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Question 1

Give examples of the following.

(i) A free module over a PID and a linearly independent subset that cannot be extended to a basis.

(ii) A free module over a PID and a minimal generating subset that is not a basis.

(iii) A free module over a PID and a proper submodule of the same rank.

Proof. 1. Z itself is a Z-module. It is a free module of rank 1. Consider {2} ⊆ Z. Clearly {2} is linearly independent because
Z is an integral domain. {2} is not a basis of Z because it cannot generate 1 ∈ Z. Suppose that it can be extended
to a basis B. Pick n ∈ B such that n 6= 2. We have 2 · n+ (−n) · 2 = 0, contradicting that B is linearly independent.

2. Again we consider Z as a Z-module. {2, 3} ⊆ Z is a minimal generating set because 1 = 1 · 3+ (−1) · 2, and {2}, {3}
cannot generate Z. {2, 3} is linearly dependent as 0 = 2 · 3 + (−3) · 2, so it is not a basis.

3. Once more we consider Z as a Z-module. It is a free module of rank 1. 2Z is a proper submodule of Z of rank 1 as
{2} is a basis of it.

Question 2

Both the conclusions below from the Structure Theorem in the lectures notes. The point of this question is to see how the
proof simplifies in each case.

(i) Suppose thatR is a PID andM is a finitely generatedR−module such thatAnnR(x) = {0} for all x 6= 0M , Show that
M is free.

(ii) Suppose that G is a finitely generated Abelian group. Show that G is isomorphic to a direct sum of cyclic groups.

Proof. We begin our proof with stating a general theorem.

Theorem 1

If R is a PID and M is a finitely generated free R-module, then any submodule N of M is also free and finitely
generated.

Instead of proving the theorem, we shall prove a stronger lemma:

Lemma 2

Suppose that R is a PID andM is a free R-modules with basis {v1, ..., vn}. LetN be a submodule ofM . Then there
exists a1, ..., am ∈ R (m 6 n) such that {a1v1, ..., amvm} is a basis of N and a1 | · · · | am.

Proof of Lemma 2. We use induction on the rank n.

Base case: If n = 0, then bothM and N are the zero module. The result holds trivially.

Induction case: Suppose the result holds for rankM < n. For rankM = n: we consider the family of submodules
of R:

{ϕ(N) / R : ϕ ∈ HomR(M,R)}

Since R is a PID, it is Noetherian. The family has a maximal element ρ(N). Suppose that it is generated by a1.
There exists w1 ∈ N such that ρ(w1) = a1. We claim that a1 divides ϕ(w1) for all ϕ ∈ HomR(M,R).
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〈a1, ϕ(w1)〉 is a principal ideal in R. Let b be a generator of it and b = ra1 + sϕ(w1) for some r, s ∈ R. Consider
ψ := rρ+ sϕ ∈ HomR(M,R). Since a1 ∈ 〈b〉, ρ(N) = 〈a1〉 ⊆ 〈b〉. On the other hand, ψ(w1) = b ∈ ψ(N) =⇒ 〈b〉 ⊆
ψ(N) ⊆ ρ(N) = 〈a1〉 by maximality of ρ(N). Hence 〈a1〉 = 〈b〉 and in particular a1 divides ϕ(w1).

Since M is free, there is an isomorphism σ : M → Rn. Let σ(w1) = (r1, ..., rn) ∈ Rn. Let πi : Rn � R be the
projection onto the i-th coordinate. Since πi ◦ σ ∈ HomR(M,R), a1 | π ◦ σ(w1). There exists s1, ..., sn ∈ R such
that ri = a1si. Let v1 := σ−1(s1, ..., sn) ∈M so that w1 = a1v1.

Note that a1 = ρ(w1) = ρ(a1v1) = a1ρ(v1). As a1 6= 0, ρ(v1) = 1. Let M ′ := ker ρ and N ′ = N ∩M ′. Clearly
N ′ ⊆ N and N ′ ⊆M ′ ⊆M . We claim thatM = 〈v1〉 ⊕M ′ and N = 〈w1〉 ⊕N ′.

Form ∈M ,m = ρ(m)v1 + (m− ρ(m)v1). Note that

ρ(m− ρ(m)v1) = ρ(m)− ρ(m)ρ(v1) = 0

Therefore m − ρ(m)v1 ∈ ker ρ. We haveM = 〈v1〉 + ker ρ. On the other hand, for m ∈ 〈v1〉 ∩ ker ρ, m = rv1 for
some r ∈ R. 0 = ρ(rv1) = rρ(v1) = r =⇒ m = 0. Hence 〈v1〉 ∩ ker ρ = {0}. HenceM = 〈v1〉 ⊕ ker ρ as claimed.

Form ∈ N , as 〈a1〉 = ρ(N), a1 | ρ(m). Let ρ(m) = a1c for some c ∈ R. Write

m = ρ(m)v1 + (m− ρ(m)v1) = a1cv1 + (m− a1c1v1) = cw1 + (m− cw1).

Note that ρ(m− cw1) = ρ(m)− cρ(w1) = a1c− a1c = 0. Thereforem− cw1 ∈ ker ρ ∩N and N = 〈w1〉+N ′. The
direct sum part is analgous to above. We have proven the claim.

We have rankM ′ < n. By induction hypothesis, let {v2, ..., vn} be a basis ofM ′ and a2v2, ..., amvm be a basis of
N ′, where a2 | · · · | an. Then {v1, ..., vn} is a basis ofM and {a1v1, ..., amvm} is a basis of N .

Finally, we shall conclude the proof by showing that a1 | a2. (This part is not used in the question but I mention it
for completeness.) Consider any mapping f : {v1, ..., vn} → R such that f(v1) = f(v2) = 1. By universal property
of free modules, it lifts to ϕ ∈ HomR(M,R) such that ϕ(v1) = ϕ(v2) = 1. Since ϕ(a1v1) = a1, 〈a1〉 ⊆ ϕ(N). By
maximality of 〈a1〉 we have 〈a1〉 = ϕ(N). But then ϕ(a2v2) = a2 ∈ ϕ(N) = 〈a1〉. Hence a1 | a2.

Theorem 1 follows from Lemma 2 immediately.

Proof of (1). IfM = {0} then it is trivially a free module. Suppose thatM 6= {0}.

Let x1, ..., xn generates M . Since M is torsion-free, {xi} is linearly independent for each i ∈ {1, ..., n}. As
{x1, ..., xn} is finite, it contains a maximal linearly independent subset {x1, ..., xr}. Then for each r < j 6 m,
there exists a non-trivial relation:

b1x1 + · · ·+ brxr + ajxj = 0

where b1, ..., br, aj ∈ R and aj 6= 0 by maximality.

Let {x1, ..., xr} generates a submodule N of M , which is free by definition. Notice that ar+1 · · · amxi ∈ N for
i ∈ {1, ..., n}, as ajxj ∈ 〈x1, ..., xm〉 for r < j 6 m via the above relation. Hence x 7→ ar+1 · · · anx defines a
R-module homomorphism ϕ : M → N . It is injective because ar+1 · · · an 6= 0 and M is torsion-free. By First
Isomorphism Theorem,M ∼= imϕ ⊆ N . Since imϕ is a submodule of the free module N , by Theorem 1 it is free.
HenceM is a free module.

Proof of (2). G is a finitely generated Z-module and Z is a PID. There exists an epimorphism π : Zn � G for some n ∈ N.
By First Isomorphism Theorem, G ∼= Zn/ kerπ. We apply Lemma 2 to kerπ: there exists a basis {v1, ..., vn} of Zn

and a basis {a1v1, ..., amvm} of kerπ for some a1, ..., am ∈ R\{0}. In order words, kerπ ∼= a1Z⊕ · · · ⊕ amZ. Hence:

G =
Zn

kerπ
∼=

Zn

a1Z⊕ · · · ⊕ amZ
∼=

Z
a1Z
⊕ · · · ⊕ Z

amZ
⊕ Zn−m

G is the direct sum of some cyclic groups.
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Question 3

Suppose that R is a commutative ring with identity. Show that if every submodule of R (considered as a left R−module)
is free then R is PID.

Proof. We know that I ⊆ R is a submodule of R if and only if it is an ideal of R. Suppose that I is an ideal. Since it is a free
module, it has a basis B. B is linearly independent. It cannot have more than one element, because for any b1, b2 ∈ B,
0 = b1 · b2 + (−b1) · b2. Hence I is generated by a single element (both as a submodule and as an ideal). R is a PID.

Question 4

Suppose thatM = C3 is the left C[x]−module endowed with scalar multiplication C[x] → End(M); p 7→ (M → M, v 7→
p(A)v) where

A =

0 0 1

1 0 0

0 1 0

 .

(i) Show thatM is cyclic.

(ii) Show thatM is isomorphic to the direct sum of three submodules.

(iii) IsM isomorphic to C[A] as a C[x]−module?

(iv) How do your answers above change if we replace C by R? with F7?

Proof. (i) We shall obtain the invariant factors of A by putting xI − A into Smith normal form. Since C is a field, C[x] is a
Euclidean domain and we can do this by a sequence of elementary operations:

xI −A =

 x 0 −1
−1 x 0

0 −1 x

 ∼
−1 x 0

0 −1 x

x 0 −1

 ∼
−1 x 0

0 −1 x

0 x2 −1


∼

1 0 0

0 −1 x

0 x2 −1

 ∼
1 0 0

0 −1 x

0 0 x3 − 1

 ∼
1 0 0

0 1 0

0 0 x3 − 1


Hence the A has the unique invariant factor x3 − 1. By applying to the C[x]-module Structure Theorem C3, we
obtain C3 = C[x]/

〈
x3 − 1

〉
. In particular C3 is a cyclic C[x]-module.

(ii) x3 − 1 = (x− 1)(x− ω)(x− ω2) splits over C[x], where ω =
−1 +

√
3i

2
. By Chinese Remainder Theorem:

C3 ∼=
C[x]
〈x3 − 1〉

∼=
C[x]
〈x− 1〉

⊕ C[x]
〈x− ω〉

⊕ C[x]
〈x− ω2〉

(iii) By universal property of the polynomial ring C[x], the evaluation x 7→ A induces the epimorphism σ : C[x]→ C[A]
with kernel kerσ = 〈mA(x)〉. Theminimal polynomialmA is the largest invariant factorx3−1. By First Isomorphism
Theorem for rings, C[A] ∼= C[x]/

〈
x3 − 1

〉
. This is also an isomorphism of C[x]-modules. By part (i) we see that

C[A] ∼= C3 as C[x]-modules.

(iv) The Smith normal form of the matrix is the same regardless of the base field, so the results in part (i) and (iii) will
be unchanged. For part (ii), x3 − 1 has different factorizations on different polynomial rings.
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On R[x], x3 − 1 = (x− 1)(x2 + x+ 1). Hence R3 ∼=
R[x]
〈x− 1〉

⊕ R[x]
〈x2 + x+ 1〉

.

On F7[x], x3 − 1 = (x− 1)(x2 + x+ 1) = (x− 1)(x2 + x− 6) = (x− 1)(x− 2)(x+ 3) = (x− 1)(x− 2)(x− 4).

Hence F3
7
∼=

F7[x]

〈x− 1〉
⊕ F7[x]

〈x− 2〉
⊕ F7[x]

〈x− 4〉
.

Question 5

LetG be the Abelian group with generators a, b, and c and relations 2a− 16b− 8c = 0 and 4a+24b+8c = 0. Find s, r ∈ N,
natural numbers dr | · · · | d1, and an isomorphism G→ (Z/drZ)⊕ · · · ⊕ (Z/d1Z)⊕ Zs.

Proof. Consider G as a Z-module. It is finitely presented as suggested by the question. Hence there exists an exact sequence:

Z2 Z3 G 0
ϕ π

where G ∼= G/ kerπ = G/ imϕ = cokerϕ. ϕ sends the generators of Z2 to (2,−16,−8), (4, 24, 8) ∈ Z3, which correspond
to the relations in G. Therefore it has a matrix representation:

ϕ =

 2 4

−16 24

−8 8


We can use a sequence of elementary operations to transform it into Smith normal form: 2 4 a

−16 24 b

−8 8 c

 ∼
 2 0 a

−16 56 b

−8 24 c

 ∼
 2 0 a

0 8 b

−8 24 2b+ c

 ∼
 2 0 a− 8b− 4c

0 8 7b+ 3c

0 0 2b+ c


Hence imϕ = 〈(2, 0, 0), (0, 8, 0)〉 ∼= 2Z⊕ 8Z and G ∼=

Z3

2Z⊕ 8Z
∼= Z/2Z⊕ Z/8Z⊕ Z.

The isomorphism G→ Z/2Z⊕ Z/8Z⊕ Z is given by

a− 8b− 4c 7→ (1, 0, 0) 7b+ 3c 7→ (0, 1, 0) 2b+ c 7→ (0, 0, 1)

or

a 7→ (1, 0, 4) b 7→ (0, 1,−3) c 7→ (0,−2, 7)

Question 6

(i) Show that the matrix A below has characteristic polynomial (x− 1)4 and minimal polynomial (x− 1)2.

A =


1 1 0 0

0 1 0 0

2 3 −1 4

1 1 −1 3


(ii) What are the possible rational canonical forms of a matrix with characteristic polynomial (x − 1)4 and minimal

polynomial (x− 1)2? Which one of these is A?

(iii) Derive the rational canonical form of A by putting the matrix xI −A into Smith normal form.

(iv) What is the Jordan normal form of A?
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Proof. (i) We use a sequence of elementary operations to put xI −A into Smith normal form:

xI −A =


x− 1 −1 0 0

0 x− 1 0 0

−2 −3 x+ 1 −4
−1 −1 1 x− 3

 ∼

−1 x− 1 0 0

x− 1 0 0 0

−3 −2 x+ 1 −4
−1 −1 1 x− 3

 ∼

−1 x− 1 0 0

0 (x− 1)2 0 0

0 −3x+ 1 x+ 1 −4
0 −x 1 x− 3



∼


1 0 0 0

0 −x 1 x− 3

0 −3x+ 1 x+ 1 −4
0 (x− 1)2 0 0

 ∼

1 0 0 0

0 −x 1 x− 3

0 1 x− 2 −3x+ 5

0 (x− 1)2 0 0

 ∼

1 0 0 0

0 1 x− 2 −3x+ 5

0 −x 1 x− 3

0 (x− 1)2 0 0



∼


1 0 0 0

0 1 x− 2 −3x+ 5

0 0 x2 − 2x+ 1 −3x2 + 6x− 3

0 0 −(x− 2)(x− 1)2 (3x− 5)(x− 1)2

 ∼

1 0 0 0

0 1 0 0

0 0 (x− 1)2 0

0 0 −(x− 2)(x− 1)2 3(x− 1)2



∼


1 0 0 0

0 1 0 0

0 0 (x− 1)2 0

0 0 0 (x− 1)2


We see that the invariant factors of A are f1(x) = (x− 1)2 and f2(x) = (x− 1)2. Hence the minimal polynomial is
mA(x) = f2(x) = (x− 1)2 anf the characteristic polynomial is χA(x) = f1(x)f2(x) = (x− 1)4.

(ii) Given the minimal polynomial and the characteristic polynomial, the possible Smith normal forms are:
1 0 0 0

0 1 0 0

0 0 (x− 1)2 0

0 0 0 (x− 1)2



1 0 0 0

0 x− 1 0 0

0 0 x− 1 0

0 0 0 (x− 1)2


The first one is equivalent to A, as we have shown in part (i).

(iii) The companion matrix corresponding to (x− 1)2 = x2 − 2x+ 1 is given by(
0 −1
1 2

)

Hence A has rational canonical form: 
0 −1 0 0

1 2 0 0

0 0 0 −1
0 0 1 2


(iv) The Jordan block corresponding to (x− 1)2 = x2 − 2x+ 1 is given by(

1 1

0 1

)

Hence A has rational canonical form: 
1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1




