

Peize Liu St. Peter's College University of Oxford

Problem Sheet 2

B3.2: Geometry of Surfaces

Ouestion 1

Let $f: X \to Y$ be a holomorphic map of compact connected Riemann surfaces of degree 1.

- (i) Show that f has no ramification points.
- (ii) Show that f is a homeomorphism.
- (iii) Show that f^{-1} is holomorphic.

Proof. (i) Recall that in lecture we are shown that

$$\deg f = \sum_{x \in f^{-1}(\{y\})} v_f(x)$$

for any $y \in Y$, where $v_f(x)$ is the ramification index of $x \in X$. $x \in X$ is a ramification point of and only if $v_f(x) > 1$. Therefore $\deg f = 1$ implies that f has no ramification points. You shall give the obvious here

- (ii) $\deg f = 1$ also implies that $f^{-1}(y)$ is a singleton for any $y \in Y$. Hence f is a bijection. For $x_0 \in X$, let $y_0 \in Y$. Let (U, φ) and (V, ψ) be local charts such that $x_0 \in U$ and $y_0 \in V$. Then $\tilde{f} := \psi \circ f \circ \varphi^{-1} : \varphi(U) \to \mathbb{C}$ is a injective holomorphic function onto its image. By inverse function theorem in complex analysis, its inverse function $\tilde{f}^{-1} = \varphi \circ f^{-1} \circ \psi^{-1}$ is also holomorphic. Hence $f^{-1} = \varphi^{-1} \circ \tilde{f}^{-1} \circ \psi$ is holomorphic near $y_0 \in Y$. Then $f^{-1} : Y \to X$ is a holomorphic map. In particular, $f : X \to Y$ is a biholomorphism. So it is a homeomorphism.
- (iii) This is shown in (ii).

Question 2

Let $f: X \to Y$ be a nonconstant holomorphic map of compact connected Riemann surfaces, where X is the Riemann sphere. Use the general form of the Riemann-Hurwitz formula to deduce that Y is homeomorphic to X.

Proof. Riemann-Hurwitz formula:

$$\chi(X) = \deg f \cdot \chi(Y) - \sum_{x \in X} (v_f(x) - 1)$$

Since *Y* is a compact connected Riemann surface, it is orientable. So by classification theorem of compact surfaces, *Y* is homeomorphic to some connected sum of tori. $\chi(Y) = 2 - 2n$ for some $n \in \mathbb{N}$.

Suppose that $n \ge 1$. Then

$$\chi(X) = \deg f \cdot \chi(Y) - \sum_{x \in X} (v_f(x) - 1) \le \deg f \cdot \chi(Y) \le 0$$

But we know that X is the Riemann sphere, so $\chi(X) = 2$. This is a contradiction. Hence n = 0 and $Y \cong S^2$. We deduce that Y is homeomorphic to X.

Question 3

The Korteweg-de Vries equation which describes shallow water waves is

$$\frac{\partial \phi}{\partial t} + \frac{\partial^3 \phi}{\partial x^3} + 6\phi \frac{\partial \phi}{\partial x} = 0$$

(i) A solution with a fixed wave form is given by $\phi(x, t) = f(x - ct)$. Show that f satisfies the equation

$$-cf' + f''' + 6ff' = 0$$

(ii) Using the relation $(\wp')^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$ find constants a, b such that $f = a\wp + b$ satisfies this equation where \wp is the Weierstrass \wp -function.

Can you describe the sort of wave this corresponds to?

Proof. (i) Let $f(x-ct) = \phi(x,t)$. Then $\partial \phi/\partial x = f'(x-ct)$, $\partial^3 \phi/\partial x^3 = f'''(x-ct)$ and $\partial \phi/\partial t = -cf'(x-ct)$. Hence the Korteweg-de Vries equation is transformed into

$$-cf' + f''' + 6ff' = 0$$

(ii) Note that $6ff' = (3f^2)'$. We integrate the equation and obtain

$$3f^2 - cf + f'' = \text{const}$$

Substituting $f = a\wp + b$, we have

$$3a\wp^2 + (6b - c)\wp + \wp'' = \text{const}$$

We differentiate with respect to the formula $(\wp')^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$ to obtain

$$\wp'' = 2((\wp - e_1)(\wp - e_2) + (\wp - e_2)(\wp - e_3) + (\wp - e_3)(\wp - e_1))$$

Hence

$$3a\wp^{2} + (6b - c)\wp + 2((\wp - e_{1})(\wp - e_{2}) + (\wp - e_{2})(\wp - e_{3}) + (\wp - e_{3})(\wp - e_{1})) = \text{const}$$

$$(3a + 6)\wp^{2} + (6b - c - 4(e_{1} + e_{2} + e_{3}))\wp = \text{const}$$

The integrating constant can be chosen such that the right hand side of the equation vanishes.

Furthermore we shall prove that $e_1 + e_2 + e_3 = 0$ with some complex analysis techniques.

Starting from

$$\wp(z) := \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

Note that

$$\frac{1}{(1-w)^2} = \sum_{\ell=0}^{\infty} (\ell+1) w^{\ell}, \quad \text{for } |w| < 1$$

which is obtained by differentiating the geometric series. Hence for $|z| < |\omega|$:

$$\frac{1}{(z-\omega)^2} = \frac{1}{\omega^2} \sum_{\ell=0}^{\infty} (\ell+1) \left(\frac{z}{\omega}\right)^{\ell}$$

Therefore we obtain the Laurent expansion of \wp near z = 0:

$$\wp(z) = \frac{1}{z^{2}} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{\omega^{2}} \sum_{\ell=0}^{\infty} (\ell+1) \left(\frac{z}{\omega} \right)^{\ell} - \frac{1}{\omega^{2}} \right) = \frac{1}{z^{2}} + \sum_{\omega \in \Lambda \setminus \{0\}} \sum_{\ell=1}^{\infty} (\ell+1) \frac{z^{\ell}}{\omega^{\ell+2}}$$
$$= \frac{1}{z^{2}} + \sum_{\ell=1}^{\infty} (\ell+1) z^{\ell} \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-(\ell+2)}$$

By symmetry, replacing (m,n) with (-m,-n), we see that the following series is zero for odd ℓ .

$$\sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-(\ell+2)} = \sum_{(m,n) \neq (0,0)} (m\omega_1 + n\omega_2)^{-(\ell+2)}$$

Hence

$$\wp(z) = \frac{1}{z^2} + \sum_{k=1}^{\infty} (2k+1)z^{2k} \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-(2k+2)} = \frac{1}{z^2} + \sum_{k=1}^{\infty} c_k z^{2k}$$

From the Laurent expansion we find that

$$\wp = z^{-2} + c_1 z^2 + c_2 z^4 + \mathcal{O}(z^6)$$

$$\wp^3 = z^{-6} + 3c_1 z^{-2} + 3c_2 + \mathcal{O}(z^2)$$

$$(\wp')^2 = 4z^{-6} - 8c_1 z^{-2} - 16c_2 + \mathcal{O}(z^4)$$

Hence $g = (\wp')^2 - 4\wp^3 + 20c_1\wp + 28c_2 = O(z^2)$ near z = 0. So g can be extended to a holomorphic function near z = 0. Since g is doubly periodic, the image im g is compact in \mathbb{C} . Hence by Liouville's Theorem g is constant. g(z) = 0 implies that

$$(\wp')^2 = 4\wp^3 - 20c_1\wp - 28c_2$$

But we also know that

$$(\wp')^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$$

By Vieta's Theorem we deduce that $e_1 + e_2 + e_3 = 0$.

Great Worn!

Hence

$$(3a+6)\wp^2 + (6b-c)\wp = \text{const}$$

We deduce that when a = -2 and b = c/6, $f = a\wp + b$ satisfies the Korteweg-de Vries equation.

a

Question 4

Let $f: X \to Y$ be a holomorphic map of compact connected Riemann surfaces of degree 2. Show that there is a non-trivial holomorphic homeomorphism $\sigma: X \to X$ such that $f \circ \sigma = f$ and σ^2 is the identity map. How many fixed points does your map have?

Proof. Since $\deg f = 2$, $f^{-1}(\{y\})$ is a singleton if y is a branch point or a doubleton if y is not a branch point. We define σ as follows: For $x \in X$, if x is a ramification point, then define $\sigma(x) = x$; if x is not a ramification point, then there exists a unique $x' \in X \setminus \{x\}$ such that f(x) = f(x') and we define $\sigma(x) = x'$.

From the definition it is clear that $f \circ \sigma = f$ and $\sigma^2 = id$. The latter implies that σ is self-inverse. It remains to show that σ is holomorphic.

If we remove the ramification points and branch points, f is a covering map from X to Y of degree 2, and σ is a covering transformation. At a non-ramification point x, there exists a open neighbourhood $U \subseteq X$ of x on which f is injective. $f|_U: U \to f(U)$ and $f|_{\sigma(U)}: \sigma(U) \to f(U)$ are biholomorphisms. So σ maps neighbourhood U of u biholomorphically to neighbourhood u0 of u2.

At a ramification point $x \in X$, there exists local charts (U, φ) and (V, ψ) , where $x \in U$ and $f(x) \in V$, such that $\widetilde{f} = \psi \circ f \circ \varphi^{-1}$ is given by $\widetilde{f}(z) = z^2$. Then $\widetilde{\sigma} = \varphi \circ \sigma \circ \varphi^{-1}$ satisfies $\widetilde{f} \circ \widetilde{\sigma} = \widetilde{f}$. Since $\widetilde{\sigma} \neq \operatorname{id}$, we have $\widetilde{\sigma}(z) = -z$. In particular $\widetilde{\sigma}$ is holomorphic at z = 0. Hence σ is holomorphic at x.

We conclude that σ is a biholomorphism. The fixed points of σ are exactly the ramification points of X.

Question 5. The classification of elliptic curves.

There are bijections

Here $\mathbb{H} = \{ \tau \in \mathbb{C} : \operatorname{Im} \tau > 0 \}$ is the upper half-plane in \mathbb{C} . The second map comes by writing $\Lambda = \langle \omega_1, \omega_2 \rangle_{\mathbb{Z}}$, choosing τ to be whichever of ω_2/ω_1 or $-\omega_2/\omega_1$ lies in \mathbb{H} and noting that $\Lambda = \omega_1 \cdot (\mathbb{Z} + \mathbb{Z}\tau)$ so $\mathbb{C}/\Lambda \cong \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$

The third map is $\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau) \leftrightarrow [\tau]$, and $\mathrm{PSL}(2,\mathbb{Z})=\mathrm{SL}(2,\mathbb{Z})/\{\pm I\}$ acts on the upper half-plane $\mathbb{H}=\{z\in\mathbb{C}:\mathrm{Im}(z)>0\}$ by Möbius transformations, that is $,\begin{pmatrix}a&b\\c&d\end{pmatrix}$ in $\mathrm{SL}(2,\mathbb{Z})$ acts by $\begin{pmatrix}a&b\\c&d\end{pmatrix}:z\mapsto\frac{az+b}{cz+d}$.

Although we will not need the following fact, some easy group theory shows that $SL(2, \mathbb{Z})$ is generated by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. The corresponding Möbius maps S(z) = -1/z and T(z) = z + 1 are rather useful in this exercise.

- (a) For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL(2, \mathbb{Z})$, show that $Im(Az) = \frac{1}{|cz+d|^2} \cdot Im(z)$. Deduce that, given a constant K, only finitely many $c, d \in \mathbb{Z}$ satisfy Im(Az) > K.
- (b) Show that $\mathbb{H}/PSL(2,\mathbb{Z})$ is a topological space homeomorphic to \mathbb{C} , by first showing each point of $\mathbb{H}/PSL(2,\mathbb{Z})$ has a representative inside the "strip"

$$\{\tau \in \mathbb{H} : |\operatorname{Re}(\tau)| \le 1/2, |\tau| \ge 1\}$$

and then checking that the only remaining identifications are on the boundary of the strip.

Hint. Try to maximize the imaginary part for the orbit of z under the action.

- (c) Show that $PSL(2,\mathbb{Z})$ acts freely on \mathbb{H} except at the points in the $PSL(2,\mathbb{Z})$ -orbits of $e^{\pi i/3}$ and of i, and show that the stabilisers of those points are respectively $\mathbb{Z}/3$ and $\mathbb{Z}/2$.
- (d) Briefly comment on why the natural local complex coordinate from \mathbb{H} makes $\mathbb{H}/\operatorname{PSL}(2,\mathbb{Z})$ into a Riemann surface except at $e^{\pi i/3}$ and i.

Proof. (a) By direct calculation,

$$\operatorname{Im}(Az) = \operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \operatorname{Im}\left(\frac{(az+b)(c\overline{z}+d)}{|cz+d|^2}\right) = \frac{1}{|cz+d|^2}\operatorname{Im}(ac|z|^2 + bd + adz + bc\overline{z}) = \frac{ad-bc}{|cz+d|^2}\operatorname{Im}z = \frac{1}{|cz+d|^2}\operatorname{Im}z$$

Then

$$\operatorname{Im}(Az) > K \iff \frac{1}{|cz+d|^2} \operatorname{Im} z > K \iff |cz+d| < \sqrt{\frac{\operatorname{Im} z}{K}}$$

For $z \in \mathbb{H}$, 1 and z are linearly independent over \mathbb{R} . So $\Gamma = \{cz + d \in \mathbb{C} : c, d \in \mathbb{Z}\}$ is a lattice in \mathbb{C} . So there are finitely many $(c,d) \in \mathbb{Z}^2$ such that $|cz + d| < \sqrt{\frac{\operatorname{Im} z}{K}}$ for any fixed constant $K \in \mathbb{R}_+$. Hence there are finitely many $(c,d) \in \mathbb{Z}^2$ such that $\operatorname{Im}(Az) > K$.

(b) By (a), the set $\{(c,d) \in \mathbb{Z}^2 : \operatorname{Im}(Az) \ge \operatorname{Im} z\}$ is finite. Let $A \in \operatorname{SL}(2,\mathbb{Z})$ be the map such that $\operatorname{Im}(Az)$ is maximal. Let n be the closet integer to $\operatorname{Re}(Az)$. Then we find that w := Az - n is in the region $\{\tau \in \mathbb{H} : |\operatorname{Re}(\tau)| \le 1/2, |\tau| \ge 1\}$. Because $|\operatorname{Re}(Az) - n| \le 1/2$ and

elements do the
$$|\operatorname{Im} w| = |\operatorname{Im}(Az)| \leq \left|\operatorname{Im}\left(\frac{1}{w}\right)\right| = \frac{|\operatorname{Im} w|}{|w|^2} \Longrightarrow |w| \geq 1$$

For $z, w \in \{\tau \in \mathbb{H} : |\text{Re}(\tau)| \le 1/2, |\tau| \ge 1\}$, let $A \in \text{PSL}(2, \mathbb{Z})$ such that Az = w. Without loss of generality we assume that Im(w) > Im(z). Then

$$\operatorname{Im} w = \operatorname{Im}(Az) = \frac{\operatorname{Im} z}{|cz + d|^2} \geqslant \operatorname{Im}(z) \implies |cz + d| \leqslant 1$$

Note that

$$|c\operatorname{Im} z| = |\operatorname{Im}(cz + d)| \le |cz + d| \le 1$$

Hence $|c| = 1/|\operatorname{Im} z|$. But $\operatorname{Im} z \ge \sqrt{3}/2$. Hence $|c| < 2/\sqrt{3}$. As $c \in \mathbb{Z}$, the only possibilities are $c \in \{0, \pm 1\}$. In addition, since $|\operatorname{Re} z| \le 1/2$, we have

$$|d| - \frac{1}{2} \le |d + c \operatorname{Re} z| \le |cz + d| \le 1$$

Hence $d \in \{0, \pm 1\}$.

• c = 0:

Since ad-bc=1, c=0 implies that ad=1. Hence $A=\pm\begin{pmatrix}1&b\\0&1\end{pmatrix}$. w=z+b. Since Re z, Re $w\in[-1/2,1/2]$, $b\in\{0,\pm1\}$. If b=0, then z=w. If $b=\pm1$, then z and w are on the boundary lines Re $z=\pm1/2$ respectively. Hence we should identify Re z=1/2 with Re z=-1/2.

• $c = \pm 1$ and d = 0:

d=0 implies that bc=-1. Hence $A=\pm \begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix}$. $w=a-\frac{1}{z}$. In this case $|z|=|cz|\leqslant |cz+d|\leqslant 1$. But we also have $|z|\geqslant 1$. Hence |z|=1. Since $\operatorname{Re} z$, $\operatorname{Re} w\in [-1/2,1/2]$, $a\in\{0,\pm1\}$. If a=0, then w=-1/z. In particular |w|=1 and $\operatorname{Re} w=-\operatorname{Re} z$. Hence we should identify the arc $\{z\in\mathbb{C}:\operatorname{Re} z\in[-1/2,0],|z|=1\}$ with the arc $\{z\in\mathbb{C}:\operatorname{Re} z\in[0,1/2],|z|=1\}$ by symmetry. If $a=\pm 1$, then z and w are the vertices $e^{\pi i/3}$ and $e^{2\pi i/3}$.

- $c = d = \pm 1$: $|cz + d| \le 1$ implies that |z + 1| = 1. The only point is $z = e^{2\pi i/3}$.
- $c = -d = \pm 1$: $|cz + d| \le 1$ implies that |z 1| = 1. The only point is $z = e^{\pi i/3}$.
- (c) It suffices to consider the action of $PSL(2, \mathbb{Z})$ on $\{\tau \in \mathbb{H} : |Re(\tau)| \le 1/2, |\tau| \ge 1\}$ (with left half of the boundary removed). Let $A \in PSL(2, \mathbb{Z})$ such that Az = z. From the analysis in (b) we can quickly identify the possible cases:
 - c = 0 and b = 0: *A* is the identity map.
 - $c = \pm 1$, d = 0 and a = 0: z = Az = -1/z implies that z = i.

• $c = d = \pm 1$: $z = e^{2\pi i/3}$ (this point is in the orbit of $e^{\pi i/3}$)

•
$$c = -d = +1$$
: $z = e^{\pi i/3}$

In particular, the stabilizers of the orbits:

• z = i: {id, S} $\cong \mathbb{Z}/2\mathbb{Z}$; • $z = e^{\pi i/3}$: {id, $T \circ S$, $T \circ S \circ T \circ S$ } $\cong \mathbb{Z}/3\mathbb{Z}$

- (d) Except at the orbits of i and $e^{\pi i/3}$, PSL(2, \mathbb{Z}) acts freely and properly discontinuously on \mathbb{H} . The topological space $\mathbb{H}/\operatorname{PSL}(2,\mathbb{Z})$ is a Riemann surface by the following construction¹:
 - It is clear that $\mathbb{H}/PSL(2,\mathbb{Z})$ is Hausdorff and second countable.
 - We can choose an altas $\{(U_i, \varphi_i) : i \in I\}$ on \mathbb{H} such that $U_i \cap g(U_i) = \emptyset$ for all $i \in I$ and $g \in PSL(2, \mathbb{Z}) \setminus \{id\}$. This is possible as we have shown that the action is properly discontinuous. Let $\pi: \mathbb{H} \to \mathbb{H}/PSL(2,\mathbb{Z})$ be the projection map. Then $V_i = \pi(U_i)$ is open in $\mathbb{H}/\operatorname{PSL}(2,\mathbb{Z})$ and $\{V_i : i \in I\}$ covers $\mathbb{H}/\operatorname{PSL}(2,\mathbb{Z})$.
 - Since $\pi_i := \pi|_{U_i} : U_i \to V_i$ is a homeomorphism, define $\psi_i := \varphi \circ \pi_i^{-1} : V_i \to \varphi(U_i) \subseteq \mathbb{C}$, which is also a homeomorphism
 - We shall show that the altas $\{(V_i, \psi_i) : i \in I\}$ is compatible. For $V_i \cap V_j \neq \emptyset$,

$$\psi_i(V_i \cap V_j) = \varphi_i \circ \pi_i^{-1}(V_i \cap V_j) = \varphi_i(U_i \cap \pi^{-1}(V_j)) = \varphi_i\left(U_i \cap \bigcup_{g \in \mathrm{PSL}(2,\mathbb{Z})} g(U_j)\right) = \bigcup_{g \in \mathrm{PSL}(2,\mathbb{Z})} \varphi_i(U_i \cap g(U_j))$$

which is a disjoint union of open subsets. For $p \in \psi_i(V_i \cap V_j)$, there exists a unique $g \in PSL(2, \mathbb{Z})$ such that $p \in W :=$ $\varphi_i(U_i \cap g(U_i))$. Then we need to show that $\psi_i \circ \psi_i^{-1}|_W$ is holomorphic. Since

$$\psi_j \circ \psi_i^{-1} \big|_W = \varphi_j \circ \pi_j^{-1} \circ \pi_i \circ \varphi_i^{-1} \big|_W$$

it suffices to show that $\pi_j^{-1} \circ \pi_i$ is holomorphic on $U_i \cap g(U_j)$. For $q \in U_i \cap g(U_j)$, $q' := \pi_j^{-1} \circ \pi_i(q) \in U_j$. Then $\pi_j(q') = \pi_i(q)$. There exists $g_q \in \operatorname{PSL}(2,\mathbb{Z})$ such that $g_q(q') = q$. Hence $q \in g_q(U_j) \cap g(U_j)$. But it implies that $g_q = g$. Hence $\pi_j^{-1} \circ \pi_i = g^{-1}$ on $U_i \cap g(U_j)$. We deduce that $\pi_j^{-1} \circ \pi_i$ is holomorphic on $U_i \cap g(U_j)$. Hence $\psi_j \circ \psi_i^{-1}$ is holomorphic. The same argument shows that the inverse is also holomorphic. We therefore conclude that the

Grat Work

¹This proof is adapted from Theorem 1.6 of C3.3 Differentiable Manifolds.