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Question 1. Hydrostatic Equilibrium in GR.

Model a neutron star atmosphere with a simple equation of state: P = Kργ, where P is pressure, ρ is mass density, γ is the
adiabatic index and K is a constant. Assume that g00 = −(

1−2GM/r c2
)

, where M is the mass of the star and r is radius. If
ρ = ρ0 at the surface r = R0, solve the equation of hydrostatic equilibrium to show that

1+Kργ−1/c2

1+Kργ−1
0 /c2

=
(

1−RS /r0

1−RS /r

)α
where RS = 2GM/c2 is the so-called Schwarzschild radius, and 2αγ= γ−1. (Hint: See §4.6 of the notes.) What is the Newtonian
limit of the above equation? Express your answer in terms of the speed of sound a, a2 = γP/ρ and the potentialΦ(r ) =−GM/r .

(OPTIONAL: For those who have studied fluids, what quantity is being conserved in the Newtonian limit?)

Proof. For a type (1,1) tensor field T , the covariant divergence is given by

∇µT µ
ν = 1√|det g |

∂
(√|det g |T µ

ν

)
∂xµ

−ΓλµνT µ

λ

The mixed energy-momentum stress tensor is given by

T µ
ν = Pδµν +

(
ρ+ P

c2

)
UµUν

In the hydrostatic equilibrium, the mixed energy-momentum stress tensor is divergenceless. We have

∇µT µ
ν = ∂νP + 1√|det g |

∂µ

(√
|det g |

(
ρ+ P

c2

)
UµUν

)
−Γλµν

(
ρ+ P

c2

)
UµUλ = 0

In static equilibrium, U i = 0 and g0i = 0. Hence

UµUν =U 0Uνδ
µ
0 =U 0g0νU 0δ

µ
0 = g00U 0U 0δ

µ
0δ

0
ν =U 0U0δ

µ
0δ

0
ν =−c2δ

µ
0δ

0
ν

Plugging into the equation:

∂νP − 1√|det g |
∂0

(√
|det g |(ρc2 +P

))
δ0
ν+Γ0

0ν

(
ρc2 +P

)= 0

where

Γ0
0ν =

g 0ρ

2

(
∂0gνρ +∂νg0ρ −∂ρg0ν

)= 1

2
g 0ρ∂νg0ρ = 1

2
g 00∂νg00 = 1

2g00
∂νg00 = 1

2
∂ν

(
ln |g00|

)= ∂ν (
ln |g00|1/2)

We deduce that
∂i P + (ρc2 +P )∂i

(
ln |g00|1/2)= 0

This is the general hydrostatic equilibrium equation. We seek a spherically symmetric solution with ρ = ρ(r ). The equation
becomes

dP

dρ

dρ

dr
+ (ρc2 +P )

d

dr

(
ln |g00|1/2)= 0

Plugging in the expressions of g00 and P :

Kγργ−1 dρ

dr
+ 1

2
(ρc2 +Kργ)

d

dr
ln

∣∣∣∣1− RS

r

∣∣∣∣= 0 =⇒ 2Kγργ−1

ρc2 +Kργ
dρ

dr
+ d

dr
ln

∣∣∣∣1− RS

r

∣∣∣∣= 0

Integrate: ∫ ρ

ρ0

2Kγργ−1

ρc2 +Kργ
dρ+ ln

∣∣∣∣1− RS

r

∣∣∣∣r

r0

= 0

Let us compute the integral...

∫ ρ

ρ0

2Kγργ−1

ρc2 +Kργ
dρ =

∫ ρ

ρ0

2Kγργ−2

c2 +Kργ−1 dρ = 2K
γ

γ−1

∫ ρ

ρ0

1

c2 +Kργ−1 d(ργ−1) = 2γ

γ−1
ln

∣∣c2 +Kργ−1∣∣ρ
ρ0

= 2γ

γ−1
ln

∣∣∣∣∣c2 +Kργ−1

c2 +Kργ−1
0

∣∣∣∣∣
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Therefore
2γ

γ−1
ln

∣∣∣∣∣c2 +Kργ−1

c2 +Kργ−1
0

∣∣∣∣∣+ ln

∣∣∣∣ 1−RS /r

1−RS /r0

∣∣∣∣= 0

Taking exponential:

(
c2 +Kργ−1

c2 +Kργ−1
0

) 2γ
γ−1 (

1−RS /r

1−RS /r0

)
= 1 =⇒ c2 +Kργ−1

c2 +Kργ−1
0

=
(

1−RS /r0

1−RS /r

) γ−1
2γ =⇒ 1+Kργ−1/c2

1+Kργ−1
0 /c2

=
(

1−RS /r0

1−RS /r

)α
In the Newtonian limit, we have RS /r ¿ 1 and Kργ−1/c2 ¿ 1. We can therefore linearise the above equation:

1+Kργ−1/c2

1+Kργ−1
0 /c2

=
(

1−RS /r0

1−RS /r

)α

=⇒
(
1+ Kργ−1

c2

)(
1− αRS

r

)
=

(
1+ Kργ−1

0

c2

)(
1− αRS

r0

)

=⇒ Kργ−1

c2 − αRS

r
= Kργ−1

0

c2 − αRS

r0

=⇒ a2

γc2 − γ−1

2γ

2GM

r c2 = a2
0

γc2 − γ−1

2γ

2GM

r0c2

=⇒ a2 + (γ−1)Φ(r ) = a2
0 + (γ−1)Φ(r0)

The conserved quantity is a2 + (γ− 1)Φ(r ). (I don’t know any conserved quantity in fluid mechanics related to the speed of
sound...)

Question 2. Bondi Accretion: go with the flow.

To get some practise working with the equations of GR as well as some insight into relativistic dynamics in a practical problem
in astrophysics, consider what is known as (relativistic) Bondi Accretion, the spherical flow of gas into a black hole. (The
original Bondi accretion problem was Newtonian accretion onto an ordinary star.) We assume a Schwarzschild metric in the
usual spherical coordinates:

g00 =−(
1−2GM/r c2) , gr r =

(
1−2GM/r c2)−1

, gθθ = r 2, gφφ = r 2 sin2θ

a) First, let us assume that particles are neither created or destroyed. So particle number is conserved. If n is the particle
number density in the local rest frame of the flow, then the particle flux is Jµ = nUµ, where Uµ is the flow 4-velocity.
Justify this statement, and using §4.5 in the notes, show that particle number conservation implies:

Jµ;µ = 0

If nothing depends upon time, show that this integrates to

nU r ∣∣g ′∣∣1/2 = constant

where g ′ is the determinant of gµν divided by sin2θ, and U r is...well, you tell me what U r is.

b) We move on to energy conservation, T tν
;ν = 0. (Refer to §4.6 in the notes.) Show that the only nonvanishing affine con-

nection that we need to use is

Γt
tr = Γt

r t =
1

2

∂ ln
∣∣g t t

∣∣
∂r

Derive and solve the energy equation. Show that its solution may be written(
P +ρc2)U r Ut

∣∣g ′∣∣1/2 = constant

where Ut = g tµUµ, and ρ is the total energy density of the fluid in its rest frame, including any thermal energy.
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c) We next define

$=µn

where µ is the rest mass per particle and $ is a Newtonian density. This is not to be confused with ρ, the true relativistic
energy density divided by c2.P and $ are assumed to be related by a simple power law relationship,

P = K$γ

where K is a constant, and γ is called the adiabatic index. This is not an entirely artificial problem: it is valid for cold
classical particles (γ = 5/3) or hot relativistic particles (γ = 4/3). The first law of thermodynamics then tells us that the
thermal energy per unit volume is

ε= P

γ−1

(You needn’t derive that here, just use it!) Show that this implies:

ρ =$+ P

c2(γ−1)

d) Verify that ∣∣g ′∣∣= r 4

and using gµνUµUν =−c2, show that

Ut =
[

c2 − 2GM

r
+ (

U r )2
]1/2

(Take care to distinguish U t and Ut .)

e) With

a2 = γP/$

(this is the speed of sound in a nonrelativistic gas), combine our mass and energy conservation equations to show that

(
c2 + a2

γ−1

)2 (
c2 +U 2 − 2GM

r

)
= constant

We have dropped the superscript r on U r for greater clarity. How does a2 depend upon $? The other equation we shall
use is just that of mass conservation itself. Show that this may be written as

4π$r 2U = ṁ

which defines the net, constant mass accretion rate ṁ < 0. With a2 depending entirely on $, and $ = ṁ/
(
4πr 2U

)
,

the equation in boldface becomes a single algebraic equation for U as a function of r, and the formal solution to our
problem.

f) Three final simple tasks for now:

i) Show that the constant on the right of the bold equation of problem (2e) is

c2
(
c2 + a2∞

γ−1

)2

where a∞ is the sound speed at infinite distance from the black hole, if the gas starts accreting from rest.
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ii) Show that the Newtonian limit of the equation is

v2

2
+ a2

γ−1
− GM

r
= a2∞
γ−1

where v is the ordinary velocity, not the 4-velocity. This is a statement that a quantity known as enthapy (energy
plus the work done by pressure) is conserved. This is the original nonrelativistic Bondi 1952 solution for accretion
onto a star.

iii) Show that as r approaches the Schwarzschild radius RS = 2GM/c2, then if a ¿ c everywhere, then dr /d t satisfies
the condition of a "null geodesic," a fancy way to say the inflow follows the equation of light:

dr

d t
=−c (1−RS /r )

Like stalled photons, from the point of view of a distant observer, the flow never crosses RS .

Proof. a) In Special Relativity, we have known that in the Minkowski spacetime (R4,η), the 4-current is given by Jµ = nUµ, and the

continuity equation ∇· j+ ∂ρ

∂t
= 0 upgrades to the covariant form ∂µ Jµ = 0. In a general spacetime (M , g ), the continuity

equation is ∇µ Jµ = 0. In fact, most of the covariant formulae in SR can be generalised to GR by replacing the partial
derivative ∂µ by the covariant derivative ∇µ.

For a spherically symmetric stationary solution, we can simply put Uθ = Uϕ = 0. The only non-zero 4-velocity com-
ponents are U t and U r . But U t does not contribute to the equation because ∂tU t = 0. Using the covariant divergence
formula,

∇µ Jµ = 1√|det g |
∂
(√|det g |Jµ)

∂xµ
= 1

r 2 sinθ

∂
(
r 2 sinθnU r

)
∂r

= 1

r 2

∂

∂r
(nU r r 2) = 0

which integrates to
nU r r 2 = f (t ,θ,ϕ)

for some function f . But f = const since we are looking for a spherically symmetric stationary solution.

b) The contravariant energy-momentum tensor is given by

T µν = P gµν+
(
ρ+ P

c2

)
UµUν

For this problem, the non-zero components are

T t t =−P

(
1− RS

r

)−1

+
(
ρ+ P

c2

)
(U t )2, T r r = P

(
1− RS

r

)
+

(
ρ+ P

c2

)
(U r )2, T tr =

(
ρ+ P

c2

)
U tU r

T θθ = P

r 2 , Tϕϕ = P

r 2 sin2θ

We expand ∇νT tν using the Christoffel symbols:

∇νT tν = ∂νT tν+ΓννλT λt +Γt
νλT νλ

= ∂t T t t +∂r T tr +
(
Γt

t t +Γr
r t +Γθθt +Γ

ϕ
ϕt

)
T t t +

(
Γt

tr +Γr
r r +Γθθr +Γ

ϕ
ϕr

)
T tr

+
(
Γt

t t T t t +Γt
r r T r r +Γt

tr T tr +Γt
θθT θθ+Γt

ϕϕTϕϕ
)

For a diagonal metric g , the Christoffel symbols are given by

Γa
ab = 1

2gaa
∂b gaa , Γa

bb =− 1

2gaa
∂a gbb (a 6= b), Γa

bc = 0 (a,b,c dinstinct)

We note that all Christoffel symbols appear in the above equation vanish except for Γt
tr , which is given by

Γt
tr =

1

2g t t
∂r g t t = 1

2
∂r

(
ln |g t t |

)=− RS

2r (r −RS )

Pietro
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Substituting into the equation above:

∂r T tr +2Γt
tr T tr = 0 =⇒ ∂T tr

∂r
+ T tr

g t t

∂g t t

∂r
= 0 =⇒ ∂

(
T tr g t t

)
∂r

= 0

Therefore

const = T tr g t t =
(
ρ+ P

c2

)
U tU r g t t =

(
ρ+ P

c2

)
UtU r

(I did not find the r 2 factor in the solution...)

Question 3. Kinematic and gravitational redshifts.

a) One of the most important observational black hole diagnostics is a calculation of the radiation spectrum from the sur-
rounding disc. In particular we are interested in how the frequency of a photon is shifted due to space-time distortions
and relativistic kinematics. Show that:

νR

νE
= pµ(R)V µ(R)

pµ(E)V µ(E)

where R denotes the received the photon and E the emitted photon, ν is a frequency (not an index here!), pµ a covariant
photon 4-momentum, and V µ is the normalised 4-velocity in the form (d t/dτ,dx/cdτ) for the emitted material (E) or
the distant observer at rest (R).

b) In the problem at hand, the observer views the disc edge-on, in the plane of the disc. The gas moves in circular orbits

¯−−−−−−−−→ observer m

Show that in t ,r,θ,φ coordinates for the 0,1,2,3 components,

V µ(R) = (1,0,0,0), V µ(E) =V 0
E (1,0,0,dφ/cd t ), with V 0

E = d t/dτ

Then, using gµρV µV ρ =−1 ), conclude that

V 0
E = (

1−3GM/r c2)−1/2

You may use a result from problem (5c) below. (You will prove it later!)

c) Finally, show that

νR

νE
=

(
1− 3GM

r c2

)1/2 (
1+ Ωpφ(E)

cp0(E)

)−1

, Ω2 =GM/r 3

A result of problem (3) from Problem Set 1 may be useful.

From disk material moving at right angles across the line of sight, νR /νE reduces to(
1−3GM/r c2)1/2

Why? From disk material moving precisely along the line of sight, show that

νR

νE
= (

1−3GM/r c2)1/2
/
(
1± (

r c2/GM −2
)−1/2

)
(Hint: gνρpνpρ = 0. ) Interpret the± sign. In general, the photon paths must be calculated from the dynamical equations
to determine the p(E) ratio.

Question 4. The perihelion advance of Mercury.

a) In the notes we found that the differential equation for u = 1/r for Mercury’s orbit could be written as follows. u =

Pietro
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uN +δu with the Newtonian solution uN given by

uN = (
GM/J 2) (1+εcosφ)

and the differential equation for δu is

d 2δu

dφ2 +δu = 3(GM)3

c2 J 4

(
1+2εcosφ+ε2 cos2φ

)
Show that this is equivalent to solving the real part of the equation

d 2δu

dφ2 +δu = a
(
b +2εe iφ+ε2e2iφ/2

)
where a = 3(GM)3/

(
c2 J 4

)
and b = 1+ε2/2 To solve this, try a solution of the form

δu = A0 + A1φe iφ+ A2e2iφ

where the A’s are constants. Why do we need an additional factor of φ in the A1 term?

b) Show that the solution for u = uN +δu is

u = GM

J 2 +ab − aε2

6
cos2φ+ GM

J 2 εcosφ+εaφsinφ

Since a is very small, show that this equivalent to

u = ab − aε2

6
cos2φ+ GM

J 2 [1+ε(cosφ(1−α))]

where

α= a J 2/GM = 3(GM/Jc)2

c) In the equation for u, the first two terms in a cause tiny (and unmeasurable) distortions in the shape of the ellipse, but
do not affect the 2π perodicity in φ of the orbit. Show however that the final term, proportional to GM/J 2, results in a
periastron advance of

∆φ= 6π

(
GM

c J

)2

each orbit. This is the classic Einstein result.

Proof. a) We can complexify the equation by considering δu = Re(δu∗). Note that cosnϕ= Re
(
einϕ

)
. Thus

cos2ϕ= 1

2
(1+cos2ϕ) = Re

(
1

2
(1+e2iϕ)

)
Since the differential operator d/dϕ and Re commutes, we have(

d2

dϕ2 +1

)
δu∗ = 3(GM)3

c2 J 4

(
1+2εeiϕ+ε2 1

2
(1+e2iϕ)

)
= 3(GM)3

c2 J 4

(
1+ ε2

2
+2εeiϕ+ε2 e2iϕ

)
This is a inhomogeneous second-order linear ODE. We can look for the particular solutions termwise. From the theory
of ODE, we know the following fact: Suppose that L is a linear differential operator with constant coefficients. Let λ be
an eigenvalue of L of multiplicity n (n = 0 if λ is not an eigenvalue). Then the inhomogeneous problem L y = eλx has
a particular solution of the form y = Axn eλx . (The proof is to rewrite L as a system of first-order linear ODEs, and put
the corresponding matrix of L into a Jordan normal form.)

The linear differential operator

(
d2

dϕ2 +1

)
has an eigenvalue i of multiplicity 1. So the particular solution of the problem(

d2

dϕ2 +1

)
δu∗ = 2εeiϕ is of the form δu∗(ϕ) = A1ϕeiϕ.

Pietro
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Next we determine the coefficients A0, A1, A2.

ab =
(

d2

dϕ2 +1

)
A0 = A0 =⇒ A0 = 3(GM)3

c2 J 4

(
1+ ε2

2

)

2εa eiϕ =
(

d2

dϕ2 +1

)(
A1ϕeiϕ)= 2iA1 =⇒ A1 =−iε

3(GM)3

c2 J 4

1

2
ε2a e2iϕ =

(
d2

dϕ2 +1

)(
A2 e2iϕ)=−3A2 =⇒ A2 =−1

2
ε2 (GM)3

c2 J 4

The full particular solution is given by

δu∗ = (GM)3

c2 J 4

(
3

(
1+ ε2

2

)
−3iεϕeiϕ−1

2
ε2 e2iϕ

)
The real part is

δu = Re(δu∗) = (GM)3

c2 J 4

(
3

(
1+ ε2

2

)
+3εϕsinϕ− 1

2
ε2 cos2ϕ

)
In principle we should also include the general solution to the homogeneous problem, which gives the full general
solution

δu = (
C1 cosϕ+C2 sinϕ

)+ (GM)3

c2 J 4

(
3

(
1+ ε2

2

)
+3εϕ(cosϕ+ sinϕ)− 1

2
ε2 cos2ϕ

)
But the constants C1 and C2 can be absorbed into the Newtonian solution uN and can be discarded here.

b) We have

u = uN +δu = GM

J 2 (1+εcosϕ)+ (GM)3

c2 J 4

(
3

(
1+ ε2

2

)
+3εϕsinϕ− 1

2
ε2 cos2ϕ

)
= a

(
1+ ε2

2
− ε2

6
cos2ϕ

)
+ GM

J 2

(
1+ε(

cosϕ+αϕsinϕ
))

Since αϕ¿ 1, to the order O(αϕ) we have

cosϕ+αϕsinϕ= cosϕcosαϕ+ sinαϕsinϕ= cos(ϕ(1−α))

Hence the solution is approximately

u = a

(
1+ ε2

2
− ε2

6
cos2ϕ

)
+ GM

J 2

(
1+εcos(ϕ(1−α))

)
c) The period of the solution is

2π

1−α ≈ 2π(1+α) = 2π+6π

(
GM

Jc

)2

Hence the precession angle per period is

∆ϕ= 6π

(
GM

Jc

)2

Question 5. Black hole orbits.

a) In Newtonian theory, the energy equation for a test particle in orbit around a point mass is

v2

2
+ l 2

2r 2 − GM

r
= E

where r is radius, v is the radial velocity, l the angular momentum per unit mass, E the constant energy per unit mass,
and −GM/r is of course the potential energy. For the Schwarzschild solution show that the integrated geodesic equation
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may also be written in the form

v2
S

2
+ l 2

S

2r 2 +ΦS (r ) = ES

where r is the standard radial coordinate, lS and ES are constants, ΦS (r ) is an effective potential function, and vS =
dr /dτ. Determine lS and ES in terms of the fundamental angular momentum and energy constants J and E from
lecture (or the notes). Express ΦS (r ) in terms of lS ,ES , the speed of light c,GM and r. The form of lS ,ES , and ΦS should
be chosen to go over to their Newtonian counterparts in the limit E → c2,c →∞,E − c2 → finite.

b) Sketch the effective potential l 2
S /2r 2 +ΦS (r ). Prove that there is always a potential minimum in Newtonian theory,

but that this is not the case in general relativity. What is the mathematical condition for the existence of a potential
minimum forΦS , and what does it mean physically if it does not exist?

c) Show that for the Schwarzschild metric, circular orbits satisfy

Ω2 = GM

r 3

exactly the Newtonian form. HereΩ≡ dφ/d t at the coordinate location r, where d t is the proper time interval at infinity.
Derive expressions for E and J in terms of GM ,c2 and r .

d) Below what value of r doesΦS not have any local extrema? (Answer: 6GM/c2.)

Proof. a) We assume that the particle is massive, so that its 4-velocity is always timelike. First we starts from the Schwarzschild
metric:

g =−
(
1− RS

r

)
c2dt 2 +

(
1− RS

r

)−1

dr 2 + r 2 (
dθ2 + sin2θdϕ2)

The corresponding Lagrangian is given by

L =−
(
1− RS

r

)
c2 ṫ 2 +

(
1− RS

r

)−1

ṙ 2 + r 2 (
θ̇2 + sin2θϕ̇2)

where the dot denotes the derivative with respect to the proper time τ. We observe that t and ϕ are ignorable coordi-
nates. We have

∂L

∂ṫ
=−2

(
1− RS

r

)
c2 ṫ = const,

∂L

∂ϕ̇
= 2r 2 sin2θϕ̇= const

We can use the SO(3) symmetry of the manifold to fix the orbits on the plane θ =π/2. Then θ̇ = 0. We set the constants

J := r 2ϕ̇ and E :=
(
1− RS

r

)
c2 ṫ , which are the angular momentum and energy per unit mass.

Note that by the definition of proper time, cdτ=
√
−gµνdxµdxν. Therefore L = gµνẋµẋν =−c2. This gives

L =−
(
1− RS

r

)
c2 ṫ 2 +

(
1− RS

r

)−1

ṙ 2 + r 2ϕ̇2 =−
(
1− RS

r

)−1 E 2

c2 +
(
1− RS

r

)−1

ṙ 2 + J 2

r 2 =−c2

Rearrangine the expression:
1

2
ṙ 2 + J 2

2r 2 −
(

GM

r
+ GM J 2

c2r 3

)
= E 2 − c4

2c2

This is the radial orbit equation we want.

(The way that the notes introduces the constants J and E is unsatistory from my perspective. We don’t need any mysterous
parameter p. We can simply choose the affine parameter, which is a parameter such that the tangent vector of the
geodesic is parallel transported along the geodesic.)

vS = dr

dτ
, `S = J , ΦS (r ) =−GM

r
− GM J 2

c2r 3 =−GM

r
− GM`2

S

c2r 3 , ES = E 2 − c4

2c2

In the gravitational potentialΦS (r ), we can clearly find the relativistic correction term −GM J 2

c2r 3 .

Pietro

Pietro

Pietro



9

b) The effective potential is given by

Veff(r ) = J 2

2r 2 − GM

r
− GM J 2

c2r 3

I borrow the following figure from the Part C GR1 notes. In the figureΩ= J and G = c = 1.

For the Newtonian effective potential, at a local extermum we have

V ′
eff(r ) = GM

r 2 − J 2

r 3 = 0 =⇒ r = J 2

GM

This is a local minimum because

V ′′
eff

(
J 2

GM

)
=

(
−2GM

r 3 + 3J 2

r 4

)
r=J 2/GM

=GM

(
GM

J 2

)3

> 0

For the Schwarzschild effective potential, at a local extermum we have

V ′
eff(r ) = GM

r 2 − J 2

r 3 + 3GM J 2

c2r 4 = 0 =⇒ r 2 − J 2

GM
r + 3J 2

c2 = 0

The discriminant of the quadratic equation is given by

∆=
(

J 2

GM

)2

− 12J 2

c2 , ∆> 0 ⇐⇒ J >p
12

GM

c

When J < p
12GM/c, the effective potential does not have any extremum, so there are no bound orbits. Physically,

particles with angular momentum smaller than
p

12GM/c will either fall onto the event horizon r = RS or escape to
r →∞ eventually.

c) Along a circular orbit, we have ṙ = 0 and r̈ = 0. The Lagrangian simplifies to

L =−
(
1− RS

r

)
c2 ṫ 2 + r 2ϕ̇2 =−c2

The Euler-Lagrange equation for r is
∂L

∂r
=−RS

r 2 c2 ṫ 2 +2r ϕ̇2 = 0

Therefore

Ω2 =
(

dϕ

dt

)2

= ϕ̇2

ṫ 2 = RS c2

2r 3 = GM

r 3

which is consistent with the classical Kepler third law.

Along a circular orbit, we must have V ′
eff(r ) = 0. Solving J in terms of r ,

r 2 − J 2

GM
r + 3J 2

c2 = 0 =⇒ J = r

(
r

GM
− 3

c2

)−1/2

Pietro

Pietro

Pietro
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We substitute J into the radial equation:

J 2

2r 2 −
(

GM

r
+ GM J 2

c2r 3

)
= E 2 − c4

2c2 =⇒ E = c

√
c2 − GM

r

3r c2 −8GM

r c2 −3GM
= c2

√
2(r −RS )(r −2RS )

2r 2 −3RS r

d) ΦS (r ) is monotonic and never has a local extremum. I assume that the question is asking about Veff.

V ′
eff(r ) = 0 =⇒ r± = J 2

2GM

1±
√

1− 12G2M 2

c2 J 2


From the sketch of Veff(r ) it is easy to see that r− is an unstable orbit and r+ is a stable orbit. The minimum value of r+
is achieved when J 2 =p

12GM/c, where

(r+)min = J 2

2GM
= 6GM

c2

There are no stable circular orbits with r < 6GM/c2.

Pietro


