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Question 1

Evaluate
∫ 1

0

(∫ x

0

e−y dy

)
dx and

∫ 1

0

(∫ x−x2

0

(x+ y) dy

)
dx

(a) directly;

(b) be reversing the order of integration.

Solution. (a)
∫ x

0

e−y dy = −e−y|y=xy=0 = 1− e−x by Fundamental Theorem of Calculus.

Hence
∫ 1

0

(∫ x

0

e−y dy

)
dx =

∫ 1

0

(1− e−x) dx = x+ e−x|10 = 1 + e−1 − 1 = 1/e again by Fundamental Theorem of

Calculus.∫ x−x2

0

(x+ y) dy =

(
xy +

1

2
y2
)y=x−x2

y=0

= x(x− x2) + 1

2

(
x− x2

)2
=

1

2
x4 − 2x3 +

3

2
x2 by Fundamental Theorem of

Calculus.

Hence
∫ 1

0

(∫ x−x2

0

(x+ y) dy

)
dx =

∫ 1

0

(
1

2
x4 − 2x3 +

3

2
x2
)

dx =

(
1

10
x5 − 1

2
x4 +

1

2
x3
)1

0

=
1

10
by Fundamental

Theorem of Calculus.

(b) Notice that both integrands are boundedmeasurable and hence are integrable. By Fubini’s Theoremwe can reverse
the order of integration.

For the first integral, notice that

{(x, y) ∈ R2 : 0 6 x 6 1, 0 6 y 6 x} = {(x, y) ∈ R2 : 0 6 y 6 1, y 6 x 6 1}

Hence ∫ 1

0

(∫ x

0

e−y dy

)
dx =

∫ 1

0

(∫ 1

y

e−y dx

)
dy =

∫ 1

0

(1− y)e−y dy = ye−y|10 = 1/e

For the second integral, notice that

{(x, y) ∈ R2 : 0 6 x 6 1, 0 6 y 6 x− x2} =

{
(x, y) ∈ R2 : 0 6 y 6

1

4
,
1

2
−
√

1

4
− y 6 x 6

1

2
+

√
1

4
+ y

}

Hence

∫ 1

0

(∫ x−x2

0

(x+ y) dy

)
dx =

∫ 1/4

0

(∫ 1/2+
√

1/4−y

1/2−
√

1/4−y
(x+ y) dx

)
dy =

∫ 1/4

0

dy

(
xy +

1

2
x2
)x=1/2+

√
1/4−y

x=1/2−
√

1/4−y

=

∫ 1/4

0

(1 + 2y)

√
1

4
− y dy

=

∫ 0

1/2

(
1 + 2

(
1

4
− t2

))
t d

(
1

4
− t2

)
substitute t =

√
1

4
− y =⇒ y =

1

4
− t2

=

∫ 1/2

0

(
3t2 − 4t4

)
dt =

(
t3 − 4

5
t5
)1/2

0

=
1

8
− 1

40
=

1

10
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Question 2

In each of the following cases, is f integrable over the given region?

(i) f(x, y) = e−xy over [0,∞)× [0,∞);

(ii) f(x, y) = e−xy over {(x, y) : 0 < x < y < x+ x2};

(iii) f(x, y) =
(sinx)(sin y)

x2 + y2
over

(
−π
2
,
π

2

)
×
(
−π
2
,
π

2

)
.

Solution. (i) Suppose that f is integrable. Then by Fubini’s Theorem,∫
[0,∞)×[0,∞)

f(x, y) d(x× y) =
∫ ∞
0

(∫ ∞
0

e−xy dx

)
dy =

∫ ∞
0

1

y
dy = +∞

which is a contradiction. Hence f is not integrable over [0,∞)× [0,∞).

(ii) Notice that f is non-negative over its domain. We can compute:

∫ ∞
0

(∫ x+x2

x

e−xy dy

)
dx 6

∫ ∞
0

(∫ x+x2

x

e−y dy

)
dx =

∫ ∞
0

(
e−x − e−x−x

2
)

dx 6
∫ ∞
0

e−x dx = 1

Hence by Tonelli’s Theorem, f is integrable over {(x, y) : 0 < x < y < x+ x2}.

(iii) By symmetry, f is integrable over
(
−π
2
,
π

2

)
×
(
−π
2
,
π

2

)
if and only if it is integrable over

(
0,

π

2

)
×
(
0,

π

2

)
. On(

0,
π

2

)
×
(
0,

π

2

)
, f is non-negative. We can compute the integral by successive single integrals. Since sinx is

concave on
(
0,
π

2

)
, we have sinx 6 x on

(
0,
π

2

)
.

∫
(0, π2 )×(0,

π
2 )
f(x, y) d(x× y) 6

∫ π/2

0

(∫ π/2

0

xy

x2 + y2
dx

)
dy =

∫ π/2

0

(
1

2
y log(x2 + y2)

)x=π/2
x=0

dy

=

∫ π/2

0

1

2
y log

(
1 +

π2

4y2

)
dy

Notice that lim
y→0+

1

2
y log

(
1 +

π2

4y2

)
= 0 (by Taylor expansion of log at y = 1). In particular the integrand is bounded

on a bounded domain. Hence it is integrable. By Tonelli’s Theorem, f is integrable over
(
0,

π

2

)
×
(
0,

π

2

)
.

Question 3

(a) Let J0(x) =
2

π

∫ π/2

0

cos(x cos θ) dθ. Show that
∫ ∞
0

J0(x)e
−ax dx =

1√
1 + a2

if a > 0.

(b) Take b > a > 1. By considering x−y over (1,∞)× (a, b), show that
∫ ∞
1

x−a − x−b

log x
dx exists, and find its value.

Solution. (a) Let f(x, θ) = cos(x cos θ)e−ax defined on (0,∞)× (0, π/2). We observe that on the given domain |f(x, θ)| 6 e−ax,
which is integrable. Hence f is integrable and by Fubini’s Theorem we can exchange the order of integration:

∫ ∞
0

J0(x)e
−ax dx =

2

π

∫ ∞
0

(∫ π/2

0

cos(x cos θ)e−ax dθ

)
dx =

2

π

∫ π/2

0

(∫ ∞
0

cos(x cos θ)e−ax dx

)
dθ

= − 2

π

∫ π/2

0

dθRe

(
1

i cos θ − a

)
=

2

π

∫ π/2

0

a

a2 + cos2 θ
dθ

George
Highlight
You should provide justification for this inequality (if it is true).  I can see it is true, say, when 1-x \le 0.
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Change of variable: u = tan θ =⇒ du =
1

cos2 θ
dθ =

1

1 + u2
dθ. Hence

2

π

∫ π/2

0

a

a2 + cos2 θ
dθ =

2a

π

∫ ∞
0

1

a2 +
1

1 + u2

(1 + u2) du =
2a

π

∫ ∞
0

1

(1 + a2) + a2u2
du

=
2

π
√
1 + a2

∫ ∞
0

1

1 +

(
a√

1 + a2
u

)2 d

(
a√

1 + a2
u

)
=

2

π
√
1 + a2

· π
2

=
1√

1 + a2

(b) Notice that
x−a − x−b

log x
=

∫ b

a

x−y dy

for all x > 1. Notice that x−y is non-negative. By Tonelli’s Theorem the double integral exists. By Fubini’s Theorem
we can exchange the order of intgeration. We have:

∫ ∞
1

x−a − x−b

log x
dx =

∫ ∞
1

(∫ b

a

x−y dy

)
dx =

∫ b

a

(∫ ∞
1

x−y dx

)
dy

provided that the rightmost integral exists.∫ ∞
1

x−y dx =

(
1

1− y
x1−y

)x=∞
x=1

=
1

y − 1

by Fundamental Theorem of Calculus and Monotone Convergence Theorem.∫ b

a

1

y − 1
dy = log(y − 1)ba = log

(
b− 1

a− 1

)

In conclusion
∫ ∞
1

x−a − x−b

log x
dx exists and equals to log

(
b− 1

a− 1

)
.

Question 4

Let f ∈ L1(R) be non-negative with
∫ +∞

−∞
f(x) dx = 1, and let F (x) =

∫ x

−∞
f(y) dy, Assume that xf(x) ∈ L1(R). Use

Fubini’s Theorem to prove that∫ +∞

0

(1− F (x)) dx =

∫ +∞

0

xf(x) dx,

∫ 0

−∞
F (x) dx = −

∫ 0

−∞
xf(x) dx.

Now let g be a bounded measurable function, and let

G(y) =

∫
{g(x)6y}

f(x) dx

Prove that ∫ +∞

0

(1−G(y)−G(−y)) dy =

∫ +∞

−∞
f(x)g(x) dx

Proof. For the first one,

1− F (x) =
∫
R
f(y) dy −

∫ x

∞
f(y) dy =

∫ +∞

x

f(y) dy
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Notice that ∫ ∞
0

(∫ x

0

f(y) dy

)
dx =

∫ ∞
0

xf(x) dx < +∞

as xf(x) ∈ L1(R). Since xf(x) is non-negative, by Tonelli’s Theorem the double integral exists and by Fubini’s Theorem
we can exchange the order of integration.∫ ∞

0

xf(x) dx =

∫ ∞
0

(∫ x

0

f(y) dy

)
dx =

∫ ∞
0

(∫ ∞
x

f(y) dy

)
dx =

∫ ∞
0

(1− F (x)) dx

For the second one, notice that ∫ 0

−∞

(∫ 0

x

f(y) dy

)
dx = −

∫ 0

−∞
xf(x) dx

exists as xf(x) ∈ L1(R). For x < 0, xf(x) is non-positive, so we can apply Tonelli’s Theorem to argue that the double
integral exists. Next, by Fubini’s Theorem we can exchange the order of integration.

−
∫ 0

−∞
xf(x) dx =

∫ 0

−∞

(∫ 0

x

f(y) dy

)
dx =

∫ 0

−∞

(∫ x

−∞
f(y) dy

)
dx =

∫ 0

−∞
F (x) dx

The part for G(y) is simply a generalization of the previous parts, with x replaced by g(x):

1−G(y) =
∫
R
f(x) dx−

∫
{g(x)6y}

f(x) dx =

∫
{g(x)>y}

f(x) dx

Then∫ ∞
0

(1−G(y)) dy =

∫ ∞
0

(∫
{g(x)>y}

f(x) dx

)
dy =

∫ +∞

−∞

(∫ max{0,g(x)}

0

f(x) dy

)
dx =

∫
{g(x)>0}

f(x)g(x) dx

∫ ∞
0

−G(−y) dy = −
∫ ∞
0

(∫
{g(x)6−y}

f(x) dx

)
dy =

∫ +∞

−∞

(∫ 0

min{0,g(x)}
f(x) dy

)
dx =

∫
{g(x)<0}

f(x)g(x) dx

In conclusion, ∫ ∞
0

(1−G(y)−G(−y)) dy =

∫ +∞

−∞
f(x)g(x) dx

Question 5

(a) Let α > 1 and f(x, y) = (x2 + y2)−α and g(x, y) = (1+ x2 + y2)−α. Show that f is integrable over [1,+∞)× [0,+∞).
Deduce that f is integrable over [0, 1]× [1,+∞) and that g is integrable over R2.

(b) Use polar coordinates to show that g is integrable over R2.

Proof. (a) Change of variable: x = x, y = ux. The Jacobian determinant:
∂(x, y)

∂(x, u)
= x. Hence:

∫
[1,+∞)×[0,+∞)

1

(x2 + y2)α
d(x× y) =

∫
[1,+∞)×[0,+∞)

x

x2α(1 + u2)α
d(x× u) =

∫ ∞
1

1

x2α−1
dx

∫ ∞
0

1

(1 + u2)α
du

By Fundamental Theorem of Calculus and Monotone Convergence Theorem we know that∫ ∞
1

1

x2α−1
dx =

1

2− 2α
x2−2α

∣∣∣∣∞
1

=
1

2(α− 1)

George
Sticky Note
Check this equality.  I think you wanted something like \int_0^x f(x) dy on the LHS

George
Rectangle
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In addition, we have ∫ ∞
0

1

(1 + u2)α
du 6

∫ ∞
0

1

(1 + u2)
du = arctanu|∞0 =

π

2

Hence the successive single integrals exist. Since the integrand f is non-negative, by Tonelli’s Theorem, f is inte-
grable over [1,∞)× [0,∞). By symmetry of f in the two variables, f is integrable over [0,∞)× [1,∞) and hence on
[0, 1]× [1,∞).

By symmetry, g is integrable over R2 if and only if it is integrable over the first quadrant [0,∞)× [0,∞). In the first
quadrant we have g < f everywhere. Since f is integrable over [0, 1] × [1,∞) ∪ [1,∞) × [0,∞), so is g. In addition
g is bounded on [0, 1]× [0, 1] and hence is integrable over the square. We conclude that g is integrable over the first
quadrant.

(b) In the polar coordinates:∫∫
R2

g(x, y) d(x× y) =
∫ 2π

0

dθ

∫ ∞
0

r

(1 + r2)α
dr = π · 1

1− α
(1 + r2)1−α

∣∣∣∣∞
0

=
π

α− 1

Hence g is integrable over R2 by Theorem 7.9.

Question 6

For p > 0, calculate ||f ||p when f is (i) χ(0,1), (ii) χ(1,2), (iii) χ(0,2).

Now assume that 0 < p < 1. Is ||·||p a norm on Lp?

For f, g ∈ Lp(R), let dp(f, g) =
∫
R
|f − g|p. Show that dp is a metric on Lp(R).

Proof. (i)
∣∣∣∣χ(0,1)

∣∣∣∣
p
=

(∫ 1

0

dx

)1/p

= 1;

(ii)
∣∣∣∣χ(1,2)

∣∣∣∣
p
=

(∫ 2

1

dx

)1/p

= 1;

(iii)
∣∣∣∣χ(0,2)

∣∣∣∣
p
=

(∫ 2

0

dx

)1/p

= 21/p.

||·||p is not a norm for 0 < p < 1. If p < 1, then∣∣∣∣χ(0,1)

∣∣∣∣
p
+
∣∣∣∣χ(0,1)

∣∣∣∣
p
= 2 < 21/p =

∣∣∣∣χ(0,2)

∣∣∣∣
p
=
∣∣∣∣χ(0,1) + χ(1,2)

∣∣∣∣
p

The triangular inequality is violated.

Suppose that dp(f, g) =
∫
R
|f − g|p. By definition dp is symmetric and positive definite on Lp(R). To proof the triangular

inequality, we shall first prove the following inequality:

|a+ b|p 6 |a|p + |b|p

For 0 < p < 1, the function t 7→ tp has negative second derivative for t > 0 and hence is concave. By Jensen’s inequality:

(λs+ (1− λ)t)p > λsp + (1− λ)tp

for all s, t > 0 and λ ∈ [0, 1].

George
Sticky Note
This is an note on typesetting rather than mathematics: consider using \lvert and \rvert to write norms.  If you have issues with scaling the deliminators  then the package mathtools permits constructions using g \DeclarePairedDelimiter (for example)
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Take s = |a|+ |b|, t = 0, and λ = |a|/(|a|+ |b|). We obtain:

|a|p > |a|
|a|+ |b|

(|a|+ |b|)p

Take s = |a|+ |b|, t = 0, and λ = |b|/(|a|+ |b|). We obtain:

|b|p > |b|
|a|+ |b|

(|a|+ |b|)p

Combine the two expressions and we have:

|a+ b|p 6 (|a|+ |b|)p 6 |a|p + |b|p

In particular for f, g ∈ Lp(R) and x ∈ R, we have

|f(x) + g(x)|p 6 |f(x)|p + |g(x)|p

Integrate on both sides, we obtain: ∫
R
|f + g|p 6

∫
R
|f |p +

∫
R
|g|p

For f, g, h ∈ Lp(R):

dp(f, h) =

∫
R
|f − h|p =

∫
R
|(f − g) + (g − h)|p 6

∫
R
|f − g|p +

∫
R
|g − h|p = dp(f, g) + dp(g, h)

hence proving the trigular inequality. dp is a metric on Lp(R) for 0 < p < 1.

Question 7

Consider the relation ∼ on the space of measurable functions f : R→ R given by f ∼ g ⇐⇒ f = g a.e.

State which properties of null sets are used to prove each of the following true statements:

(i) f ∼ f ;

(ii) f ∼ g =⇒ g ∼ f ;

(iii) f ∼ g ∧ g ∼ h =⇒ f ∼ h;

(iv) ∀ n ∈ N : fn ∼ gn =⇒ sup fn ∼ sup gn;

(v) f ∼ g =⇒ h ◦ f ∼ h ◦ g.

Give an example where h is injective, f ∼ g, but f ◦ h 6∼ g ◦ h.

Proof. (i) It follows from the reflexivity of equality.

(ii) It follows from the symmetry of equality.

(iii) If f ∼ g ∧ g ∼ h, then A := {x ∈ R : f(x) 6= g(x)} and B := {x ∈ R : g(x) 6= h(x)} are both null sets. Then A ∪B
is also a null set and {x ∈ R : f(x) 6= h(x)} ⊆ A ∪B. Since the subset of a null set is also null, f ∼ h.

(iv) Let An := {x ∈ R : fn(x) 6= gn(x)}. An are null sets. Since the countable union of null sets is null, we know that⋃
n∈N

An is a null set. For x ∈ R\
⋃
n∈N

An, fn(x) = gn(x) for all n ∈ N. Hence sup fn = sup gn for x ∈ R\
⋃
n∈N

An. In other

words, sup fn ∼ sup gn.

(v) The result follows from a simple observation that {x ∈ R : f(x) = g(x)} ⊆ {x ∈ R : h ◦ f(x) = h ◦ g(x)} and that a

George
Sticky Note
For (i) you need that the empty set is null.
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subset of a null set is null.

Consider an uncountable null set (e.g. a Cantor set) C ⊆ R. There exists an injection h : R → C. Let f and g be
measurable functions such that f(x) = g(x) ⇔ x ∈ R\C. Then we have f ◦ h(x) 6= g ◦ h(x) for all x ∈ R which implies
that f ◦ h 6∼ g ◦ h.

First we observe that h1(x) :=
1

2
+

1

π
arctanx is a bijection fromR to (0, 1). Let {an} be the binary expansion of a number

x ∈ (0, 1). That is, x =
∑∞
n=1 an2

−n, an ∈ {0, 1}. The map h2 :
∑∞
n=1 an2

−n 7→
∑∞
n=1 an3

−n is an injection from (0, 1) to
C (defined in Sheet 1). Hence h := h2 ◦ h1 is the map with desired properties.

Question 8

Let p > 1. Give examples of sequences {fn} and {gn} in Lp(0, 1) such that

(i) lim
n→∞

fn(x) = 0 a.e. but lim
n→∞

||fn||p 6= 0.

(ii) lim
n→∞

||gn||p = 0 but lim
n→∞

gn(x) does not exist for any x ∈ (0, 1).

For each ε > 0 find a measurable subset Eε of [0, 1] such thatm(Eε) < ε and fn(x)→ 0 uniformly on [0, 1]\Eε.

Find a subsequence {gnr} such that lim
r→∞

gnr (x) = 0 a.e.

Solution. (i) Consider fn := nχ(0, 1/n). Then fn(x)→ 0 as n→∞ for all x ∈ (0, 1). But

||fn||p =

(∫ 1/n

0

n dx

)1/p

= 1

for all n ∈ N. Hence lim
n→∞

||fn||p = 1 6= 0.

(ii) We define a double sequence of functions on R by y(i)k = χ( i−1

2k
, i

2k
). We define {gn} by g1 = y

(1)
1 , g2 = y

(1)
2 ,g3 = y

(2)
2 ,

g4 = y
(1)
3 , · · · In general,

g2k+n = y
(n+1)
k+1 , k ∈ N, 1 6 n 6 2k

Then {gn} is a sequence of functions on (0, 1). We have:

∣∣∣∣∣∣y(n)k

∣∣∣∣∣∣
p
=

(∫ i2−k

(i−1)2−k
dx

)1/p

= 2−k/p → 0

as k →∞. Hence ||gn||p → 0 as n→∞.

On the other hand, {gn} has no pointwise limit. In fact for each x ∈ (0, 1) we can find a subsequence of {gn}
converging to 0 and a subsequence converging to 1.

(iii) Let Eε = (0, ε) for any ε > 0 so that [0, 1]\Eε = [ε, 1]. For n > 1/ε, fn(x) = 0 for all x ∈ [ε, 1]. Hence fn → 0

uniformly on [0, 1]\Eε.

(iv) We have a subsequence of {gn} given by g2k(x) = y
(1)
k+1 = χ(0, 2−k). It is clear that g2k(x) → 0 as k → ∞ for all

x ∈ (0, 1).

George
Highlight
n^p

George
Sticky Note
Find a correct example here.



8

Question 9

A function g : [0,+∞)→ R is convex if

g(x) = sup{αx+ β : ∀ y ∈ [0,+∞) (αy + β 6 g(y))}

If g is continuous on [0,+∞) with non-negative second derivative on (0,+∞), then g is convex.

Let f : [0, 1]→ [0,+∞) be bounded, measurable, andMn =

∫ 1

0

fn = ||f ||nn. Show that

(i) g
(∫ 1

0

f(x) dx

)
6
∫ 1

0

g(f(x)) dx for every convex function g;

(ii) M2
n 6Mn+1Mn−1;

(iii) ||f ||n 6Mn+1/Mn 6 ||f ||∞;

(iv) lim
n→∞

Mn+1/Mn = ||f ||∞.

Proof. First, we shall prove that any convex function is continuous.

To begin with, the definition leads to a simple fact that

f(b)− f(a)
b− a

6
f(c)− f(b)

c− b
6
f(c)− f(a)

c− a

for any 0 6 a 6 b 6 c.

First we fix b > 0. We choose 0 6 a < b and a sequence {cn} such that cn 6 b and lim
n→∞

cn = b. Notice that

gn :=
f(cn)− f(b)

cn − b

is a decreasing sequence with a lower bound (f(b)− f(a))/(b− a). By Monotone Convergence Theorem, lim gn exists. In
fact we have

lim
n→∞

f(cn)− f(b) = 0

and hence f is right continuous at b. Similarly we can prove that f is left continuous at b so f is continuous at b.

Furthermore, we observe that lim
n→∞

gn is the right derivative of f at b. We see that f is both left and right differentiable at any
x > 0, with the right derivative larger than or equal to the left derivative. It implies that f ′ is non-decreasing with at most
countably many discontinuities. By Lebesgue Theorem for differention we have that f ′′ exists a.e. and is non-negative.

(i) Since g is continuous and f is bounded measurable, g ◦ f is also bounded measurable and hence is integrable over
(0, 1).

Suppose that α, β ∈ R satisfy αy + β 6 g(y) for all y > 0. Then αf(x) + β 6 g ◦ f(x) for all x ∈ [0, 1]. Then:

α

∫ 1

0

f(x) dx+ β 6
∫ 1

0

g ◦ f(x) dx

Hence

g

(∫ 1

0

f(x) dx

)
= sup

{
α

∫ 1

0

f(x) dx+ β

}
6
∫ 1

0

g ◦ f(x) dx

(ii) Since f is boundedmeasurable over a bounded domain, fk ∈ Lp[0, 1] for any k > 0 and p > 1. By Hölder’s Inequality
with p = q = 2: ∣∣∣∣∣∣f n+1

2

∣∣∣∣∣∣
1

∣∣∣∣∣∣f n−1
2

∣∣∣∣∣∣
1
6
∣∣∣∣∣∣f n+1

2

∣∣∣∣∣∣
2

∣∣∣∣∣∣f n−1
2

∣∣∣∣∣∣
2
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Hence ∫ 1

0

fn 6

√∫ 1

0

fn+1 ·

√∫ 1

0

fn−1

Taking square on both sides, we obtain:
M2
n 6Mn+1Mn−1

(iii) Since t 7→ t
n+1
n has non-negative second derivative, it is convex. By part (i):

(∫ 1

0

fn
)n+1

n

6
∫ 1

0

(fn)
n+1
n =

∫ 1

0

fn+1

where LHS = ||f ||n+1
n =Mn ||f ||n and RHS =Mn+1. We have ||f ||n 6Mn+1/Mn.

On the other hand, since f 6 ||f∞|| a.e., we have

Mn+1 =

∫ 1

0

f · fn 6
∫ 1

0

||f ||∞ fn = ||f ||∞Mn

and henceMn+1/Mn 6 ||f ||∞.

(iv) Fix ε > 0. Let Sε := {x ∈ [0, 1] : f(x) > ||f ||∞ − ε}. Sε is measurable as f is measurable. We have:

||f ||n =

(∫ 1

0

fn
)1/n

>

(∫
Sε

fn
)1/n

>

(∫
Sε

(||f ||∞ − ε)
n

)1/n

= m(Sε)
1/n (||f ||∞ − ε)

As lim inf preserves weak limit, we have:

lim inf
n→∞

||f ||n > lim inf
n→∞

m(Sε)
1/n (||f ||∞ − ε) = ||f ||∞ − ε

As ε > 0 is arbitrary, we have lim inf
n→∞

||f ||n > ||f ||∞. By part (iii) we know that ||f ||n 6 ||f ||∞ for all n > 1. We
conclude that lim

n→∞
||f ||n exists and equals to ||f ||∞.

By part (iii) and sandwich lemma, we conclude that lim
n→∞

Mn+1/Mn = ||f ||∞.




