Peize Liu St. Peter's College University of Oxford

Problem Sheet 4 A3: Rings and Modules

Question 1

Give examples of the following.

- (i) A free module over a PID and a linearly independent subset that cannot be extended to a basis.
- (ii) A free module over a PID and a minimal generating subset that is not a basis.
- (iii) A free module over a PID and a proper submodule of the same rank.

Proof.

- 1. \mathbb{Z} itself is a \mathbb{Z} -module. It is a free module of rank 1. Consider $\{2\} \subseteq \mathbb{Z}$. Clearly $\{2\}$ is linearly independent because \mathbb{Z} is an integral domain. $\{2\}$ is not a basis of \mathbb{Z} because it cannot generate $1 \in \mathbb{Z}$. Suppose that it can be extended to a basis B. Pick $n \in B$ such that $n \neq 2$. We have $2 \cdot n + (-n) \cdot 2 = 0$, contradicting that B is linearly independent.
- 2. Again we consider \mathbb{Z} as a \mathbb{Z} -module. $\{2,3\} \subseteq \mathbb{Z}$ is a minimal generating set because $1=1\cdot 3+(-1)\cdot 2$, and $\{2\},\{3\}$ cannot generate \mathbb{Z} . $\{2,3\}$ is linearly dependent as $0=2\cdot 3+(-3)\cdot 2$, so it is not a basis.
- 3. Once more we consider \mathbb{Z} as a \mathbb{Z} -module. It is a free module of rank 1. $2\mathbb{Z}$ is a proper submodule of \mathbb{Z} of rank 1 as $\{2\}$ is a basis of it.

Question 2

Both the conclusions below from the Structure Theorem in the lectures notes. The point of this question is to see how the proof simplifies in each case.

- (i) Suppose that R is a PID and M is a finitely generated R-module such that $\operatorname{Ann}_R(x) = \{0\}$ for all $x \neq 0_M$, Show that M is free.
- (ii) Suppose that G is a finitely generated Abelian group. Show that G is isomorphic to a direct sum of cyclic groups.

Proof. We begin our proof with stating a general theorem.

Theorem 1

If R is a PID and M is a finitely generated free R-module, then any submodule N of M is also free and finitely generated.

Instead of proving the theorem, we shall prove a stronger lemma:

Lemma 2

Suppose that R is a PID and M is a free R-modules with basis $\{v_1,...,v_n\}$. Let N be a submodule of M. Then there exists $a_1,...,a_m \in R$ ($m \le n$) such that $\{a_1v_1,...,a_mv_m\}$ is a basis of N and $a_1 \mid \cdots \mid a_m$.

Proof of Lemma 2. We use induction on the rank n.

Base case: If n = 0, then both M and N are the zero module. The result holds trivially.

Induction case: Suppose the result holds for rank M < n. For rank M = n: we consider the family of submodules of R:

$$\{\varphi(N) \triangleleft R : \varphi \in \operatorname{Hom}_R(M,R)\}$$

Since R is a PID, it is Noetherian. The family has a maximal element $\rho(N)$. Suppose that it is generated by a_1 . There exists $w_1 \in N$ such that $\rho(w_1) = a_1$. We claim that a_1 divides $\varphi(w_1)$ for all $\varphi \in \text{Hom}_R(M,R)$.

 $\langle a_1, \varphi(w_1) \rangle$ is a principal ideal in R. Let b be a generator of it and $b = ra_1 + s\varphi(w_1)$ for some $r, s \in R$. Consider $\psi := r\rho + s\varphi \in \operatorname{Hom}_R(M,R)$. Since $a_1 \in \langle b \rangle$, $\rho(N) = \langle a_1 \rangle \subseteq \langle b \rangle$. On the other hand, $\psi(w_1) = b \in \psi(N) \Longrightarrow \langle b \rangle \subseteq \psi(N) \subseteq \rho(N) = \langle a_1 \rangle$ by maximality of $\rho(N)$. Hence $\langle a_1 \rangle = \langle b \rangle$ and in particular a_1 divides $\varphi(w_1)$.

Since M is free, there is an isomorphism $\sigma: M \to R^n$. Let $\sigma(w_1) = (r_1, ..., r_n) \in R^n$. Let $\pi_i: R^n \to R$ be the projection onto the i-th coordinate. Since $\pi_i \circ \sigma \in \operatorname{Hom}_R(M,R)$, $a_1 \mid \pi \circ \sigma(w_1)$. There exists $s_1, ..., s_n \in R$ such that $r_i = a_1 s_i$. Let $v_1 := \sigma^{-1}(s_1, ..., s_n) \in M$ so that $w_1 = a_1 v_1$.

Note that $a_1 = \rho(w_1) = \rho(a_1v_1) = a_1\rho(v_1)$. As $a_1 \neq 0$, $\rho(v_1) = 1$. Let $M' := \ker \rho$ and $N' = N \cap M'$. Clearly $N' \subseteq N$ and $N' \subseteq M' \subseteq M$. We claim that $M = \langle v_1 \rangle \oplus M'$ and $N = \langle w_1 \rangle \oplus N'$.

For $m \in M$, $m = \rho(m)v_1 + (m - \rho(m)v_1)$. Note that

$$\rho(m - \rho(m)v_1) = \rho(m) - \rho(m)\rho(v_1) = 0$$

Therefore $m - \rho(m)v_1 \in \ker \rho$. We have $M = \langle v_1 \rangle + \ker \rho$. On the other hand, for $m \in \langle v_1 \rangle \cap \ker \rho$, $m = rv_1$ for some $r \in R$. $0 = \rho(rv_1) = r\rho(v_1) = r \Longrightarrow m = 0$. Hence $\langle v_1 \rangle \cap \ker \rho = \{0\}$. Hence $M = \langle v_1 \rangle \oplus \ker \rho$ as claimed.

For $m \in N$, as $\langle a_1 \rangle = \rho(N)$, $a_1 \mid \rho(m)$. Let $\rho(m) = a_1 c$ for some $c \in R$. Write

$$m = \rho(m)v_1 + (m - \rho(m)v_1) = a_1cv_1 + (m - a_1c_1v_1) = cw_1 + (m - cw_1).$$

Note that $\rho(m-cw_1)=\rho(m)-c\rho(w_1)=a_1c-a_1c=0$. Therefore $m-cw_1\in\ker\rho\cap N$ and $N=\langle w_1\rangle+N'$. The direct sum part is analgous to above. We have proven the claim.

We have rank M' < n. By induction hypothesis, let $\{v_2, ..., v_n\}$ be a basis of M' and $a_2v_2, ..., a_mv_m$ be a basis of N', where $a_2 \mid \cdots \mid a_n$. Then $\{v_1, ..., v_n\}$ is a basis of M and $\{a_1v_1, ..., a_mv_m\}$ is a basis of N.

Finally, we shall conclude the proof by showing that $a_1 \mid a_2$. (This part is not used in the question but I mention it for completeness.) Consider any mapping $f: \{v_1, ..., v_n\} \to R$ such that $f(v_1) = f(v_2) = 1$. By universal property of free modules, it lifts to $\varphi \in \operatorname{Hom}_R(M, R)$ such that $\varphi(v_1) = \varphi(v_2) = 1$. Since $\varphi(a_1v_1) = a_1$, $\langle a_1 \rangle \subseteq \varphi(N)$. By maximality of $\langle a_1 \rangle$ we have $\langle a_1 \rangle = \varphi(N)$. But then $\varphi(a_2v_2) = a_2 \in \varphi(N) = \langle a_1 \rangle$. Hence $a_1 \mid a_2$.

Theorem 1 follows from Lemma 2 immediately.

Proof of (1). If $M = \{0\}$ then it is trivially a free module. Suppose that $M \neq \{0\}$.

Let $x_1,...,x_n$ generates M. Since M is torsion-free, $\{x_i\}$ is linearly independent for each $i \in \{1,...,n\}$. As $\{x_1,...,x_n\}$ is finite, it contains a maximal linearly independent subset $\{x_1,...,x_r\}$. Then for each $r < j \le m$, there exists a non-trivial relation:

$$b_1x_1 + \dots + b_rx_r + a_ix_i = 0$$

where $b_1,...,b_r,a_j \in R$ and $a_j \neq 0$ by maximality.

Let $\{x_1,...,x_r\}$ generates a submodule N of M, which is free by definition. Notice that $a_{r+1}\cdots a_mx_i\in N$ for $i\in\{1,...,n\}$, as $a_jx_j\in\langle x_1,...,x_m\rangle$ for $r< j\leqslant m$ via the above relation. Hence $x\mapsto a_{r+1}\cdots a_nx$ defines a R-module homomorphism $\varphi:M\to N$. It is injective because $a_{r+1}\cdots a_n\neq 0$ and M is torsion-free. By First Isomorphism Theorem, $M\cong \operatorname{im}\varphi\subseteq N$. Since $\operatorname{im}\varphi$ is a submodule of the free module N, by Theorem 1 it is free. Hence M is a free module.

Proof of (2). G is a finitely generated \mathbb{Z} -module and \mathbb{Z} is a PID. There exists an epimorphism $\pi:\mathbb{Z}^n \to G$ for some $n \in \mathbb{N}$. By First Isomorphism Theorem, $G \cong \mathbb{Z}^n / \ker \pi$. We apply Lemma 2 to $\ker \pi$: there exists a basis $\{v_1, ..., v_n\}$ of \mathbb{Z}^n and a basis $\{a_1v_1, ..., a_mv_m\}$ of $\ker \pi$ for some $a_1, ..., a_m \in \mathbb{R} \setminus \{0\}$. In order words, $\ker \pi \cong a_1\mathbb{Z} \oplus \cdots \oplus a_m\mathbb{Z}$. Hence:

$$G = \frac{\mathbb{Z}^n}{\ker \pi} \cong \frac{\mathbb{Z}^n}{a_1 \mathbb{Z} \oplus \cdots \oplus a_m \mathbb{Z}} \cong \frac{\mathbb{Z}}{a_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{a_m \mathbb{Z}} \oplus \mathbb{Z}^{n-m}$$

G is the direct sum of some cyclic groups.

Question 3

Suppose that R is a commutative ring with identity. Show that if every submodule of R (considered as a left R-module) is free then R is PID.

Proof. We know that $I \subseteq R$ is a submodule of R if and only if it is an ideal of R. Suppose that I is an ideal. Since it is a free module, it has a basis B. B is linearly independent. It cannot have more than one element, because for any $b_1, b_2 \in B$, $0 = b_1 \cdot b_2 + (-b_1) \cdot b_2$. Hence I is generated by a single element (both as a submodule and as an ideal). R is a PID. \square

Question 4

Suppose that $M=\mathbb{C}^3$ is the left $\mathbb{C}[x]$ -module endowed with scalar multiplication $\mathbb{C}[x]\to \mathrm{End}(M)$; $p\mapsto (M\to M,v\mapsto p(A)v)$ where

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- (i) Show that M is cyclic.
- (ii) Show that *M* is isomorphic to the direct sum of three submodules.
- (iii) Is M isomorphic to $\mathbb{C}[A]$ as a $\mathbb{C}[x]$ -module?
- (iv) How do your answers above change if we replace \mathbb{C} by \mathbb{R} ? with \mathbb{F}_7 ?

Proof. (i) We shall obtain the invariant factors of A by putting xI - A into Smith normal form. Since \mathbb{C} is a field, $\mathbb{C}[x]$ is a Euclidean domain and we can do this by a sequence of elementary operations:

$$xI - A = \begin{pmatrix} x & 0 & -1 \\ -1 & x & 0 \\ 0 & -1 & x \end{pmatrix} \sim \begin{pmatrix} -1 & x & 0 \\ 0 & -1 & x \\ x & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} -1 & x & 0 \\ 0 & -1 & x \\ 0 & x^2 & -1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & x \\ 0 & x^2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & x \\ 0 & 0 & x^3 - 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & x^3 - 1 \end{pmatrix}$$

Hence the A has the unique invariant factor x^3-1 . By applying to the $\mathbb{C}[x]$ -module Structure Theorem \mathbb{C}^3 , we obtain $\mathbb{C}^3=\mathbb{C}[x]/\langle x^3-1\rangle$. In particular \mathbb{C}^3 is a cyclic $\mathbb{C}[x]$ -module.

(ii) $x^3-1=(x-1)(x-\omega)(x-\omega^2)$ splits over $\mathbb{C}[x]$, where $\omega=\frac{-1+\sqrt{3}\mathrm{i}}{2}$. By Chinese Remainder Theorem:

$$\mathbb{C}^3 \cong \frac{\mathbb{C}[x]}{\langle x^3 - 1 \rangle} \cong \frac{\mathbb{C}[x]}{\langle x - 1 \rangle} \oplus \frac{\mathbb{C}[x]}{\langle x - \omega \rangle} \oplus \frac{\mathbb{C}[x]}{\langle x - \omega^2 \rangle}$$

- (iii) By universal property of the polynomial ring $\mathbb{C}[x]$, the evaluation $x \mapsto A$ induces the epimorphism $\sigma : \mathbb{C}[x] \to \mathbb{C}[A]$ with kernel $\ker \sigma = \langle m_A(x) \rangle$. The minimal polynomial m_A is the largest invariant factor $x^3 1$. By First Isomorphism Theorem for rings, $\mathbb{C}[A] \cong \mathbb{C}[x]/\langle x^3 1 \rangle$. This is also an isomorphism of $\mathbb{C}[x]$ -modules. By part (i) we see that $\mathbb{C}[A] \cong \mathbb{C}^3$ as $\mathbb{C}[x]$ -modules.
- (iv) The Smith normal form of the matrix is the same regardless of the base field, so the results in part (i) and (iii) will be unchanged. For part (ii), $x^3 1$ has different factorizations on different polynomial rings.

On
$$\mathbb{R}[x]$$
, $x^3-1=(x-1)(x^2+x+1)$. Hence $\mathbb{R}^3\cong\frac{\mathbb{R}[x]}{\langle x-1\rangle}\oplus\frac{\mathbb{R}[x]}{\langle x^2+x+1\rangle}$.

On $\mathbb{F}_7[x]$, $x^3-1=(x-1)(x^2+x+1)=(x-1)(x^2+x-6)=(x-1)(x-2)(x+3)=(x-1)(x-2)(x-4)$.

Hence $\mathbb{F}_7^3\cong\frac{\mathbb{F}_7[x]}{\langle x-1\rangle}\oplus\frac{\mathbb{F}_7[x]}{\langle x-2\rangle}\oplus\frac{\mathbb{F}_7[x]}{\langle x-4\rangle}$.

Question 5

Let G be the Abelian group with generators a, b, and c and relations 2a-16b-8c=0 and 4a+24b+8c=0. Find $s,r\in\mathbb{N}$, natural numbers $d_r\mid\cdots\mid d_1$, and an isomorphism $G\to(\mathbb{Z}/d_r\mathbb{Z})\oplus\cdots\oplus(\mathbb{Z}/d_1\mathbb{Z})\oplus\mathbb{Z}^s$.

Proof. Consider G as a \mathbb{Z} -module. It is finitely presented as suggested by the question. Hence there exists an exact sequence:

$$\mathbb{Z}^2 \xrightarrow{\varphi} \mathbb{Z}^3 \xrightarrow{\pi} G \longrightarrow 0$$

where $G \cong G/\ker \pi = G/\operatorname{im} \varphi = \operatorname{coker} \varphi$. φ sends the generators of \mathbb{Z}^2 to $(2, -16, -8), (4, 24, 8) \in \mathbb{Z}^3$, which correspond to the relations in G. Therefore it has a matrix representation:

$$\varphi = \begin{pmatrix} 2 & 4 \\ -16 & 24 \\ -8 & 8 \end{pmatrix}$$

We can use a sequence of elementary operations to transform it into Smith normal form:

$$\begin{pmatrix} 2 & 4 & a \\ -16 & 24 & b \\ -8 & 8 & c \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & a \\ -16 & 56 & b \\ -8 & 24 & c \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & a \\ 0 & 8 & b \\ -8 & 24 & 2b+c \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & a-8b-4c \\ 0 & 8 & 7b+3c \\ 0 & 0 & 2b+c \end{pmatrix}$$

Hence $\operatorname{im} \varphi = \langle (2,0,0), (0,8,0) \rangle \cong 2\mathbb{Z} \oplus 8\mathbb{Z} \text{ and } G \cong \frac{\mathbb{Z}^3}{2\mathbb{Z} \oplus 8\mathbb{Z}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}.$

The isomorphism $G \to \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}$ is given by

$$a - 8b - 4c \mapsto (1, 0, 0)$$
 $7b + 3c \mapsto (0, 1, 0)$ $2b + c \mapsto (0, 0, 1)$

or

$$a \mapsto (1,0,4)$$
 $b \mapsto (0,1,-3)$ $c \mapsto (0,-2,7)$

Question 6

(i) Show that the matrix A below has characteristic polynomial $(x-1)^4$ and minimal polynomial $(x-1)^2$.

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 3 & -1 & 4 \\ 1 & 1 & -1 & 3 \end{pmatrix}$$

- (ii) What are the possible rational canonical forms of a matrix with characteristic polynomial $(x-1)^4$ and minimal polynomial $(x-1)^2$? Which one of these is A?
- (iii) Derive the rational canonical form of A by putting the matrix xI A into Smith normal form.
- (iv) What is the Iordan normal form of A?

Proof. (i) We use a sequence of elementary operations to put xI - A into Smith normal form:

$$xI - A = \begin{pmatrix} x - 1 & -1 & 0 & 0 \\ 0 & x - 1 & 0 & 0 \\ -2 & -3 & x + 1 & -4 \\ -1 & -1 & 1 & x - 3 \end{pmatrix} \sim \begin{pmatrix} -1 & x - 1 & 0 & 0 \\ x - 1 & 0 & 0 & 0 \\ -3 & -2 & x + 1 & -4 \\ -1 & -1 & 1 & x - 3 \end{pmatrix} \sim \begin{pmatrix} -1 & x - 1 & 0 & 0 \\ 0 & (x - 1)^2 & 0 & 0 \\ 0 & -3x + 1 & x + 1 & -4 \\ 0 & (x - 1)^2 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -x & 1 & x - 3 \\ 0 & 1 & x - 2 & -3x + 5 \\ 0 & (x - 1)^2 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -x & 1 & x - 3 \\ 0 & 1 & x - 2 & -3x + 5 \\ 0 & 0 & x^2 - 2x + 1 & -3x^2 + 6x - 3 \\ 0 & 0 & -(x - 2)(x - 1)^2 & (3x - 5)(x - 1)^2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & (x - 1)^2 & 0 & 0 \\ 0 & 0 & -(x - 2)(x - 1)^2 & 3(x - 1)^2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & (x - 1)^2 & 0 & 0 \\ 0 & 0 & (x - 1)^2 & 3(x - 1)^2 \end{pmatrix}$$

We see that the invariant factors of A are $f_1(x) = (x-1)^2$ and $f_2(x) = (x-1)^2$. Hence the minimal polynomial is $m_A(x) = f_2(x) = (x-1)^2$ and the characteristic polynomial is $\chi_A(x) = f_1(x)f_2(x) = (x-1)^4$.

(ii) Given the minimal polynomial and the characteristic polynomial, the possible Smith normal forms are:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (x-1)^2 & 0 \\ 0 & 0 & 0 & (x-1)^2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & x-1 & 0 & 0 \\ 0 & 0 & x-1 & 0 \\ 0 & 0 & 0 & (x-1)^2 \end{pmatrix}$$

The first one is equivalent to A, as we have shown in part (i).

(iii) The companion matrix corresponding to $(x-1)^2 = x^2 - 2x + 1$ is given by

$$\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$$

Hence *A* has rational canonical form:

$$\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 2
\end{pmatrix}$$

(iv) The Jordan block corresponding to $(x-1)^2 = x^2 - 2x + 1$ is given by

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Hence *A* has rational canonical form:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$