Peize Liu St. Peter's College University of Oxford

Problem Sheet 2

Equilibrium, Flows, and Orbits in GR

B5: General Relativity

Question 1. Hydrostatic Equilibrium in GR.

Model a neutron star atmosphere with a simple equation of state: $P = K\rho^{\gamma}$, where P is pressure, ρ is mass density, γ is the adiabatic index and K is a constant. Assume that $g_{00} = -\left(1 - 2GM/rc^2\right)$, where M is the mass of the star and r is radius. If $\rho = \rho_0$ at the surface $r = R_0$, solve the equation of hydrostatic equilibrium to show that

$$\frac{1 + K\rho^{\gamma - 1}/c^2}{1 + K\rho_0^{\gamma - 1}/c^2} = \left(\frac{1 - R_S/r_0}{1 - R_S/r}\right)^{\alpha}$$

where $R_S = 2GM/c^2$ is the so-called Schwarzschild radius, and $2\alpha\gamma = \gamma - 1$. (Hint: See §4.6 of the notes.) What is the Newtonian limit of the above equation? Express your answer in terms of the speed of sound a, $a^2 = \gamma P/\rho$ and the potential $\Phi(r) = -GM/r$.

(OPTIONAL: For those who have studied fluids, what quantity is being conserved in the Newtonian limit?)

Proof. For a type (1,1) tensor field T, the covariant divergence is given by

$$\nabla_{\mu} T_{\nu}^{\mu} = \frac{1}{\sqrt{|\det g|}} \frac{\partial \left(\sqrt{|\det g|} T_{\nu}^{\mu} \right)}{\partial x^{\mu}} - \Gamma_{\mu\nu}^{\lambda} T_{\lambda}^{\mu}$$

The mixed energy-momentum stress tensor is given by

$$T_{\nu}^{\mu} = P\delta_{\nu}^{\mu} + \left(\rho + \frac{P}{c^2}\right)U^{\mu}U_{\nu}$$

In the hydrostatic equilibrium, the mixed energy-momentum stress tensor is divergenceless. We have

$$\nabla_{\mu}T_{\nu}^{\mu} = \partial_{\nu}P + \frac{1}{\sqrt{|\det g|}}\partial_{\mu}\left(\sqrt{|\det g|}\left(\rho + \frac{P}{c^{2}}\right)U^{\mu}U_{\nu}\right) - \Gamma_{\mu\nu}^{\lambda}\left(\rho + \frac{P}{c^{2}}\right)U^{\mu}U_{\lambda} = 0$$

In static equilibrium, $U^i = 0$ and $g_{0i} = 0$. Hence

$$U^{\mu}U_{\nu}=U^{0}U_{\nu}\delta^{\mu}_{0}=U^{0}g_{0\nu}U^{0}\delta^{\mu}_{0}=g_{00}U^{0}U^{0}\delta^{\mu}_{0}\delta^{0}_{\nu}=U^{0}U_{0}\delta^{\mu}_{0}\delta^{0}_{\nu}=-c^{2}\delta^{\mu}_{0}\delta^{0}_{\nu}$$

Plugging into the equation:

$$\partial_{\nu}P - \frac{1}{\sqrt{|\det g|}}\partial_{0}\left(\sqrt{|\det g|}\left(\rho c^{2} + P\right)\right)\delta_{\nu}^{0} + \Gamma_{0\nu}^{0}\left(\rho c^{2} + P\right) = 0$$

where

$$\Gamma_{0\nu}^{0} = \frac{g^{0\rho}}{2} \left(\partial_{0} g_{\nu\rho} + \partial_{\nu} g_{0\rho} - \partial_{\rho} g_{0\nu} \right) = \frac{1}{2} g^{0\rho} \partial_{\nu} g_{0\rho} = \frac{1}{2} g^{00} \partial_{\nu} g_{00} = \frac{1}{2g_{00}} \partial_{\nu} g_{00} = \frac{1}{2} \partial_{\nu} \left(\ln |g_{00}| \right) = \partial_{\nu} \left(\ln |g_{00}|^{1/2} \right)$$

We deduce that

$$\partial_i P + (\rho c^2 + P) \partial_i (\ln |g_{00}|^{1/2}) = 0$$

This is the general hydrostatic equilibrium equation. We seek a spherically symmetric solution with $\rho = \rho(r)$. The equation becomes

$$\frac{\mathrm{d}P}{\mathrm{d}\rho}\frac{\mathrm{d}\rho}{\mathrm{d}r} + (\rho c^2 + P)\frac{\mathrm{d}}{\mathrm{d}r}\left(\ln|g_{00}|^{1/2}\right) = 0$$

Plugging in the expressions of g_{00} and P:

$$K\gamma\rho^{\gamma-1}\frac{\mathrm{d}\rho}{\mathrm{d}r} + \frac{1}{2}(\rho c^2 + K\rho^{\gamma})\frac{\mathrm{d}}{\mathrm{d}r}\ln\left|1 - \frac{R_S}{r}\right| = 0 \implies \frac{2K\gamma\rho^{\gamma-1}}{\rho c^2 + K\rho^{\gamma}}\frac{\mathrm{d}\rho}{\mathrm{d}r} + \frac{\mathrm{d}}{\mathrm{d}r}\ln\left|1 - \frac{R_S}{r}\right| = 0$$

Integrate:

$$\int_{\rho_0}^{\rho} \frac{2K\gamma \rho^{\gamma-1}}{\rho c^2 + K\rho^{\gamma}} d\rho + \ln \left| 1 - \frac{R_S}{r} \right|_{r_0}^r = 0$$

Let us compute the integral...

$$\int_{\rho_0}^{\rho} \frac{2K\gamma \rho^{\gamma-1}}{\rho c^2 + K\rho^{\gamma}} \, \mathrm{d}\rho = \int_{\rho_0}^{\rho} \frac{2K\gamma \rho^{\gamma-2}}{c^2 + K\rho^{\gamma-1}} \, \mathrm{d}\rho = 2K \frac{\gamma}{\gamma-1} \int_{\rho_0}^{\rho} \frac{1}{c^2 + K\rho^{\gamma-1}} \, \mathrm{d}(\rho^{\gamma-1}) = \frac{2\gamma}{\gamma-1} \ln \left| c^2 + K\rho^{\gamma-1} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-1} \ln \left| \frac{c^2 + K\rho^{\gamma-1}}{c^2 + K\rho^{\gamma-1}} \right|_{\rho_0}^{\rho} = \frac{2\gamma}{\gamma-$$

Therefore

$$\frac{2\gamma}{\gamma - 1} \ln \left| \frac{c^2 + K\rho^{\gamma - 1}}{c^2 + K\rho_0^{\gamma - 1}} \right| + \ln \left| \frac{1 - R_S/r}{1 - R_S/r_0} \right| = 0$$

Taking exponential:

$$\left(\frac{c^2 + K\rho^{\gamma - 1}}{c^2 + K\rho^{\gamma - 1}}\right)^{\frac{2\gamma}{\gamma - 1}} \left(\frac{1 - R_S/r}{1 - R_S/r_0}\right) = 1 \implies \frac{c^2 + K\rho^{\gamma - 1}}{c^2 + K\rho^{\gamma - 1}_0} = \left(\frac{1 - R_S/r_0}{1 - R_S/r}\right)^{\frac{\gamma - 1}{2\gamma}} \implies \frac{1 + K\rho^{\gamma - 1}/c^2}{1 + K\rho^{\gamma - 1}/c^2} = \left(\frac{1 - R_S/r_0}{1 - R_S/r}\right)^{\alpha}$$

In the Newtonian limit, we have $R_S/r \ll 1$ and $K\rho^{\gamma-1}/c^2 \ll 1$. We can therefore linearise the above equation:

$$\begin{split} &\frac{1+K\rho^{\gamma-1}/c^2}{1+K\rho_0^{\gamma-1}/c^2} = \left(\frac{1-R_S/r_0}{1-R_S/r}\right)^{\alpha} \\ \Longrightarrow &\left(1+\frac{K\rho^{\gamma-1}}{c^2}\right) \left(1-\frac{\alpha R_S}{r}\right) = \left(1+\frac{K\rho_0^{\gamma-1}}{c^2}\right) \left(1-\frac{\alpha R_S}{r_0}\right) \\ \Longrightarrow &\frac{K\rho^{\gamma-1}}{c^2} - \frac{\alpha R_S}{r} = \frac{K\rho_0^{\gamma-1}}{c^2} - \frac{\alpha R_S}{r_0} \\ \Longrightarrow &\frac{a^2}{\gamma c^2} - \frac{\gamma-1}{2\gamma} \frac{2GM}{rc^2} = \frac{a_0^2}{\gamma c^2} - \frac{\gamma-1}{2\gamma} \frac{2GM}{r_0 c^2} \\ \Longrightarrow &a^2 + (\gamma-1)\Phi(r) = a_0^2 + (\gamma-1)\Phi(r_0) \end{split}$$

The conserved quantity is $a^2 + (\gamma - 1)\Phi(r)$. (I don't know any conserved quantity in fluid mechanics related to the speed of sound...)

Question 2. Bondi Accretion: go with the flow.

To get some practise working with the equations of GR as well as some insight into relativistic dynamics in a practical problem in astrophysics, consider what is known as (relativistic) Bondi Accretion, the spherical flow of gas into a black hole. (The original Bondi accretion problem was Newtonian accretion onto an ordinary star.) We assume a Schwarzschild metric in the usual spherical coordinates:

$$g_{00} = -(1 - 2GM/rc^2), \quad g_{rr} = (1 - 2GM/rc^2)^{-1}, \quad g_{\theta\theta} = r^2, \quad g_{\phi\phi} = r^2 \sin^2\theta$$

a) First, let us assume that particles are neither created or destroyed. So particle number is conserved. If n is the particle number density in the local rest frame of the flow, then the particle flux is $J^{\mu} = nU^{\mu}$, where U^{μ} is the flow 4-velocity. Justify this statement, and using §4.5 in the notes, show that particle number conservation implies:

$$J^{\mu}_{:u} = 0$$

If nothing depends upon time, show that this integrates to

$$nU^r |g'|^{1/2} = \text{constant}$$

where g' is the determinant of $g_{\mu\nu}$ divided by $\sin^2\theta$, and U^r is...well, you tell me what U^r is.

b) We move on to energy conservation, $T_{;v}^{tv} = 0$. (Refer to §4.6 in the notes.) Show that the only nonvanishing affine connection that we need to use is

$$\Gamma_{tr}^{t} = \Gamma_{rt}^{t} = \frac{1}{2} \frac{\partial \ln |g_{tt}|}{\partial r}$$

Derive and solve the energy equation. Show that its solution may be written

$$(P + \rho c^2) U^r U_t |g'|^{1/2} = \text{constant}$$

where $U_t = g_{t\mu}U^{\mu}$, and ρ is the total energy density of the fluid in its rest frame, including any thermal energy.

c) We next define

$$\omega = \mu n$$

where μ is the rest mass per particle and ϖ is a Newtonian density. This is not to be confused with ρ , the true relativistic energy density divided by $c^2.P$ and ϖ are assumed to be related by a simple power law relationship,

$$P = K \omega^{\gamma}$$

where *K* is a constant, and γ is called the adiabatic index. This is not an entirely artificial problem: it is valid for cold classical particles ($\gamma = 5/3$) or hot relativistic particles ($\gamma = 4/3$). The first law of thermodynamics then tells us that the thermal energy per unit volume is

$$\epsilon = \frac{P}{\gamma - 1}$$

(You needn't derive that here, just use it!) Show that this implies:

$$\rho = \varpi + \frac{P}{c^2(\gamma - 1)}$$

d) Verify that

$$|g'| = r^4$$

and using $g_{\mu\nu}U^{\mu}U^{\nu}=-c^2$, show that

$$U_t = \left[c^2 - \frac{2GM}{r} + \left(U^r\right)^2\right]^{1/2}$$

(Take care to distinguish U^t and U_t .)

e) With

$$a^2 = \gamma P/\omega$$

(this is the speed of sound in a nonrelativistic gas), combine our mass and energy conservation equations to show that

$$\left(c^2 + \frac{a^2}{\gamma - 1}\right)^2 \left(c^2 + U^2 - \frac{2GM}{r}\right) = \text{constant}$$

We have dropped the superscript r on U^r for greater clarity. How does a^2 depend upon ϖ ? The other equation we shall use is just that of mass conservation itself. Show that this may be written as

$$4\pi \varpi r^2 U = \dot{m}$$

which defines the net, constant mass accretion rate $\dot{m} < 0$. With a^2 depending entirely on ϖ , and $\varpi = \dot{m}/\left(4\pi r^2 U\right)$, the equation in boldface becomes a single algebraic equation for U as a function of r, and the formal solution to our problem.

f) Three final simple tasks for now:

i) Show that the constant on the right of the bold equation of problem (2e) is

$$c^2 \left(c^2 + \frac{a_\infty^2}{\gamma - 1}\right)^2$$

where a_{∞} is the sound speed at infinite distance from the black hole, if the gas starts accreting from rest.

ii) Show that the Newtonian limit of the equation is

$$\frac{v^2}{2} + \frac{a^2}{\gamma - 1} - \frac{GM}{r} = \frac{a_{\infty}^2}{\gamma - 1}$$

where v is the ordinary velocity, not the 4-velocity. This is a statement that a quantity known as enthapy (energy plus the work done by pressure) is conserved. This is the original nonrelativistic Bondi 1952 solution for accretion onto a star.

iii) Show that as r approaches the Schwarzschild radius $R_S = 2GM/c^2$, then if $a \ll c$ everywhere, then dr/dt satisfies the condition of a "null geodesic," a fancy way to say the inflow follows the equation of light:

$$\frac{dr}{dt} = -c\left(1 - R_S/r\right)$$

Like stalled photons, from the point of view of a distant observer, the flow never crosses R_S .

Proof. a) In Special Relativity, we have known that in the Minkowski spacetime (\mathbb{R}^4 , η), the 4-current is given by $J^\mu = nU^\mu$, and the continuity equation $\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$ upgrades to the covariant form $\partial_\mu J^\mu = 0$. In a general spacetime (M, g), the continuity equation is $\nabla_\mu J^\mu = 0$. In fact, most of the covariant formulae in SR can be generalised to GR by replacing the partial derivative ∂_μ by the covariant derivative ∇_μ .

For a spherically symmetric stationary solution, we can simply put $U^{\theta} = U^{\varphi} = 0$. The only non-zero 4-velocity components are U^t and U^r . But U^t does not contribute to the equation because $\partial_t U^t = 0$. Using the covariant divergence formula,

$$\nabla_{\mu}J^{\mu} = \frac{1}{\sqrt{|\det g|}} \frac{\partial \left(\sqrt{|\det g|J^{\mu}}\right)}{\partial x^{\mu}} = \frac{1}{r^{2}\sin\theta} \frac{\partial \left(r^{2}\sin\theta nU^{r}\right)}{\partial r} = \frac{1}{r^{2}} \frac{\partial}{\partial r} (nU^{r}r^{2}) = 0$$

which integrates to

$$nU^rr^2=f(t,\theta,\varphi)$$

for some function f. But f = const since we are looking for a spherically symmetric stationary solution.

b) The contravariant energy-momentum tensor is given by

$$T^{\mu\nu} = Pg^{\mu\nu} + \left(\rho + \frac{P}{c^2}\right)U^{\mu}U^{\nu}$$

For this problem, the non-zero components are

$$T^{tt} = -P\left(1 - \frac{R_S}{r}\right)^{-1} + \left(\rho + \frac{P}{c^2}\right)(U^t)^2, \qquad T^{rr} = P\left(1 - \frac{R_S}{r}\right) + \left(\rho + \frac{P}{c^2}\right)(U^r)^2, \qquad T^{tr} = \left(\rho + \frac{P}{c^2}\right)U^tU^r$$

$$T^{\theta\theta} = \frac{P}{r^2}, \qquad T^{\phi\phi} = \frac{P}{r^2\sin^2\theta}$$

We expand $\nabla_{\nu} T^{t\nu}$ using the Christoffel symbols:

$$\begin{split} \nabla_{v}T^{tv} &= \partial_{v}T^{tv} + \Gamma^{v}_{v\lambda}T^{\lambda t} + \Gamma^{t}_{v\lambda}T^{v\lambda} \\ &= \partial_{t}T^{tt} + \partial_{r}T^{tr} + \left(\Gamma^{t}_{tt} + \Gamma^{r}_{rt} + \Gamma^{\theta}_{\theta t} + \Gamma^{\varphi}_{\varphi t}\right)T^{tt} + \left(\Gamma^{t}_{tr} + \Gamma^{r}_{rr} + \Gamma^{\theta}_{\theta r} + \Gamma^{\varphi}_{\varphi r}\right)T^{tr} \\ &\quad + \left(\Gamma^{t}_{tt}T^{tt} + \Gamma^{t}_{rr}T^{rr} + \Gamma^{t}_{tr}T^{tr} + \Gamma^{t}_{\theta\theta}T^{\theta\theta} + \Gamma^{t}_{\varphi\varphi}T^{\varphi\varphi}\right) \end{split}$$

For a diagonal metric g, the Christoffel symbols are given by

$$\Gamma^a_{ab} = \frac{1}{2g_{aa}} \partial_b g_{aa}, \qquad \Gamma^a_{bb} = -\frac{1}{2g_{aa}} \partial_a g_{bb} \ (a \neq b), \qquad \Gamma^a_{bc} = 0 \ (a, b, c \ \text{dinstinct})$$

We note that all Christoffel symbols appear in the above equation vanish except for Γ^t_{tr} , which is given by

$$\Gamma_{tr}^{t} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2} \partial_{r} (\ln |g_{tt}|) = -\frac{R_{S}}{2r(r - R_{S})}$$

$$V_{I} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2} \partial_{r} (\ln |g_{tt}|) = -\frac{R_{S}}{2r(r - R_{S})}$$

$$V_{I} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2} \partial_{r} (\ln |g_{tt}|) = -\frac{R_{S}}{2r(r - R_{S})}$$

$$V_{I} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2} \partial_{r} (\ln |g_{tt}|) = -\frac{R_{S}}{2r(r - R_{S})}$$

$$V_{I} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2} \partial_{r} (\ln |g_{tt}|) = -\frac{R_{S}}{2r(r - R_{S})}$$

$$V_{I} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2g_{tt}} \partial_{r} g_{tt}$$

$$V_{I} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2g_{tt}} \partial_{r} g_{tt}$$

$$V_{I} = \frac{1}{2g_{tt}} \partial_{r} g_{tt} = \frac{1}{2g_{tt}} \partial_{r} g_{tt}$$

$$V_{I} = \frac{1}{2g_{tt}} \partial_{r} g_{tt}$$

the 12 comes from 19

Substituting into the equation above:

$$\partial_r T^{tr} + 2\Gamma_{tr}^t T^{tr} = 0 \implies \frac{\partial T^{tr}}{\partial r} + \frac{T^{tr}}{g_{tt}} \frac{\partial g_{tt}}{\partial r} = 0 \implies \frac{\partial \left(T^{tr} g_{tt}\right)}{\partial r} = 0$$

Therefore

const =
$$T^{tr} g_{tt} = \left(\rho + \frac{P}{c^2}\right) U^t U^r g_{tt} = \left(\rho + \frac{P}{c^2}\right) U_t U^r$$

(I did not find the r^2 factor in the solution...)

Question 3. Kinematic and gravitational redshifts.

a) One of the most important observational black hole diagnostics is a calculation of the radiation spectrum from the surrounding disc. In particular we are interested in how the frequency of a photon is shifted due to space-time distortions and relativistic kinematics. Show that:

$$\frac{v_R}{v_E} = \frac{p_\mu(R)V^\mu(R)}{p_\mu(E)V^\mu(E)}$$

where R denotes the received the photon and E the emitted photon, v is a frequency (not an index here!), p_{μ} a covariant photon 4-momentum, and V^{μ} is the normalised 4-velocity in the form $(dt/d\tau, d\mathbf{x}/cd\tau)$ for the emitted material (E) or the distant observer at rest (R).

b) In the problem at hand, the observer views the disc edge-on, in the plane of the disc. The gas moves in circular orbits

$$\bigcirc$$
 ---- \rightarrow observer $>$

Show that in t, r, θ , ϕ coordinates for the 0,1,2,3 components,

$$V^{\mu}(R) = (1,0,0,0), \quad V^{\mu}(E) = V_E^0(1,0,0,d\phi/cdt), \text{ with } V_E^0 = dt/d\tau$$

Then, using $g_{\mu\rho}V^{\mu}V^{\rho}=-1$), conclude that

$$V_F^0 = (1 - 3GM/rc^2)^{-1/2}$$

You may use a result from problem (5c) below. (You will prove it later!)

c) Finally, show that

$$\frac{v_R}{v_E} = \left(1 - \frac{3GM}{rc^2}\right)^{1/2} \left(1 + \frac{\Omega p_{\phi}(E)}{c p_0(E)}\right)^{-1}, \quad \Omega^2 = GM/r^3$$

A result of problem (3) from Problem Set 1 may be useful.

From disk material moving at right angles across the line of sight, v_R/v_E reduces to

$$\left(1-3GM/rc^2\right)^{1/2}$$

Why? From disk material moving precisely along the line of sight, show that

$$\frac{v_R}{v_E} = (1 - 3GM/rc^2)^{1/2} / (1 \pm (rc^2/GM - 2)^{-1/2})$$

(Hint: $g^{\nu\rho}p_{\nu}p_{\rho}=0$.) Interpret the \pm sign. In general, the photon paths must be calculated from the dynamical equations to determine the p(E) ratio.

Question 4. The perihelion advance of Mercury.

a) In the notes we found that the differential equation for u = 1/r for Mercury's orbit could be written as follows. u = 1/r

 $u_N + \delta u$ with the Newtonian solution u_N given by

$$u_N = (GM/J^2)(1 + \epsilon \cos \phi)$$

and the differential equation for δu is

$$\frac{d^2\delta u}{d\phi^2} + \delta u = \frac{3(GM)^3}{c^2 I^4} \left(1 + 2\epsilon \cos \phi + \epsilon^2 \cos^2 \phi \right)$$

Show that this is equivalent to solving the real part of the equation

$$\frac{d^2\delta u}{d\phi^2} + \delta u = a \left(b + 2\epsilon e^{i\phi} + \epsilon^2 e^{2i\phi} / 2 \right)$$

where $a = 3(GM)^3/(c^2J^4)$ and $b = 1 + \epsilon^2/2$ To solve this, try a solution of the form

$$\delta u = A_0 + A_1 \phi e^{i\phi} + A_2 e^{2i\phi}$$

where the A's are constants. Why do we need an additional factor of ϕ in the A_1 term?

b) Show that the solution for $u = u_N + \delta u$ is

$$u = \frac{GM}{J^2} + ab - \frac{a\epsilon^2}{6}\cos 2\phi + \frac{GM}{J^2}\epsilon\cos\phi + \epsilon a\phi\sin\phi$$

Since a is very small, show that this equivalent to

$$u = ab - \frac{a\epsilon^2}{6}\cos 2\phi + \frac{GM}{J^2}[1 + \epsilon(\cos\phi(1 - \alpha))]$$

where

$$\alpha = aJ^2/GM = 3(GM/Jc)^2$$

c) In the equation for u, the first two terms in a cause tiny (and unmeasurable) distortions in the shape of the ellipse, but do not affect the 2π perodicity in ϕ of the orbit. Show however that the final term, proportional to GM/J^2 , results in a periastron advance of

$$\Delta \phi = 6\pi \left(\frac{GM}{cJ}\right)^2$$

each orbit. This is the classic Einstein result.

Proof. a) We can complexify the equation by considering $\delta u = \text{Re}(\delta u^*)$. Note that $\cos n\varphi = \text{Re}(e^{in\varphi})$. Thus

$$\cos^2 \varphi = \frac{1}{2}(1 + \cos 2\varphi) = \operatorname{Re}\left(\frac{1}{2}(1 + e^{2i\varphi})\right)$$

Since the differential operator $d/d\phi$ and Re commutes, we have

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}\varphi^2}+1\right)\delta u^* = \frac{3(GM)^3}{c^2 J^4}\left(1+2\varepsilon\,\mathrm{e}^{\mathrm{i}\varphi}+\varepsilon^2\frac{1}{2}(1+\mathrm{e}^{2\mathrm{i}\varphi})\right) = \frac{3(GM)^3}{c^2 J^4}\left(1+\frac{\varepsilon^2}{2}+2\varepsilon\,\mathrm{e}^{\mathrm{i}\varphi}+\varepsilon^2\,\mathrm{e}^{2\mathrm{i}\varphi}\right)$$

This is a inhomogeneous second-order linear ODE. We can look for the particular solutions termwise. From the theory of ODE, we know the following fact: Suppose that \mathcal{L} is a linear differential operator with constant coefficients. Let λ be an eigenvalue of \mathcal{L} of multiplicity n (n=0 if λ is not an eigenvalue). Then the inhomogeneous problem $\mathcal{L} y = e^{\lambda x}$ has a particular solution of the form $y = Ax^n e^{\lambda x}$. (The proof is to rewrite \mathcal{L} as a system of first-order linear ODEs, and put the corresponding matrix of \mathcal{L} into a Jordan normal form.)

The linear differential operator $\left(\frac{\mathrm{d}^2}{\mathrm{d}\varphi^2} + 1\right)$ has an eigenvalue i of multiplicity 1. So the particular solution of the problem $\left(\frac{\mathrm{d}^2}{\mathrm{d}\varphi^2} + 1\right)\delta u^* = 2\varepsilon\,\mathrm{e}^{\mathrm{i}\varphi}$ is of the form $\delta u^*(\varphi) = A_1\varphi\,\mathrm{e}^{\mathrm{i}\varphi}$.

Next we determine the coefficients A_0 , A_1 , A_2 .

$$ab = \left(\frac{\mathrm{d}^2}{\mathrm{d}\varphi^2} + 1\right) A_0 = A_0 \implies A_0 = \frac{3(GM)^3}{c^2 J^4} \left(1 + \frac{\varepsilon^2}{2}\right)$$
$$2\varepsilon a e^{\mathrm{i}\varphi} = \left(\frac{\mathrm{d}^2}{\mathrm{d}\varphi^2} + 1\right) \left(A_1 \varphi e^{\mathrm{i}\varphi}\right) = 2\mathrm{i}A_1 \implies A_1 = -\mathrm{i}\varepsilon \frac{3(GM)^3}{c^2 J^4}$$
$$\frac{1}{2}\varepsilon^2 a e^{2\mathrm{i}\varphi} = \left(\frac{\mathrm{d}^2}{\mathrm{d}\varphi^2} + 1\right) \left(A_2 e^{2\mathrm{i}\varphi}\right) = -3A_2 \implies A_2 = -\frac{1}{2}\varepsilon^2 \frac{(GM)^3}{c^2 J^4}$$

The full particular solution is given by

$$\delta u^* = \frac{(GM)^3}{c^2 I^4} \left(3 \left(1 + \frac{\varepsilon^2}{2} \right) - 3i\varepsilon \varphi e^{i\varphi} - \frac{1}{2} \varepsilon^2 e^{2i\varphi} \right)$$

The real part is

$$\delta u = \operatorname{Re}(\delta u^*) = \frac{(GM)^3}{c^2 J^4} \left(3\left(1 + \frac{\varepsilon^2}{2}\right) + 3\varepsilon\varphi\sin\varphi - \frac{1}{2}\varepsilon^2\cos2\varphi \right)$$

In principle we should also include the general solution to the homogeneous problem, which gives the full general solution

$$\delta u = \left(C_1 \cos \varphi + C_2 \sin \varphi\right) + \frac{(GM)^3}{c^2 J^4} \left(3\left(1 + \frac{\varepsilon^2}{2}\right) + 3\varepsilon \varphi(\cos \varphi + \sin \varphi) - \frac{1}{2}\varepsilon^2 \cos 2\varphi\right)$$

But the constants C_1 and C_2 can be absorbed into the Newtonian solution u_N and can be discarded here.

b) We have

$$\begin{split} u &= u_N + \delta u = \frac{GM}{J^2} (1 + \varepsilon \cos \varphi) + \frac{(GM)^3}{c^2 J^4} \left(3 \left(1 + \frac{\varepsilon^2}{2} \right) + 3\varepsilon \varphi \sin \varphi - \frac{1}{2} \varepsilon^2 \cos 2\varphi \right) \\ &= a \left(1 + \frac{\varepsilon^2}{2} - \frac{\varepsilon^2}{6} \cos 2\varphi \right) + \frac{GM}{J^2} \left(1 + \varepsilon \left(\cos \varphi + \alpha \varphi \sin \varphi \right) \right) \end{split}$$

Since $\alpha \varphi \ll 1$, to the order $O(\alpha \varphi)$ we have

$$\cos \varphi + \alpha \varphi \sin \varphi = \cos \varphi \cos \alpha \varphi + \sin \alpha \varphi \sin \varphi = \cos(\varphi (1 - \alpha))$$

Hence the solution is approximately

$$u = a \left(1 + \frac{\varepsilon^2}{2} - \frac{\varepsilon^2}{6} \cos 2\varphi \right) + \frac{GM}{J^2} \left(1 + \varepsilon \cos(\varphi(1 - \alpha)) \right)$$

c) The period of the solution is

$$\frac{2\pi}{1-\alpha}\approx 2\pi(1+\alpha)=2\pi+6\pi\left(\frac{GM}{Jc}\right)^2$$

Hence the precession angle per period is

$$\Delta \varphi = 6\pi \left(\frac{GM}{Jc}\right)^2$$

Ouestion 5. Black hole orbits.

a) In Newtonian theory, the energy equation for a test particle in orbit around a point mass is

$$\frac{v^2}{2} + \frac{l^2}{2r^2} - \frac{GM}{r} = \mathcal{E}$$

where r is radius, v is the radial velocity, l the angular momentum per unit mass, \mathcal{E} the constant energy per unit mass, and -GM/r is of course the potential energy. For the Schwarzschild solution show that the integrated geodesic equation

may also be written in the form

$$\frac{v_S^2}{2} + \frac{l_S^2}{2r^2} + \Phi_S(r) = \mathcal{E}_S$$

where r is the standard radial coordinate, l_S and \mathscr{E}_S are constants, $\Phi_S(r)$ is an effective potential function, and $v_S = dr/d\tau$. Determine l_S and \mathscr{E}_S in terms of the fundamental angular momentum and energy constants J and E from lecture (or the notes). Express $\Phi_S(r)$ in terms of l_S,\mathscr{E}_S , the speed of light c,GM and r. The form of l_S,\mathscr{E}_S , and Φ_S should be chosen to go over to their Newtonian counterparts in the limit $E \to c^2, c \to \infty, E - c^2 \to \text{finite}$.

- b) Sketch the effective potential $l_S^2/2r^2 + \Phi_S(r)$. Prove that there is always a potential minimum in Newtonian theory, but that this is not the case in general relativity. What is the mathematical condition for the existence of a potential minimum for Φ_S , and what does it mean physically if it does not exist?
- c) Show that for the Schwarzschild metric, circular orbits satisfy

$$\Omega^2 = \frac{GM}{r^3}$$

exactly the Newtonian form. Here $\Omega \equiv d\phi/dt$ at the coordinate location r, where dt is the proper time interval at infinity. Derive expressions for E and J in terms of GM, c^2 and r.

d) Below what value of r does Φ_S not have any local extrema? (Answer: $6GM/c^2$.)

Proof. a) We assume that the particle is massive, so that its 4-velocity is always timelike. First we starts from the Schwarzschild metric:

$$g = -\left(1 - \frac{R_S}{r}\right)c^2 dt^2 + \left(1 - \frac{R_S}{r}\right)^{-1} dr^2 + r^2 \left(d\theta^2 + \sin^2\theta d\varphi^2\right)$$

The corresponding Lagrangian is given by

$$\mathcal{L} = -\left(1 - \frac{R_S}{r}\right)c^2\dot{t}^2 + \left(1 - \frac{R_S}{r}\right)^{-1}\dot{r}^2 + r^2\left(\dot{\theta}^2 + \sin^2\theta\dot{\varphi}^2\right)$$

where the dot denotes the derivative with respect to the proper time τ . We observe that t and ϕ are ignorable coordinates. We have

$$\frac{\partial \mathcal{L}}{\partial \dot{t}} = -2\left(1 - \frac{R_S}{r}\right)c^2\dot{t} = \text{const}, \qquad \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = 2r^2\sin^2\theta\dot{\phi} = \text{const}$$

We can use the SO(3) symmetry of the manifold to fix the orbits on the plane $\theta = \pi/2$. Then $\dot{\theta} = 0$. We set the constants $J := r^2 \dot{\phi}$ and $E := \left(1 - \frac{R_S}{r}\right) c^2 \dot{t}$, which are the angular momentum and energy per unit mass.

Note that by the definition of proper time, $c d\tau = \sqrt{-g_{\mu\nu} dx^{\mu} dx^{\nu}}$. Therefore $\mathcal{L} = g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} = -c^2$. This gives

$$\mathcal{L} = -\left(1 - \frac{R_S}{r}\right)c^2\dot{t}^2 + \left(1 - \frac{R_S}{r}\right)^{-1}\dot{r}^2 + r^2\dot{\varphi}^2 = -\left(1 - \frac{R_S}{r}\right)^{-1}\frac{E^2}{c^2} + \left(1 - \frac{R_S}{r}\right)^{-1}\dot{r}^2 + \frac{J^2}{r^2} = -c^2$$

Rearrangine the expression:

$$\frac{1}{2}\dot{r}^2 + \frac{J^2}{2r^2} - \left(\frac{GM}{r} + \frac{GMJ^2}{c^2r^3}\right) = \frac{E^2 - c^4}{2c^2}$$

This is the radial orbit equation we want.

(The way that the notes introduces the constants J and E is unsatistory from my perspective. We don't need any mysterous parameter p. We can simply choose the **affine parameter**, which is a parameter such that the tangent vector of the geodesic is parallel transported along the geodesic.)

$$v_S = \frac{dr}{d\tau}, \qquad \ell_S = J, \qquad \Phi_S(r) = -\frac{GM}{r} - \frac{GMJ^2}{c^2r^3} = -\frac{GM}{r} - \frac{GM\ell_S^2}{c^2r^3}, \qquad \mathcal{E}_S = \frac{E^2 - c^4}{2c^2}$$

In the gravitational potential $\Phi_S(r)$, we can clearly find the relativistic correction term $-\frac{GMJ^2}{c^2r^3}$.

It seems that you have but some factors of E at some point

b) The effective potential is given by

$$V_{\rm eff}(r) = \frac{J^2}{2r^2} - \frac{GM}{r} - \frac{GMJ^2}{c^2r^3}$$

I borrow the following figure from the Part C GR1 notes. In the figure $\Omega = J$ and G = c = 1.

$$\Omega > \sqrt{12}M$$

$$\Omega = \sqrt{12}M$$

$$\Omega < \sqrt{12}M$$

Figure 6.2: The effective potential in a Schwarzschild spacetime, for various values of the conserved angular momentum Ω .

For the Newtonian effective potential, at a local extermum we have

$$V_{\rm eff}'(r) = \frac{GM}{r^2} - \frac{J^2}{r^3} = 0 \implies r = \frac{J^2}{GM}$$

This is a local minimum because

$$V_{\text{eff}}''\left(\frac{J^2}{GM}\right) = \left(-\frac{2GM}{r^3} + \frac{3J^2}{r^4}\right)_{r=J^2/GM} = GM\left(\frac{GM}{J^2}\right)^3 > 0$$

For the Schwarzschild effective potential, at a local extermum we have

$$V_{\rm eff}'(r) = \frac{GM}{r^2} - \frac{J^2}{r^3} + \frac{3GMJ^2}{c^2r^4} = 0 \implies r^2 - \frac{J^2}{GM}r + \frac{3J^2}{c^2} = 0$$

The discriminant of the quadratic equation is given by

$$\Delta = \left(\frac{J^2}{GM}\right)^2 - \frac{12J^2}{c^2}, \qquad \Delta > 0 \iff J > \sqrt{12}\frac{GM}{c}$$

When $J < \sqrt{12}GM/c$, the effective potential does not have any extremum, so there are no bound orbits. Physically, particles with angular momentum smaller than $\sqrt{12}GM/c$ will either fall onto the event horizon $r = R_S$ or escape to $r \to \infty$ eventually.

c) Along a circular orbit, we have $\dot{r} = 0$ and $\ddot{r} = 0$. The Lagrangian simplifies to

$$\mathcal{L} = -\left(1 - \frac{R_S}{r}\right)c^2\dot{t}^2 + r^2\dot{\varphi}^2 = -c^2$$

The Euler-Lagrange equation for r is

$$\frac{\partial \mathcal{L}}{\partial r} = -\frac{R_S}{r^2}c^2\dot{t}^2 + 2r\dot{\varphi}^2 = 0$$

Therefore

$$\Omega^2 = \left(\frac{\mathrm{d}\varphi}{\mathrm{d}t}\right)^2 = \frac{\dot{\varphi}^2}{\dot{t}^2} = \frac{R_S c^2}{2r^3} = \frac{GM}{r^3}$$

which is consistent with the classical Kepler third law.

Along a circular orbit, we must have $V'_{\text{eff}}(r) = 0$. Solving *J* in terms of *r*,

$$r^2 - \frac{J^2}{GM}r + \frac{3J^2}{c^2} = 0 \implies J = r\left(\frac{r}{GM} - \frac{3}{c^2}\right)^{-1/2}$$

We substitute *J* into the radial equation:

$$\frac{J^2}{2r^2} - \left(\frac{GM}{r} + \frac{GMJ^2}{c^2r^3}\right) = \frac{E^2 - c^4}{2c^2} \implies E = c\sqrt{c^2 - \frac{GM}{r}\frac{3rc^2 - 8GM}{rc^2 - 3GM}} = c^2\sqrt{\frac{2(r - R_S)(r - 2R_S)}{2r^2 - 3R_Sr}}$$

d) $\Phi_S(r)$ is monotonic and never has a local extremum. I assume that the question is asking about $V_{\rm eff}$.

$$V'_{\text{eff}}(r) = 0 \implies r_{\pm} = \frac{J^2}{2GM} \left(1 \pm \sqrt{1 - \frac{12G^2M^2}{c^2J^2}} \right)$$

From the sketch of $V_{\rm eff}(r)$ it is easy to see that r_- is an unstable orbit and r_+ is a stable orbit. The minimum value of r_+ is achieved when $J^2 = \sqrt{12}GM/c$, where

$$(r_+)_{\min} = \frac{J^2}{2GM} = \frac{6GM}{c^2}$$

There are no stable circular orbits with $r < 6GM/c^2$.