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Question 1 @

Let f: X — Y be a holomorphic map of compact connected Riemann surfaces of degree 1.
(i) Show that f has no ramification points.
(ii) Show that f is a homeomorphism.

(iii) Show that f “Lis holomorphic.

Proof. (i) Recall that in lecture we are shown that

degf= 3 vy
xef~1{yh

for any y € Y, where v £(x) is the ramification index of x € X. x € X is a ramification point of and only if v ¢(x) > 1.
A s . \f ol coclf cut the obuas here
Therefore deg f = 1 implies that f has no ramification points. Jouw ¢ S Pe @]

(ii) degf = 1 also implies that f~!(y) is a singleton for any y € Y. Hence f is a bijection.‘/For xo€ X,letype Y. Let (U, )
and (V,y) be local charts such that xo € U and yg € V. Then f := wo fop~L: ¢(U) — C is a injective holomorphic
function onto its image. By inverse function theorem in complex analysis,)é inverse function f‘l =gofloylis
also holomorphic. Hence f~! = ¢~ 1o f_l o1 is holomorphic near yg € Y. Then f~L: Y — X is a holomorphic map. In
particular, f: X — Y is a biholomorphism. So it is a homeomorphism. /

(iii) This is shown in (ii). O

Question 2 @

Let f: X — Y be a nonconstant holomorphic map of compact connected Riemann surfaces, where X is the Riemann sphere.
Use the general form of the Riemann-Hurwitz formula to deduce that Y is homeomorphic to X.

Proof. Riemann-Hurwitz formula:

x(X)=degf-x(Y)— ) (vp(x)-1)
xeX

Since Y is a compact connected Riemann surface, it is orientable. “So by classification theorem of compact surfaces, Y is
homeomorphic to some connected sum of tori. y(Y) =2—2n for some n e N. ‘/

Suppose that n = 1. Then
x(X)=degf x(Y)— Z (V) -1 < degf-x(Y)<O /

xeX

But we know that X is the Riemann sphere, so y(X) = 2. This is a contradiction. Hence n=0and Y = S%. We deduce that Y
is homeomorphic to X. , O

Question 3
The Korteweg-de Vries equation which describes shallow water waves is

p ¢
ot 0x3

op

+6¢—— =0

(i) A solution with a fixed wave form is given by ¢(x, t) = f(x — ct). Show that f satisfies the equation

—cf'+f"+6ff =0

(i) Using the relation (@’)2 =4(p—e1) (9 — e2) (9 — e3) find constants a, b such that f = agp+ b satisfies this equation where
o is the Weierstrass g-function.

Can you describe the sort of wave this corresponds to?

S Y S/

Proof. (i) Let f(x—ct)=¢(x,1). Then d¢p/0x = f'(x—ct), 33p/dx% = f"" (x— ct) and d¢p/dt = —c f' (x - ct). Hence the Korteweg-de

Vries equation is transformed into
_Cfl+fll/+6ffl:0 /



(ii) Notethat 6ff’ = (3f2)’. We integrate the equation and obtain
3f2—cf+ f" = const
Substituting f = ag + b, we have
3agp’ + (6b—c)p + " = const

We differentiate with respect to the formula (go’)z =4(p—e1) (9 —e2) (9 — e3) to obtain

p"=2(p-ep-e)+(p-e)p—e3)+(p—e3)p—e1))
Hence

3ap® +(6b—)p +2((p—e1) (@ —e2) + (P — e2) (P — e3) + (9 — e3) (P — e1)) = const
(Ba+6)p° + (6b—c—4(e + ez + e3))p = const

The integrating constant can be chosen such that the right hand side of the equation vanishes.
Furthermore we shall prove that e; + ez + e3 = 0 with some complex analysis techniques.

Starting from

1 1 1
b e ¥ (1)

z2 w€§{0} (z—w)? w?
Note that

1 o0
mzz(é-i'l)w[, fOrIW|<1
=0

which is obtained by differentiating the geometric series. Hence for | z| < |w|:

1 1 & z\¢
(z—w)? - E,Z:O(“D(E)

Therefore we obtain the Laurent expansion of ¢ near z = 0:

1 1 & zyve 1 1 ® zf
pR)=—=+ ) (—Z(€+1)— ——)=—+ YooY +)—
z? weA\{0} w? =0 (‘U) w? 22 weA\{0} /=1 w’+?

1 & _
:?+Z(ﬁ+1)zl Y o2
=1 wER (0}

By symmetry, replacing (m, n) with (—m,—n), we see that the following series is zero for odd ¢.

Y o@D Y (mwy + nwy) @2
weA\{0} (m,n)#(0,0)

Hence

l & 1 &
P@) =+ Ck+1Z* Y 0 D= SN g2
4 =1 weAV(0} = |

From the Laurent expansion we find that

p=z+c2+0zt+ O(ZG)

0> =254+3c127243c,+0 (zz)
®)?=42"%-8c1272-16c,+0 (24)

Hence g = ()% — 4¢° +20c1p +28¢; = O (zz) near z = 0. So g can be extended to a holomorphic function near z = 0.
Since g is doubly periodic, the image im g is compact in C. Hence by Liouville’s Theorem g is constant. g(z) = 0 implies
that

(9)* = 4p° —20c1p - 28,

But we also know that
(©)’ =4(p—e1) (p-e2) (p—e3)

By Vieta’s Theorem we deduce that e; + ez + e3 = 0.

Crak \Jorn l,\,



Hence
(Ba+6)p’ + (6b— c)p = const

We deduce that when a= -2 and b = ¢/6, f = agp + b satisfies the Korteweg-de Vries equation. O

ey

Let f : X — Y be a holomorphic map of compact connected Riemann surfaces of degree 2. Show that there is a non-trivial
holomorphic homeomorphism o : X — X such that foo = f and o? is the identity map. How many fixed points does your

Question 4

map have?

Proof. Since deg f =2, f~1({y}) is a singleton if y is a branch point or a doubleton if y is not a branch point. We define o as follows:
For x € X, if x is a ramification point, then define ¢ (x) = x; if x is not a ramification point, then there exists a unique x’ € X\{x}
such that f(x) = f(x’) and we define o(x) = x'. 6(@;{6 Ve

From the definition it is clear that foo = f and 0 = id. The latter implies that o is self-inverse. It remains to show that o is
\
holomorphic. s .

If we remove the ramification points and branch points, f is a covering map from X to Y of degree 2, and o is a cover-
ing transformation. At a non-ramification point x, there exists a open neighbourhood U < X of x on which f is injective.
flu:U — f(U) and flgw) : 0(U) — f(U) are biholomorphisms. So o maps neighbourhood U of x biholomorphically to
neighbourhood o (U) of o(x). o is holomorphic at x.

At aramification point x € X, there exists local charts (U, ¢) and (V,y), where x € U and f(x) € V, such that f: wo fo (p_l is
given by f(z) =z%. Then & = pooo ™! satisfies fo 0= f Since 0 # id, we have 0 (z) = —z. In particular ¢ is holomorphic at
z=0. Hence o is holomorphic at x.

We conclude that o is a biholomorphism. The fixed points of o are exagtly,theamification points of X. / O
P e ey
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Question 5. The classification of elliptic curves. @

There are bijections

{Riemann surfaces homeomorphic to a torus} {Quotients C/A for A alattice in C}
biholomorphisms biholomorphisms
{Quotients C/(Z + Zt) with T € H}

«— H/PSL(2,Z
biholomorphisms (&)

Here H = {r € C : Im7 > 0} is the upper half-plane in C. The second map comes by writing A = (w1,w2)7, choosing T to be
whichever of wy /w1 or —wz/w; lies in H and noting that A = w1 - (Z+ Z1) so C/A=C/(Z + Z7)

The third map is C/(Z + Z71) < [7], and PSL(2, Z) = SL(2, Z)/{£ I} acts on the upper half-plane H = {z € C : Im(z) > 0} by M6bius
az+b

transformations, that is ( a b )in SL(2,7) acts b ( a b )'z
' e d ’ e al cz+d’

0
Although we will not need the following fact, some easy group theory shows that SL(2,Z) is generated by ( 1 ) and

1 1
( 0 1 ) The corresponding Mébius maps S(z) = —1/z and T(z) = z+ 1 are rather useful in this exercise.

b
(@) For A= ( Z d ) in SL(2,7), show that Im(Az) = > -Im(z). Deduce that, given a constant K, only finitely many

1
lcz+d]|
c,d € Z satisfy Im(Az) > K.

(b) Show that H/PSL(2,Z) is a topological space homeomorphic to C, by first showing each point of H/PSL(2,Z) has a
representative inside the "strip"

{treH:|Re(r)|<1/2,|T| =1}

and then checking that the only remaining identifications are on the boundary of the strip.



Hint. Try to maximize the imaginary part for the orbit of z under the action.

(c) Show that PSL(2,Z) acts freely on H except at the points in the PSL(2,Z)-orbits of " i3 and of i, and show that the
stabilisers of those points are respectively Z/3 and Z/2.

(d) Briefly comment on why the natural local complex coordinate from H makes H/ PSL(2, Z) into a Riemann surface except

Proof.

ate

and i.

(a) By direct calculation,

Im(Az) =Im

b b)(cz+d 1 d-b
az+t (az+b)(cz+d) = Im(ac|z|2+bd+adz+bci): a ¢

- Tmz=———Tm
lcz+ d|? lcz+d|? lcz+ d|? lcz+d|?

1 Imz
Im(Az) > K — ﬁlmz>K<:>|cz+d|< —
|lcz+d| K

z
cz+d

Then

For ze H, 1 and z are linearly independent over R. SoI' = {cz+d € C: ¢,d € Z} is alattice in C. So there are finitely many

Imz
(c,d) € Z? such that |cz + d| < 1/ a for any fixed constant K € R.. Hence there are finitely many (c,d) € 72 such that
Im(Az) > K.

(b) By (a), the set {(c,d) € 72 : Im(Az) = Imz} is finite. Let A € SL(2,Z) be the map such that Im(Az) is maximal. Let n

be the closet integer to Re(Az). Then we find that w := Az — n is in the region {r € H : |Re(7)| < 1/2,|7| = 1}. Because
|Re w| =|Re(Az) — n| < 1/2 and

| Im w|

| 1
. H( [(0 L/\o_ | Imw| =|Im(Az)| < Img:) = = |lw|=1
\A)’UCL\J FSL eszm 3 onifof et - well ! et ffwlpuﬂz e ?

/
/

e c=d=+1:|cz+d|<1implies that|z+ 1| = 1. The only pointis z=¢

e c=—d=4=1:|cz+d|<1implies that |z— 1| = 1. The only pointis z=e

For z,we {t e H:|Re(1)| = 1/2,|7| = 1}, let A € PSL(2,Z) such that Az = w. Without loss of generality we assume that
Im(w) > Im(z). Then

Imw=Im(Az) = =>Im(z) = |cz+d|<1

Imz
lcz+ d|?

Note that

lcImz|=|Im(cz+d)|<|cz+d|<1

Hence |c| = 1/|Imz|. ButIm z = v/3/2. Hence |c| < 2/v/3. As c€ Z, the only possibilities are c € {0, +1}. In addition, since
|Re z| < 1/2, we have

1
|d|—5s|d+cRez|s|cz+d|sl

Hence d € {0,+1}.

e c=0:

1
Since ad—bc =1, ¢ =0implies that ad = 1. Hence A=+ (0

If b=0, then z= w. If b= =1, then z and w are on the boundary lines Re z = +1/2 respectively. Hence we should
identify Rez =1/2 withRez=—1/2.

b
1). w=z+b.SinceRez,Rew e [-1/2,1/2], be {0,+1}.

c=xlandd=0:

-1
d = 0 implies that bc = —1. Hence A = + (il 0

have |z| = 1. Hence |z| = 1. Since Rez,Rew € [-1/2,1/2], a€ {0,+1}. If a = 0, then w = —1/z. In particular |w| =1
and Rew = —Rez. Hence we should identify the arc {ze C: Rez € [-1/2,0],|z| = 1} with the arc {z€ C: Rez €
[0,1/2],|z] = 1} by symmetry. If a = +1, then z and w are the vertices ei/3 2mil3,

1
). w = a— —. In this case |z| = |cz| < |cz+ d| < 1. But we also
Z

and e

27mil3

7i/3

(c) It suffices to consider the action of PSL(2,Z) on {T e H:|Re(7)| < 1/2,|7| = 1} (with left half of the boundary removed).

v/

Let A€ PSL(2,Z) such that Az = z. From the analysis in (b) we can quickly identify the possible cases:
¢ ¢c=0and b=0: Ais the identity map.

e c=11,d=0and a=0: z= Az=—1/zimplies that z=1.



o c=d==1: z=e*/3 (this point is in the orbit of e™/3)
e c=—d=x+1:z=¢€"/3,

In particular, the stabilizers of the orbits:
¢/ e z=1i:{id,S} = 7/27;
‘/ o z=€"3:{id, ToS,ToSoTo S} =7/3Z
‘/ ¢ all other orbits: {id}. \/

(d) Except at the orbits of i and e™/3, PSL(2,2) acts freely and properly discontinuously on H. The topological space
H/PSL(2, Z) is a Riemann surface by the following construction?!:

e Itis clear that H/PSL(2, Z) is Hausdorff and second countable.

¢ We can choose an altas {(U;, ;) : i € I} on H such that U; n g(U;) = @ for all i € I and g € PSL(2,2)\{id}. This is
possible as we have shown that the action is properly discontinuous. Let 7 : H — H/PSL(2, Z) be the projection
map. Then V; = 7(U;) is open in H/ PSL(2, Z) and {V; : i € I} covers H/ PSL(2, Z).

* Since 7; := 7|y, : U; — V; is a homeomorphism, define y; := ¢o anl : Vi = @(U;) < C, which is also a homeomor-
phism.

* We shall show that the altas {(V;,v;) : i € I} is compatible. For V; N V; # &,

vi(VinVj) =gion; (Vin V) = ;(Uina ' (V}) = p; (Ui n U g(Uj)) = U eiUingW
gePSL(2,2) gePSL(2,2)

which is a disjoint union of open subsets. For p € w;(V; N V}), there exists a unique g € PSL(2,Z) suchthat pe W :=
¢;(U;n g(Uj)). Then we need to show that i ; o 1//171 lw is holomorphic. Since

-1 -1 -1
vjoy; |y =wjon; omioy;
J w

it suffices to show that 7[;1 o7; is holomorphic on U; n g(U;). For q € U;n g(Uj), q = n]_.l omi(q) € Uj. Then
nj(q’) = 7i(q). There exists g4 € PSL(2,Z) such that gq(q’) = ¢q. Hence g € g4(Uj) n g(U;). But it implies that
84 = 8- Hence n]_.l om;=g tonU;n g(Uj). We deduce that n]_.l o7; is holomorphic on U; n g(U;). Hence y j o 1//171
is holomorphic. The same argument shows that the inverse is also holomorphic. We therefore conclude that the
altas is compatible. O

érai \A/CH\, '.

1This proof is adapted from Theorem 1.6 of C3.3 Differentiable Manifolds.



