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Remark.

Section 1

Question 1

Let (Yn)nÊ0 be a supermartingale on a filtered probability space
(
Ω,F , (Fn)nÊ0 ,P

)
, (Vn)nÊ1 a nonnegative predictable process

and let X0 = 0 and

Xn =
n∑

k=1
Vk (Yk −Yk−1) , n Ê 1

Show that if Xn is integrable, n Ê 0, then X is a supermartingale. What happens when V is negative? And/or Y is a submartin-
gale?

Proof. For k É n, all Yk and Vk are Fn-measurable, so Xn is Fn-measurable. We have:

E[Xn+1 −Xn |Fn] = E[Vn+1(Yn+1 −Yn) |Fn]
a.s.==Vn+1E[Yn+1 −Yn |Fn]

Since Y is a supermartingale, E[Yn+1 −Yn |Fn] É 0. Since Vn+1 is non-negative, we deduce that E[Xn+1 −Xn |Fn] É 0 and
hence X is a supermartingale.

Alternatively, if Y is a submartingale, then X is also a submartingale. If Vn is negative, the result has a change in sign: X is a
submartingale if Y is a supermartingale, and X is a supermartingale if Y is a submartingale.

Question 2

Suppose Xn ,n Ê 1 are i.i.d. with finite mean. Suppose N is a stopping time relative to the natural filtration generated by the
sequence (Xn)nÊ1 , with E[N ] <∞. Show that

E

[
N∑

n=1
Xn

]
= E[N ]E [X1]

(This is known as Wald’s equation and it improves upon random sum theorem in Part A Probability.)

Proof. Let Fn := σ(X1, ..., Xn) be the natural filtration generated by (Xn). Define Mn := ∑n
i=1 Xi −nE[X1]. It is clear that Mn is Fn-

measurable. And

E[Mn+1 |Fn]
a.s.== E[Mn |Fn]+E[Xn+1 |Fn]−E[E[X1] |Fn]

a.s.== Mn +E[Xn+1]−E[X1] = Mn

Hence (Mn) is a martingale with respect to (Fn). Moreover, note that

E[|Mn+1 −Mn | |Fn] = E[|Xn+1 −E[X1]| |Fn]
a.s.== E[|Xn+1 −E[X1]|] É E[|Xn+1|]+|E[X1]| = E[|X1|]+|E[X1]|

Since X1 has finite mean, E[|X1|], |E[X1]| <∞. By optional stopping theorem (Corollary 8.19) with condition (ii) satisfied, we
have

E
[
MN 1{N>∞}

]= E[M1]

Hence

E

[
N∑

n=1
Xn

]
= 0+E[NE[X1]] = E[N ]E[X1]

Question 3. Martingale formulation of Bellman’s Optimality Principle

Your winnings per unit stake on a certain game are εn in round n, where (εn)nÊ1 is an i.i.d. sequence of random variables with

P [εn =+1] = p, P [εn =−1] = q, where 1/2 < p = 1−q < 1
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Let Fn := σ (ε1, . . . ,εn) . Assume that your stake Vn on game n is Fn−1 -measurable (i.e., only depends on the outcome of the
game up to time n −1), and that Vn must lie strictly between 0 and Zn−1 where Zn−1 is your fortune at time n −1. Your object
is to maximize the expected "interest rate" at a certain integer time horizon N , i.e. E

[
log(ZN /Z0)

]
, given the constant Z0 > 0,

your capital at time 0 . Prove that, if Zn > 0

E
[
log(Zn+1/Zn) |Fn

]= f (Vn+1/Zn)

where f (x) := p log(1+x)+q log(1−x).

Deduce that, if (Vn) is any (predictable) strategy, then
(
log Zn −nα

)
nÊ0 is a supermartingale, where

α := p log p +q log q + log2

α is sometimes called the "entropy". Conclude that

E
[
log(ZN /Z0)

]É Nα

Describe explicitly the strategy (Vn) for which
(
log Zn −nα

)
nÊ0 becomes a martingale and the inequality becomes an equality.

Proof. The captial (Zn) satisfies
Zn+1 = Zn +Vn+1εn+1

Hence

log
Zn+1

Zn
= log

(
1+ Vn+1

Zn
εn+1

)
= log

(
1+ Vn+1

Zn

)
1{εn+1=1} + log

(
1− Vn+1

Zn

)
1{εn+1=−1}

Since (Vn) is predictable with respect to (Fn), then Vn+1/Zn is Fn-measurable. Since σ(εn+1) is independent of Fn =
σ(ε1, ...,εn), we have

E

[
log

Zn+1

Zn

∣∣∣∣ Fn

]
a.s.== E

[
log

(
1+ Vn+1

Zn

)
1{εn+1=1}

∣∣∣∣ Fn

]
+E

[
log

(
1− Vn+1

Zn

)
1{εn+1=−1}

∣∣∣∣ Fn

]
a.s.== log

(
1+ Vn+1

Zn

)
P(εn+1 = 1)+ log

(
1− Vn+1

Zn

)
P(εn+1 =−1)

= p log

(
1+ Vn+1

Zn

)
+q log

(
1− Vn+1

Zn

)
= f (Vn+1/Zn)

Since Zn is Fn-measurable, so is (log Zn −nα). We have

E
[
log Zn+1 − (n +1)α |Fn

] a.s.== E
[

log Zn −nα+ log
Zn+1

Zn
−α

∣∣∣∣ Fn

]
a.s.== log Zn −nα+ f (Vn+1/Zn)−α

Note that f (x) →−∞ as x →±1. f has a unique maximum at x0 ∈ (−1,1), where

f ′(x0) = 0 =⇒ p

1+x0
− 1−p

1−x0
= 0 =⇒ x0 = 2p −1 =⇒ f (x0) = p log(2p)+q log(2q) =α

Hence f (Vn+1/Zn) É α for all ω ∈ Ω such that
Vn+1

Zn
(ω) ∈ (−1,1), with equality holds if and only if

Vn+1

Zn
(ω) = 2p − 1. In

particular,
E
[
log Zn+1 − (n +1)α |Fn

] a.s.== log Zn −nα+ f (Vn+1/Zn)−αÉ log Zn −nα

Hence (log Zn −nα) is a supermartingale with respect to (Fn).

Finally, since (log Zn −nα) is a supermartingale, we have

E
[
log ZN −Nα

]É E[log Z0
] =⇒ E

[
log

ZN

Z0

]
É Nα

The best strategy is that Vn+1 = (2p −1)Zn . In this case f (Vn+1/Zn) =α and hence (log Zn −nα) becomes a martingale. Now

we have E

[
log

ZN

Z0

]
= Nα.
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Question 4

Let (Zn) be a Galton-Watson branching process with offspring distribution X , with µ = E[X ] > 1 and σ2 = Var[X ] < ∞. Set
Fn =σ (Zk : k É n) and Mn = Zn/µn . Recall that M is an (Fn) martingale. Compute E

[
Z 2

n+1 |Fn
]

(You may reason conditionally on {Zn = k} since these form a countable partition ofΩ.)

Using induction, find a formula for E
[

Z 2
n

]
in terms of n,µ and σ. Deduce that (Mn) is bounded in L 2, and converges in L 2

and in L 1.

Proof. We know that Zn+1 =
Zn∑

r=1
Xn+1,r . Hence

E
[

Z 2
n+1 |Fn

]= E[(
Zn∑

r=1
Xn+1,r

)2 ∣∣∣∣∣ Fn

]
a.s.== E

[
Zn∑

r=1
X 2

n+1,r

∣∣∣∣∣ Fn

]
+2E

[
Zn∑

r=1

r−1∑
s=1

Xn+1,r Xn+1,s

∣∣∣∣∣ Fn

]

= E
[ ∞∑

r=1
X 2

n+1,r 1{ZnÊr }

∣∣∣∣ Fn

]
+2E

[ ∞∑
r=1

r−1∑
s=1

Xn+1,r Xn+1,s 1{ZnÊr }

∣∣∣∣∣ Fn

]
a.s.==

∞∑
r=1

E
[

X 2
n+1,r 1{ZnÊr } |Fn

]+ ∞∑
r=1

r−1∑
s=1

E
[

Xn+1,r Xn+1,s 1{ZnÊr } |Fn
]

(cMCT)

a.s.==
∞∑

r=1
E
[

X 2
n+1,r

]
1{ZnÊr } +

∞∑
r=1

r−1∑
s=1

E
[

Xn+1,r
]
E
[

Xn+1,s
]
1{ZnÊr }

=
Zn∑

r=1
(σ2 +µ2)+

Zn∑
r=1

r−1∑
s=1

µ2

=σ2Zn +µ2Z 2
n

Taking expectation on both sides we obtain

E
[

Z 2
n+1

]= E[E[Z 2
n+1 |Fn

]]=σ2E[Zn]+µ2E
[

Z 2
n

]
From Example 8.31 we know that E[Zn] =µn . Hence

E
[

Z 2
n+1

]=σ2µn +µ2E
[

Z 2
n

]
With E

[
Z 2

0

]= 1, inductively we have

E
[

Z 2
n

]=σ2
2n−2∑

k=n−1
µk +µ2n =σ2µn−1µ

n −1

µ−1
+µ2n

Therefore

E
[
M 2

n

]= E[ Z 2
n

µ2n

]
=σ2 µn −1

µn+1(µ−1)
+1 → 1

as n →∞. In particular (E
[
M 2

n

]
) is a bounded sequence. Since Mn converges in L2, and the probability measure is finite, by

Lemma 5.13, Mn also converges in L1.

Question 5

On a filtered probability space
(
Ω,F , (Fn)nÊ0 ,P

)
, let (Mn)nÊ0 be an adapted and integrable process. Show that M is a martin-

gale if and only if E [Mτ] = E [M0] for all bounded stopping times τ.

[Hint: consider A ∈Fn and two stopping times τ= n +1 and τ= n +1Ac ]

Proof. The forward direction is exactly the optional sampling theorem (Theorem 8.17). We only prove the backward direction.
Suppose that E[Mτ] = E[M0] for all bounded stopping times τ.

Fix A ∈Fn . Let τ= n+1Ac . Note that {τ= n} = A ∈Fn and {τ= n+1} = Ac ∈Fn ⊆Fn+1. Hence τ is a bounded stopping time.
We have

E[M0] = E[Mτ] = E[Mτ1A]+E[Mτ1Ac ] = E[Mn 1A]+E[Mn+11Ac ]
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On the other hand, we also have
E[M0] = E[Mn+1] = E[Mn+11A]+E[Mn+11Ac ]

Hence E[Mn 1A] = E[Mn+11A]. Since Mn is Fn-measurable, we deduce that

E[Mn+1 |Fn]
a.s.== Mn

Therefore (Mn) is a martingale with respect to (Fn).

Question 6

Let A ⊆ Z2 be a finite set of points in the square lattice, and let B (the boundary of A ) be the set of points in Z2 \ A with at
least one (horizontal or vertical) neighbour in A. Given any function g : B → R, construct a function f : (A ∪B) → R such that
f
∣∣
B = g and, for every v ∈ A

f (v) = 1

4

∑
w∼v

f (w)

where the sum is over the 4 neighbours of w ; f is called a discrete harmonic function with boundary condition g . Let (Xn)nÊ0

be a simple symmetric random walk on Z2, X0 ∈ A. Denote hB = inf{n Ê 0 : Xn ∈ B} the first hitting time of the boundary. Show
that f

(
Xn∧hB

)
,n Ê 0 is a martingale relative to the natural filtration of X.

[Hint. For v ∈ A consider a random walk starting at v and consider the value of g
(
XhB

)
.]

Proof. For v, w ∈Z2, we write v ∼ w if and only if ‖v −w‖ = 1. Let A = {v1, ..., vn}. Given g : B →R, the condition that for all v ∈ A,

f (v) = 1

4

∑
w∼v

f (w)

gives n linear equations: 
a11 · · · a1n

...
...

an1 · · · ann




f (v1)
...

f (vn)

=


b1
...

bn


where

ai j = 1

4
1{vi∼v j } −δi j , bi =−1

4

∑
B3w∼vi

g (w)

We claim that the coefficient matrix has full rank. (I don’t know how to prove this. It seems to require some techniques in Graph
Theory.) Therefore ( f (v1), ..., f (vn)) has a unique solution. It uniquely determines a function f : A∪B →R such that f |B = g .

Let (Fn) be the filtration generated by (Xn). It is clear that f (Xn) is Fn-measurable.
Let Yn := Xn −Xn−1 ∈ {(1,1), (1,−1), (−1,1), (−1,−1)} =:Λ. We have

E
[

f (Xn+1) |Fn
] a.s.== ∑

λ∈Λ
E
[

f (Xn +λ)1{Yn+1=λ} |Fn
] a.s.== ∑

λ∈Λ
f (Xn +λ)P(Yn+1 =λ) = 1

4

∑
λ∈Λ

f (Xn +λ) = f (Xn)

Hence ( f (Xn))∞n=1 is a martingale with respect to (Fn).

For n ∈N,

{hB > n} =
n⋂

k=0
{Xn ∈ A} ∈Fn

Hence hB is a stopping time. ( f (Xn∧hB )) is a stopped martingale with respect to its natural filtration.

Given g : B → R, we can define f : A ∪B → R as follows: for v ∈ A ∪B , we define f (v) := E[g (XhB )
]
, where (Xn) is a simple

symmetric random walk with X0 = v . Then f is a discrete harmonic function with f |B = g .
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Question 7. Gambler’s Ruin

Let (Xn)n Ê 1 be an i.i.d. sequence of random variables with

P [X1 = 1] = p, P [X1 =−1] = q, where 0 < p = 1−q < 1

and p 6= q . Suppose that a and b are integers with 0 < a < b. Define

Sn := a +X1 + . . .+Xn , τ := inf{n : Sn = 0 or Sn = b}

Let Fn :=σ (X1, . . . , Xn) and check that τ is a stopping time. Prove that

Mn :=
(

q

p

)Sn

and Nn := Sn −n(p −q)

are martingales w.r.t. (Fn) . Deduce the values of P [Sτ = 0] and E[τ]. (Recall that in Prelims, you may have found these values
by solving linear recurrence relations.)

[Hint: Carefully argue the use of Doob’s optional stopping theorem. You could consider τ∧m and take limits, or use Q9 on Pb
Sheet 3.]

Proof. First, it is clear that Sn is Fn-measurable. Note that

{τ> n} =
n⋂

k=1
{Sk ∈ (0,b)} ∈Fn

Hence τ is a stopping time.

Mn and Nn are Fn-measurable by definition.

E[Mn+1 |Fn] = E
[

Mn

(
q

p

)Xn+1
∣∣∣∣∣ Fn

]
a.s.== MnE

[(
q

p

)Xn+1
]
= Mn

(
p · q

p
+q · p

q

)
= Mn

E[Nn+1 |Fn] = E[Nn +Xn+1 − (p −q) |Fn
] a.s.== Nn +E[Xn+1 − (p −q)

]= Nn + (p −q)− (p −q) = Nn

Hence (Mn) and (Nn) are martingales with repsect to (Fn).

Note that
b⋂

i=1
{Xn+i = 1} ⊆ {Sn < 0}∪ {Sn Ê 0∧Sn+b Ê b} ⊆ {τÉ n +b} =⇒

b∏
i=1

1{Xn+i=1} É 1{τÉn+b}

Hence for all n ∈Z+,

P(τÉ n +b |Fn) = E[1{τÉn+b} |Fn
]Ê E[ b∏

i=1
1{Xn+i=1}

∣∣∣∣∣ Fn

]
=

b∏
i=1
P(Xn+i = 1) = pb

By Question 9 of Sheet 3, we deduce that E[τ] <∞. In particular τ<∞ almost surely.

Consider the stopped martingale (Mτ∧n). It is uniformly bounded:

|Mτ∧n | =
(

q

p

)Sτ∧n

É 1∨
(

q

p

)b

Hence by optional stopping theorem, E[Mτ∧n] = E[M0]. Taking n →∞, we obtain E
[
Mτ1{τ<∞}

]= E[M0].

Let α=P(Sτ = 0). Then 1−α=P(Sτ = b). We have(
q

p

)a

=
(

q

p

)S0

= M0 = E
[
Mτ1{τ<∞}

]=α+ (1−α)

(
q

p

)b
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The solution is

α=

(
q

p

)a

−
(

q

p

)b

1−
(

q

p

)b

Next, note that
|Nn+1 −Nn | = |Xn+1 − (p −q)| É 1+|p −q |

By optional stopping theorem, E
[
Nτ1{τ<∞}

]= E[N0]. Hence

E[Sτ]−E[τ](p −q) = a

where

E[Sτ] = (1−α)b = b

1−
(

q

p

)a

1−
(

q

p

)b

Therefore

E[τ] = E[Sτ]−a

p −q
=

b

1−
(

q

p

)a

1−
(

q

p

)b
−a

p −q

Question 8

Consider a sequence of i.i.d. tosses of a coin with Xi denoting the outcome of the i th toss. These random variables are defined
on some (Ω,F ) on which we have two probability measures PA and PB . Under hypothesis A,PA is the true measure, and the
probability of a head on any toss if p = a. Under hypothesis B , the measure is PB and p = b, for some a,b ∈ (0,1)

Let P A (x1, . . . , xn) denote the probability of a sequence of outcomes (x1, . . . , xn) under the hypothesis A, i.e.

P A (x1, . . . , xn) =PA (X1 = x1, . . . , Xn = xn)

with the analogous definition for PB . Show that

Zn = P A (X1, X2, . . . , Xn)

PB (X1, X2, . . . , Xn)

is a martingale under PB , relative to the filtration generated by the tosses, Fn =σ (Xk : k É n) Conclude that Z∞ := limn→∞ Zn

exists with probability 1. If b 6= a, what is the distribution of Z∞?

Deduce that 1/Zn is a PA-martingale and comment on its convergence.

This is a special case of the consistency of the likelihood ratio test in Statistics.

Proof. It is clear from definition that Zn is Fn-measurable. By independence, Zn+1 = Zn
P A(Xn+1)

PB (Xn+1)
. Therefore

EB [Zn+1 |Fn] = E
[

Zn
P A(Xn+1)

PB (Xn+1)

∣∣∣∣ Fn

]
a.s.== ZnEB

[
P A(Xn+1)

PB (Xn+1)

]
= Zn

(
b

P A(H)

PB (H)
+ (1−b)

P A(T )

PB (T )

)
= Zn

(
b

a

b
+ (1−b)

1−a

1−b

)
= Zn

Hence (Zn) is a PB -martingale with respect to (Fn). Since (Zn) is a non-negative martingale, by Corollary 8.30, Z∞ := lim
n→∞Zn

exists almost everywhere and is PB -integrable. (I don’t know what the distribution of Z∞ is.)

By swapping A and B , we see that 1/Zn is aPA-martingale. It converges almost surely to somePA-integrable random variable.
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Question 9

Let Mn ,n Ê 0 be a martingale with M0 = 0. Which of the following are possible?

(a) For some n,E [Mn] > 0.

(b) For some a.s. finite stopping time τ,E [Mτ] > 0.

(c) Mn →∞ as n →∞ with probability 1.

What about if in addition M is bounded in L 1 ? What about if in addition M is uniformly integrable?

Proof. (a) This is never possible. By the property of martingale, E[Mn] = E[M0] = M0 = 0.

(b) This is possible. Example 8.18 is an example.

If (Mn) is uniformly bounded in L1, I suspect that this is still possible. but I cannot give an example. (The martingale in
Example 8.18 is not uniformly bounded in L1.)

If (Mn) is uniformly integrable, then by optional stopping theorem, E[Mτ] = E[M0] = 0.

(c) This is possible. Consider independent random variables X1, X2, ... such that

P(Xn = 1) = 1−2−n , P
(
Xn = 1−2n)= 2−n

Let Yn :=∑n
k=1 Xk and (Fn) be the natural filtration generated by (Yn). We have

E[Yn+1 |Fn]
a.s.== Yn +E[Xn+1] = Yn

Hence (Yn) is a martingale with respect to its natural filtration.

Since ∞∑
n=1

P(Xn < 0) =
∞∑

n=1
2−n <∞

by the first Borel-Cantelli Lemma, we have

P
(
Xn < 0 for infinitely many n

)= 0

Hence
P
(

lim
n→∞Yn =+∞

)
ÊP(

Xn > 0 for all but finitely many n
)= 1

If (Mn) is uniformly bounded in L1, then by forward convergence theorem (Theorem 8.29), Mn → M∞ as n →∞ with
probability 1, where M∞ is integrable and hence is finite almost everywhere.

If (Mn) is uniformly integrable, then in particular it is uniformly bounded in L1. The previous result also holds.

Question 10. Polya’s urn model

At time 0 we have an urn with two balls, one white and one black. At each successive time, we draw at random one ball from
the urn and return it back along with another ball of the same colour. This way, at time n, we have n +2 balls in the urn of
which Bn are black and Wn = n +2−Bn are white. Note that Bn ∈ {1, . . . ,n +1}.

Using induction, or otherwise, show that P (Bn = k) = 1
n+1 ,k = 1, . . . ,n +1.

Show that Mn = Bn
n+2 is a martingale relative to the filtration you should specify. Conclude that Mn converges to some M∞ and

specify in what sense. What is the distribution of M∞?

Proof. We use induction on n. Base case: When n = 1, P(B1 = 1) =P(B1 = 2) = 1/2.

Induction case: For k > 1,

P(Bn+1 = k) =P(Bn+1 = k ∧Bn = k −1)+P(Bn+1 = k ∧Bn = k)

=P(Bn+1 = k | Bn = k −1)P(Bn = k −1)+P(Bn+1 = k | Bn = k)P(Bn = k)
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= k −1

n +2

1

n +1
+ n +2−k

n +2

1

n +1

= 1

n +2

For k = 1, P(Bn+1 = 1) =P(Bn+1 = 1 | Bn = 1)P(Bn = 1) = n +1

n +2

1

n +1
= 1

n +2
. This completes the induction.

Let Xn represents the colour of the n-th draw, such that Xn = 1 if the n-th draw is black and Xn = 0 if the n-th draw is white.

Let (Fn) be the filtration generated by (Xn). Then Mn = Bn

n +2
= 1+∑n

k=1 Xk

n +2
is Fn-measurable.

E[Mn+1 |Fn]
a.s.== E

[
Bn +1

n +3
1{Xn+1=1}

∣∣∣∣ Fn

]
+E

[
Bn

n +3
1{Xn+1=0}

∣∣∣∣ Fn

]
a.s.== Bn +1

n +3
P(Xn+1 = 1 |Fn)+ Bn

n +3
P(Xn+1 = 0 |Fn)

a.s.== Bn +1

n +3

Bn

n +2
+ Bn

n +3

n +2−Bn

n +2

= Bn

n +2
= Mn

Hence (Mn) is a martingale with respect to (Fn). Since (Mn) is non-negative, by Corollary 8.30 it converges almost surely to
M∞, which is integrable.

Note that Mn is in fact the uniform distribution in

{
1

n +2
, ...,

n +1

n +2

}
. Therefore M∞ is the uniform distribution in [0,1].


