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Section A: Introductory

Question 1. Null hypersurfaces

Let (M, g) be a (d + 1)-dimensional Lorentzian manifold and let f : M → R be a function such that for
f−1(0) =: Σ we have df 6= 0 on Σ, i.e. Σ is a hypersurface. Let now Σ be a null hypersurface, i.e. we
additionally impose the null condition g−1(df, df)

∣∣
Σ

= 0 on its normal covector field df .

Show/recall that one can locally introduce coordinates
{
y0, . . . , yd

}
such that x0 = f . Let gµν be the

components of g in these coordinates. Show that det
(
{gij}di,j=1

)∣∣∣
Σ

= 0.

Section B: Core

Question 2. Point mass

Consider the linearised Einstein equations in the wave gauge

�h̃µν = −16πT (1)
µν , ∂µh̃µν = 0

where we recall that that h̃µν = h̃µν − 1
2ηµν h̃, where η is the Minkowski metric. Now consider a point mass

(modelling a spherically symmetric body) of mass εM which is at rest at the coordinate origin x = y = z = 0.
The corresponding stress-energy tensor is given by Tµν = εT

(1)
µν = εMδ3(x)UµUν , where U = ∂t is the four-

velocity of the particle. Derive the external gravitational field gµν = ηµν + εh̃µν under the assumption that it

is stationary and compare it to the Schwarzschild metric with mass εM in the region where
εM√

x2 + y2 + z2

is small.

Proof. As no confusion shall arise, we use hµν to denote the perturbed metric h̃µν in harmonic gauge.

Since the point mass is at rest, the stress-energy tensor T (1)
µν = MUµUνδ

3(x) satisfies T (1)
00 = Mδ3(x) and

T
(1)
0i = T

(1)
jk = 0. Since the gravitational field is stationary, ∂0hµν = 0 and hence �hµν = ∇2hµν . The

linearised Einstein equations become

∇2h00 = −16πMδ3(x), ∇2h0i = 0, ∇2hjk = 0, ∂ihiν = 0

By imposing the asymptotic boundary condition at infinity, we immediately observe that h0i = 0 and
hjk = 0. The remaining non-trivial equations are ∇2h00 = −16πMδ3(x). With the boundary condition
h00(x)→ 0 as ‖x‖ → ∞, the solution is given by

h00(x) = − 1

4π

∫
R3

−16πMδ3(x′)

‖x− x′‖
d3x′ =

4M

‖x‖

Then

hµν = hµν −
1

2
ηµνη

ρσhρσ =


2M

‖x‖
µ = ν

0 otherwise

Therefor the full linearised metric is given by

g = η + εh = −
(

1− ε 2M

‖x‖

)
dt2 +

(
1 + ε

2M

‖x‖

)
(dx2 + dy2 + dz2)

= −
(

1− ε2M

r

)
dt2 +

(
1 + ε

2M

r

)
(dr2 + r2Ω)
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where Ω is the round metric of S2. Recall that the Schwarzschild metric in the isotropic coordinates is
given by

gSchwarzschild = −
(

1− εM/2r

1 + εM/2r

)2

dt2 +

(
1 + ε

M

2r

)4

(dr2 + r2Ω)

When εM/r � 1, we can approximate the second term to obtain

gSchwarzschild ' −
(

1− ε2M

r

)
dt2 +

(
1 + ε

2M

r

)
(dr2 + r2Ω)

which agrees with the result for point mass above.

Question 3. Quadrupole curvature

According to the Quadrupole formula the asymptotically leading order terms of the metric corrections h̃µν of
a radiating system in wave gauge take the form

h̃00(t,x) ' 4M

r
+

2xixk
r3

d2

dt2
Qik(t− r),

h̃0i(t,x) ' −2xk

r2

d2

dt2
Qik(t− r),

h̃ij(t,x) ' 2

r

d2

dt2
Qij(t− r).

Recall that hµν = h̃µν − ηµν h̃/2, where η is the Minkowski metric. Compute the metric corrections h̃µν and
show that the curvature component Ri00j of gµν = ηµν + εh̃µν to leading order in 0 < ε � 1 and to leading
order in 1

r is given by

Ri00j(t,x) ' ε

r

[
Πm

iΠ
n
j −

1

2
ΠmnΠij

]
d4

dt4
Qmn(t− r)

where Πmn = δmn − xmxn/r2. What is the interpretation of Πm
n?

Proof. As no confusion shall arise, we use hµν to denote the perturbed metric h̃µν in harmonic gauge.

The trace of h is given by

trh = −h00 + hii = −4M

r
− 2xixj

r3

d2

dt2
Qij(t− r) +

2

r

d2

dt2
Qii(t− r)

= −4M

r
+

2(r2δij − xixj)
r3

d2

dt2
Qij(t− r)

Then

h00 = h00 +
1

2
trh =

1

2
(h00 + hii) =

2M

r
+
r2δij + xixj

r3

d2

dt2
Qij(t− r)

(no sum over k) hkk = hkk −
1

2
trh =

2M

r

(
−r

2δij − xixj

r3
+

2δikδ
j
k

r

)
d2

dt2
Qij(t− r)

hµν = hµν (µ 6= ν)

From the notes we have the following formula for the Riemann curvature:

Rµκρν = ε
1

2
ηµσ (∂ρ∂κhνσ − ∂ρ∂σhνκ − ∂ν∂κhρσ + ∂ν∂σhρκ) +O

(
ε2
)
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So, to the leading order of ε we have

Ri00j '
1

2
ε
(
∂2

0hij + ∂i∂jh00 − ∂0∂jh0i − ∂0∂ih0j

)
Note that hµν = O(r−1) and ∂ihµν = O(r−2). So to the order of O(r−1) we simply have

Ri00j '
1

2
ε∂2

0hij

=
ε

r

(
δmi δ

n
j −

1

2
δij

(
δmn − xmxn

r2

))
d4

dt4
Qmn(t− r)

=
ε

r

(
δmi δ

n
j −

1

2
δijΠ

mn

)
d4

dt4
Qmn(t− r)

The approximation above is incorrect. For an expression of the form f(xi, xj , r)Q̈ij(t − r), the spatial
derivative to the leading order is given by

∂if(xi, xj , r)Q̈ij(t− r) ∼ f(xi, xj , r)∂iQ̈ij(t− r) = −xi
r
f(xi, xj , r)Q̈ij(t− r)

So each spatial derivative ∂i acts on Q̈ij(t− r) as −xi
r

d

dt
and each time derivative ∂t acts as

d

dt
. Then we

have
Ri00j ∼

ε

2

(
∂2

0hij +
xixj
r2

∂2
0hij +

xj
r
∂2

0h0i +
xi
r
∂2

0h0j

)
Expanding the expression shall produce the correct form of the Riemann curvature.

Π(x) : TxR3 → Tx∂B(0,x) is the push-forward of the orthogonal projection π : R3 → ∂B(0,x).

Question 4. Gravitational radiation from a binary

Consider two stars, each of mass m and modelled as point particles, moving in a circular Newtonian orbit of
radius R in the (x, y)-plane centred at the origin.

(a) Show that their trajectories may be taken to be γ±(t) = (t,±R cos(ωt),±R sin(ωt), 0), where ω2 =
m

4R3
.

(b) Consider the corresponding stress-energy tensor

Tµν =
∑
a=±

m

∫
γ̇µa γ̇

ν
aδ

4 (x− γa(τ)) dτ

where τ is proper time of the particles and γ̇µa =
d

dτ
γµa . Compute the stress-energy tensor and the

quadrupole moment in the slow-motion approximation.

(c) Recall that our derivation of the quadrupole formula required the system to be non-self-gravitating,
which is violated in this scenario. However, assume now that it still serves as a good approximation
even in the weakly-self-gravitating case if all other assumptions made in its derivation are met. What
restrictions does this impose on the parameters m and R?

Consider the stars to be each of one solar mass ≈ 2 · 1030 kg. Give an order of magnitude estimate on
R for which we might expect the quadrupole formula to be a good approximation.

(d) Compute the metric corrections h̃µν according to the quadrupole formula.

Proof. (a) We can solve the trajectories purely in Newtonian mechanics. We work in the centre-of-mass frame
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and use the polar coordinates. The Lagrangian of one of the star is given by

L =
1

2
m(ṙ2 + r2θ̇2) +

m2

r

Subsituting into the Euler-Lagrange equations we obtain the equations of motion:

m(r̈ − rθ̇2) = − m2

(2r)2
, r2θ̇ = const

In a circular orbit r = R = const. So ω2 = θ̇2 =
m

4R3
. Then the orbit is given by

γ+(t) =

(
t, R cos

(√
m

4R3
t

)
, R sin

(√
m

4R3
t

)
, 0

)
As the centre of mass is at rest, γ+(t)i + γ−(t)i = 0. Then

γ−(t) =

(
t,−R cos

(√
m

4R3
t

)
,−R sin

(√
m

4R3
t

)
, 0

)

(b) We have dγ±/dt = (1,∓Rω sin(ωt),±Rω cos(ωt), 0) and η(dγ±/dt,dγ±/dt) = −1 +R2ω2. Then

γ̇±(t) =
1√

1−m/4R
(1,∓Rω sin(ωt),±Rω cos(ωt), 0)

where
dt

dτ
=

1√
1−m/4R

The non-zero stress-energy tensor components is given by

T 00 =
∑
s

m√
1−m/4R

∫
R
δ4(x− γs(t)) dt T 01 = −

∑
s

sRωm√
1−m/4R

sin(ωt)

∫
R
δ4(x− γs(t)) dt

T 02 =
∑
s

sRωm√
1−m/4R

cos(ωt)

∫
R
δ4(x− γs(t)) dt T 12 = −

∑
s

R2ω2m√
1−m/4R

sin(ωt) cos(ωt)

∫
R
δ4(x− γs(t)) dt

T 11 =
∑
s

R2ω2m√
1−m/4R

sin2(ωt)

∫
R
δ4(x− γs(t)) dt T 22 =

∑
s

R2ω2m√
1−m/4R

cos2(ωt)

∫
R
δ4(x− γs(t)) dt

In the slow-motion approximation we just neglect the terms with Rω � 1 (and d/dτ ∼ d/dt), so the
only non-zero commponent of the stress-energy tensor is:

T 00(t,x) = m
∑
a

∫
R
δ4(x− γa(t′)) dt′

The quadrupole moment is given by

Qij(t) =

∫
R3

T00(x′)x′ix
′
j d3x′

=
∑
s

m√
1−m/4R

∫
R3

∫
R
x′ix
′
jδ

4(x− γs(t′)) dt′ d3x′

=
∑
s

m√
1−m/4R

γs(t)i · γs(t)j



5

The non-zero components are given by

Q11(t) =
2mR2√

1−m/4R
cos2(ωt), Q12(t) =

2mR2√
1−m/4R

cos(ωt) sin(ωt), Q22(t) =
2mR2√

1−m/4R
sin2(ωt)

Just neglect the term with m/4R.

(c) The quadrupole formula requires that Rω =
√
m/4R � 1. For m ∼ 2 · 1030 kg, if we require that√

m/4R ∼ 10−2, then R ∼ 1034 kg ∼ 107 m. This is an extremely small length scale, so we expect
that the approximation is good for most of the time.

(d) Just plug the expressions into the quadrupole formula...

Question 5. Kerr spacetime

Let M = R × (r+,∞) × S2 with the standard {t, r, θ, ϕ} coordinates, where r+ = M +
√
M2 − a2,M > 0,

and 0 < a < M . We define the Kerr metric g on M by

g = −
(

1− 2Mr

ρ2

)
dt2 − 2Mra sin2 θ

ρ2
(dt⊗ dϕ+ dϕ⊗ dt) +

ρ2

∆
dr2

+ ρ2 dθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θ dϕ2

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. Show that the vector field ∂t is a Killing vector field and
that it is timelike for r > M +

√
M2 − a2 cos2 θ. Also show that ∂t is not hypersurface orthogonal. Thus

(M, g) is stationary but not static.

Proof. Note that ∂tgµν = 0. Then

(L∂tg)µν = (L∂tg)(∂µ, ∂ν) = (L∂tg(∂µ, ∂ν))− g(L∂t∂µ, ∂ν)− g(∂µ,L∂t∂ν)

= ∂tgµν − g([∂t, ∂µ], ∂ν)− g(∂µ, [∂t, ∂ν ])

= 0

Hence ∂t is a Killing vector field. Next,

g(∂t, ∂t) = −
(

1− 2Mr

ρ2

)
= −

(
1− 2Mr

r2 + a2 cos2 θ

)
< 0 ⇐⇒ 2Mr < r2 + a2 cos2 θ

⇐⇒ r > M +
√
M2 − a2 cos2 θ

So ∂t is timelike for r > M +
√
M2 − a2 cos2 θ. To show that ∂t is not hypersurface orthogonal, by

Proposition 1.34 it suffices to show that ∂[t ∧ d∂[t 6= 0. We have

(∂[t )µ = (∂t)
νgµν = gµ0

So

∂[t = −
(

1− 2Mr

ρ2

)
dt− 2Mra sin2 θ

ρ2
dϕ

Expanding in the coordinates, we have

∂[t ∧ d∂[t = (gtt∂rgtϕ − gtϕ∂rgtt) dt ∧ dr ∧ dϕ+ (gtt∂θgtϕ − gtϕ∂θgtt) dt ∧ dθ ∧ dϕ

By direct computation we can show that this is nonzero. So ∂t is not hypersurface orthogonal. We conclude
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that the Kerr spacetime is stationary but not static.

Question 6. Electromagnetic radiation

This question recalls the derivation of electromagnetic radiation and thus makes explicit the differences and
similarities between the gravitational and electromagnetic cases. Let (M, g) be the (3 + 1)-dimensional
Minkowski spacetime with canonical coordinates xµ. Maxwell’s equation read dF = 0 and ∂µFµν = 4πJν ,
where J is the source 4 -vector and F is the Faraday tensor, an antisymmetric 2-form.

(a) Show that J satisfies the conservation law ∂µJ
µ = 0 by virtue of the Maxwell equations.

(b) We now consider a source J that is compactly supported in space. Show that the charge Q(t) :=∫
R3

J0(t,x) d3x is independent of time.

(c) Consider now the Maxwell equations in the Lorenz gauge

�Ãµ = 4πJµ, ∂µÃµ = 0

where Ã is a 1-form such that dÃ = F . Write the solution specified by the boundary condition of no
incoming radiation at t→ −∞ and provide an explicit verification of the Lorentz gauge constraint.

(d) Follow the approach taken in the gravitational case in the lectures to derive the following expression for
the far field (i.e. for large r = |x| )

Ã0(t,x) ' Q

r
+
xi
r2

d

dt
Di(t− r), Ãi(t,x) ' −1

r

d

dt
Di(t− r), (1)

where Di(t) :=
∫
R3 J

0(t,x)xi d3x is the electric dipole moment. Spell out the assumptions under which
the above approximation is valid.

Proof. (a) Since F is anti-symmetric, we have

∂µJ
µ =

1

4π
∂ν∂µF

µν = 0

So J is a conserved current.

(b) Since J is compactly supported, for sufficiently large R > 0,

d

dt
Q(t) =

∫
R3

∂J0

∂t
d3x = −

∫
R3

∂J i

∂xi
d3x = −

∫
B(0,R)

∂J i

∂xi
d3x

= −
∮
∂B(0,R)

εijkJ
idxj ∧ dxk = 0

(c) (Again there is no need to put tilde on the 4-potential.)

The retarded Green’s function G such that �G(x, x′) = δ(x− x′) is given by

G(x, x′) =
1

4π‖x− x′‖
δ
(
(t− t′)− ‖x− x′‖ )

)
Then the solution to the sourced wave equation is given by

Aµ(x) =

∫
M4

Jµ(x′)

‖x− x′‖
δ
(
(t− t′)− ‖x− x′‖ )

)
d4x′ =

∫
M4

Jµ(t− ‖x− x′‖ ,x′)
‖x− x′‖

d3x
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The derivative of the 4-potential is given by

∂µAµ =

∫
M4

4π

(
∂Jµ(x′)

∂(x′)µ
G(x, x′) + Jµ(x′)

∂G(x, x′)

∂(x′)µ

)
d4x′

=

∫
M4

4πJµ(x′)
∂G(x, x′)

∂(x′)µ
d4x′

= 0

where we have used the conservation equation and the fact the Green’s function G(x, x′) = G̃(x−x′) =

G̃(x′ − x) only depends on ‖x− x′‖ 1. Hence A indeed satisfies the condition for the Lorenz gauge. 2

(d)

Remark. A rough correspondence between electromagnetism and general relativity:

EM GR
Potential 4-potential A metric g

Gauge freedom A 7→ A+ dξ diffeomorphisms
Observable Faraday tensor F = dA Riemann curvature R(X,Y )Z

Derivative 1st 2nd

Section C: Optional

Question 7. Electromagnetic radiation

This is a continuation of problem 6 above, i.e. we consider electromagnetic radiation in the electric dipole
approximation (1).

(a) Compute to the leading order the electric and magnetic field in the far region and show that they (the
leading orders) are orthogonal.

(b) Consider a point particle with charge e. The associated current 4-vector is given by Jµ(x) = e

∫
δ4(x−

γ(τ))γ̇µ(τ) dτ , where τ is the proper time of the particle and γ̇µ = dγµ/dτ . Show that ∂µJµ = 0 in the
sense of distributions.

(c) Show that there is in fact no need to restrict oneself to the proper time, i.e. that Jµ(x) = e

∫
δ4(x −

γ(s))γ̇µ(s) ds, where s is an arbitrary curve parameter. Now consider the point particle to oscillate as

t
γ7→ (t, 0, 0, L sin(ωt)),

and compute its electric dipole moment Di(t).

1As suggested by Question 7, these expressions hold in the sense of distribution.
2It is Lorenz gauge, not Lorentz gauge! These are two different people!


