jacobi identity.

(b) It suffice to show that T(X,Y") is a C*°(M)-linear. Since T'(X,Y) = —T(Y, X), it suffices to show this
in the ﬁrst\slyFor feC®M),

T(fX,Y)=V;xY = Vy(fX) - [[X,Y]
=fVxY —fUy X Y (f) - X = (fXoY -Y(f)- X — fY 0oX)
= (VXY —VyX — [X.Y)) = [T(X,Y) _~
SoT :T(TM) xI'(TM) — I'(TM) is induced by the type-(1,2) tensor field 7'
(c) Suppose that the Lie bracket is indeed an affine connection. Then for any f € C>*(M) and X,Y €
T(TM),

FLxY = LixY = —Ly(fX) = —(fLyX +Y(f) - X) = fLxY =Y (f)- X



which implies that Y (f) - X = 0. This is absurd (jlytake X =Y =0y, f(r) =2 0on M =R). O

Section B: Core

Question 3. Riemann Tensor

Let X,Y,Z € X>°(M) be smooth vector fields on a Lorentzian manifold (M, g). Show that
(VVZ2)(X,Y) = (VVZ)(Y,X) =Vx (VyZ) - Vy (VxZ) - VixyZ,

where V is the Levi-Civita connection. L.e. the left- and right-hand sides are equivalent definitions of the
Riemann curvature tensor R(X,Y)Z. In (abstract) index notation, this can be written as

A A A
Vu Vo2 =V, V2 = R, 2P

Proof. Let T!M == TM®--- @ TMQT*M ® ---® T*M be the type-(r, s) tensor bundle, and T'(T;M) be the

T S
algebra of its sections.

Recall that VZ € T(TiM) is given by VZ(X,n) = n(VxZ) for any X € I'(TM) and n € T'(T*M). Then
VVZ is a type-(1,2) tensor field in the following way:

(VVZ)(X,Y) =V (VZ)(Y) = tr(Vx(VZ) @ Y)
—tr(Vx(VZ®Y) - VZ®VyY)
=VxVyZ —t1(VZ ® VXY)/

where tr is the contraction of indices (in an unambiguous way). Therefore we have

(VVZ)(X,Y) = (VVZ)(Y,X) = VxVyZ — VyVxZ — tr(VZ @ (VxY — Vy X))
=VxVyZ-VyVxZ—-trx(VZ® [X,Y]) (V is torsion-free)
= VXVYZ - VYVXZ — V XY A
(X,Y] e

I cannot follow the logic of abstract index equation here. How can we just throw away the Lie bracket without
choosing an orthonormal system of local coordinates??

If we work in a local chart {29, ..., 2"} such that g(;,d;) = 7;;. Then [81,\8]]/—/6 And we have the Rieman

curvature in terms of the components:

V.V Zr =V, V.2 =R}, 2" / O

Question 4. Parallel Transport

Let (M, g) be a Lorentzian or Riemannian manifold, consider a point p € M and let x* be a local coordinate
system centred at p (i.e. z#(p) =0 ). Let X,Y,Z € T,M be three tangent vectors. Let 0 < €, < 1 be very
small. We first parallelly propagate Z along the curve «, i.e. first from 0 along the straight coordinate line
to eX* and then along the straight coordinate line to eX* 4+ 6Y* to obtain the vector Z,(eX + 0Y’). Next
we parallelly propagate Z along the curve «/, i.e. first from 0 to Y# and then to eX* + §Y#, both along
straight coordinate lines. Denote the resulting vector by Z./(eX + 6Y').

My suspicion is supported by this wiki page: www.wikiwand.com/en/Tetrad_formalism#/Manipulation_of_indices


www.wikiwand.com/en/Tetrad_formalism#/Manipulation_of_indices

Show that to leading order in € and J we have

Z)(eX +06Y) — Z)(eX +6Y) = —edR),5(0)Z° XY P

thus giving another interpretation of curvature. [Hint: Can you justify that the parallel transport of Z from

0 to eX* is to leading order ZM — el',(0) X" ZP ?]

Proof. Let vy : (—to,tp) — M be the curve with x#o0v(g) = 0+eX*+O(e?). Then i#ovy(e) = X*+ O(e). Suppose
that Z(t) is a parallel tangent vector field along . Then the covariant derivative is given by:

dZ ()] | v
0:v7zz<dt+FHVX“Z 2\

In an asymptotic expansion Z(¢) = Z 4 eZ' + O(g?), we find that at O(1) we have (Z")} = —FZ‘V(O)X“Z”.
Therefore the Z is parallelly transported to (Z* — 6F/’>V(0)X“Z”)6>\.

Next we can compute the parallel transport of Z along the two prescribed curves (to the second order):
A _ oA A v
Z3(eX +0Y) = Z%(eX) — 6Ly, (e X)YH(eX)Z" (e X) / v
= 2" = P, (0) X1 ZY = §(I},(0) +eX 9,5, (0) (Y — eIk 5 (0) XY ) (2V — eIy,
=7 — (e XV + 6Y“)F2V((3)/Z” +e0I),,(0) (T, (0)XYHZP + T (0)XY*Z")
+ed XY 79, (0)
= 2" — (eXF + YT, (002" + 6 XHYV ZP (r,ég(O)rgp(O) +15,(0017,,(0) + aurﬁi@

TQX"Z’))

For simplicity we suppress the dependence on the coordinates. To the second order, we have

ZXeX +6Y) — Z0(eX +6Y) = ed(X1Y" — X"Y*)Z° (r,ﬁarzp +T2,07, + aﬂr§p>

_e0xny 72 (T3, 10, + 0,10, = TA, TS, = ,T,)  (torsion-free: T, =T7,)
If we take the component equation obtained in Question 3, and expand all covariant derivatives (which is
as painful as the calculations above), then we shall find the Riemann curvature in terms of the Christoffel
symbols:

A _ A A _TA A A A
R =2 (0T, =TT, ) = ThoTs, = TooTs, + 0,1, — T,

p olv™ulp pot vp Vo pup /

A A _ A v
Z3(eX 4+ 6Y) — Z(eX +0Y) = —e6R*,,,(0) XY Z’/ O

Therefore we deduce that

Question 5. Lie Derivative
Let M be a smooth manifold and let X,Y be smooth vector fields. Show that for a general (k, £)-tensor field

T we have the following identity for the Lie derivative:

Lx (LyT) - Ly (LxT) = LixyT-

Proof. If we can invoke the result that LxY = [X, Y], which is proven in the lectures, then the equation we want
is just Jacobi identity in disguise: e ~Nochr f’qj_d T W want 4o
\\/Q.S, Macs s drue mel

(X T+ Y [T, X+ [T X Y]] =0 <= (X YT - [V (X T = [[ny]aT]T% /j\'w
(F[\)Y }-fmrw\) °()< (C%/) = d(‘ﬂ({/\) Ute wechor huds Lx (LyT)— Ly (,C)(T):[,[Xy]T ’[‘%Cjw\”@ﬂ
prd fooms b Lncally build (9) tentor and fren oo )T) ®S () ype

((ey —AxEx - Kx)
D) Loy (¢ r08) - Ly (109 - U o tly ~Lnke-RTe) ) S



Question 6. Killing Vectors

(a) Let (M, g) be an n-dimensional Lorentzian (or Riemannian) manifold. Use the equation

VoViK. = R% Ky (3)
from the lectures to show that the maximum number of linearly independent Killing vector fields (KVF)
1
on M is n(n;—)

[Hint: Derive a system of ODEs with initial data given at a point p in M|

(b) Consider 4-dimensional Minkowski spacetime. Write down equation (3) in standard Cartesian coordi-

Proof.

nates and derive the 10-dimensional space of Killing vectors on Minkowski spacetime. Choose the basis
vectors such that they form the infinitesimal generators of translations and Lorentz transformations.

(a) The phrasing of the question is a bit confusing, as we can only have n C*°(M)-linearly independent

vector fields on an n-dimensional manifold. I think it really asks to find %n(rﬁ—l) R-linearly independent
Killing vector fields.

Fix p € M. Suppose that K is a Killing vector field. We shall prove that, if K(p) =0 and VK|p =0,
then K = 0 on the connected component of p in M.?

The Killing equation (3) in coordinate-independent form is given by
(VVK)(X,Y)=R(X,K)Y _—
We define on the bundle TM @ End(TM) = TM @& T1M a new connection D:
Dx(Y,0):=(VxY —0(X),Vxo — R(X,Y))
Note that by Killing equation, we have
Dx(K,VK)=(VxK -VxK,VxVK —R(X,K))=0

for all X € I'(TM). Then (K,VK) is a parallel section of D. \/

We take ¢ € M lying in the same path component of p, and a curve v joining p and ¢q. Then
D4(K,VK) =0 on~. This is a system of first-order ODEs with the initial condition (K, VK)|, = 0.
By Picard’s theorem it admits the unique solution (K, VK) = 0 on . Hence K(q) = 0. This shows
that {¢g € M: K(q) =0} is an open and closed set, and hence it is the connected component of p in
M.

Finally, we take a local trivialisation UsR"&R™ of TM @End(TM) in a neighbourhood U of p € M.
If K is a Killing field, then V,K¥ = —V,K". So the local matrix of VK at p is anti-symmetric. It
follows that

1 1
V= span{(K,VK)\p cUBR'"GR": .CKg:O}, dimV gn—i-in(n— 1) = in(n—i-l)

-
Let m = %n(n + 1). Suppose that Kj, ..., K,, are R-linearly independent Killing vector fields on
M. Then they form a basis of V at p € M. If Ky is another Killing vector field, then there exists
ai, ..., am € R such that (Km, VEy)|, = >, ai(Ki, VK;)|,. The previous argument shows that
Ky = ZZ’;I a; K; on the connected component of M. Moreover, if M is connected, then it has at most

2I found this lovely coordinate-independent proof from math.stackexchange.com/questions/374054.


math.stackexchange.com/questions/374054

-/

m = sn(n + 1) linearly independent Killing vector fields.

(b) The Minkowski spacetime (M*,7) is flat. In the standard Cartesian coordinates, the Killing equations
become 9,0,K\ = 0. So K, = ¢, + a”,x,, where ¢,,a", € \R,/aud a, \:/—al’u. They span a
10-dimensional vector bundle of Killing vector fields.

The four translations are generated by K, = 0, for p € {0,1,2,3}. The six generators of the Lorentz
algebra are given by L, = x,0, — 2,0, for 0.< pn < »"< 3 (Lo1, Loz, Loz generate the Lorentz boosts,
and Lio, L13, Los generate the rigid rotatigns). O

Question 7. Locally Inertial Coordinates

This problem introduces and discusses locally inertial coordinates, which can be used by a freely falling
observer to make contact with special relativity. We will make use of them later in the course when we
discuss the observation of gravitational waves.

Let (M, g) be a (3 4 1)-dimensional Lorentzian manifold.

(a) Let y* be a coordinate system around a point p € M. Show that

Mhguw(@) =0 YA\ prve{,....3} Fﬁy(p):O VA, u,v €40,...,3}

(b) Let v : I — M be an affinely parameterised timelike geodesic with g(%,%) = —1, i.e. the worldline of
a freely falling observer, parameterised by proper time. Consider a proper time sy € I and consider
an orthonormal Lorentz frame eg := ¥ (so),e1,e2,e3 € Ty M, i.e. we have g(ey, e,) = 1, with
N = diag(—1,1,1,1). Parallelly propagate the Lorentz frame e, along 7 such that Ve, = 0 holds.
Introduce the mapping

(:L‘O, zl, x2,x3) > €XPry(z0) (xlel + zey + x363) € M.

(Recall from GR I that the exponential map exp, : T,M 2 U — M at basepoint p maps the tangent
vector X to exp,(X) := o(1), where o : [0,1] — M is the unique geodesic with o(0) = p and 5(0) = X.)

Show that in a small neighbourhood of v (sg) these are coordinates and that in these coordinates the
metric takes the form

g=—(da®)® + (da")? + (da?)? + (d2®)? + O (r?) da* © da”,

where 7% = (331)2 + (x2)2 + (x3)2. We call such coordinates locally inertial coordinates.

(c) Let v : I — M be a timelike curve parametrised by proper time. Assume there exists a coordinate
system x* in a neighbourhood of some point 7y (sg) such that in these coordinates v(s) = (s,0,0,0) and

g=—(dz°)? + (da")? + (da?)’ + (da®)” + O (r?) da* © da”

holds, where r is as above. Show that, in particular, v must be an affinely parametrised geodesic and
that 91, 02, 03 are parallel along ~.

Proof. (a) Let V be the Levi-Civita connection. The compatibility equation Vg 7@ in local coordinates:

1
F/);I/ = 79)\/)(6#9147 + azzgup - 8pg;w) (*)
2 /

O\Guv = Fiugw + IS 9o / (#)



So “ =7 follows from (%) and “ <= " follows from\(*/*)./
Let o1 : (RY, ) = Ty (s9)M — M be the map:

(pfl(gjoy $17 (1;27 ;];3) = expy(xo)(xi\cﬁ)/»/expv(so)((g;o — 80)6() + :I:iei)

We claim that ¢! is a local diffeomorphism. For a complete proof, see Theorem 3.7 of C3.11 Rie-
mannian Geometry. Then the inverse ¢ : U — (R* 7)) defines a coordinate chart on M, with the
frame vector fields {e, }. We need to show that dg., = 0 at y(sg). By (a) it sufficesto show that the
Christoffel symbols vanishes at y(sp).

For V.= Vte,, let ay : [0,e] = M be the unique geodesic such that ay (0) = v(so) and &y (0) = V.
Then by definition ay (s) = exp.,)(sV). Hence poay(s) = (sVO+ 59,5V sV2, sV3). The geodesic

equation:
d*(p o ay(s))
ds?

d(p o ay(s))* d(p o ay(s))”

=0
dst ds

A
+17,(8)

at s = 0 gives
I CTEN A I

Since F;\w is symmetric in the lower indices, and V is arbitrary, we deduce that F;\“,(’Y(So)) = 0.
Therefore near «y(sg) the metric takes the form

g = nudzidz” + O(rQ)dxﬂdﬁ/

(c) The Christoffel symbols vanishes at 7(537

Section C: Optional

Question 8. Inner Product of Two-Forms

Let (M, g) be an n-dimensional Riemannian manifold.

(a)

Let p € M and denote with AQT; M the space of all 2-covectors at p that are antisymmetric, i.e. all
w € TyM @ TyM such that wey = —wp,. Moreover, for o, 8 € Ty M we define the wedge product
aAB=a®B-BRac AZT;M. Let a',...,a™ be an orthonormal basis (ONB) for Ty M. Show that
Aol with1<i < j < n is a basis of AzTgM and thus A2T;M is @ dimensional.

Show that for «, 8,7,d € T,y M the mapping

— de gil(avf)/) gil<aa5)
an By Al "dt<gl<m> glw,a))

induces an inner product on AQT;M, with respect to which o A ad,1 < i < j < n is an ONB. Also
show that for w, p € AzTg‘M one has (w, p) = g g/lw;;pr.

Consider the Riemann curvature tensor as a (2, 2)-tensor R;;* and show that it is a self-adjoint linear

map R : AQT;M — A2T;M with respect to the inner product (-, -).

Show that if (M, g) is connected and has w linearly independent Killing vector fields that then
the Riemannian curvature tensor is of the form R;ji = 2Cgg;9; = C (9kigj1 — grjga) with C being a
constant.



Proof.

|Hint: You may use that an isometry ¢ : M — M preserves the Riemann tensor, i.e. (‘Z’*R)z‘jkl = Riju-|

Where in GR I have you encountered such spaces? One can indeed show further that manifolds whose
Riemann tensor is of the above form with the same constant C' are locally isometric.

(a)



