Peize Liu St. Peter's College University of Oxford

Problem Sheet 2 B2.1: Introduction to Representation Theory

Throughout this sheet, k denotes a field, A denotes a ring and G denotes a finite group.

Question 1

For each $a \in A$, let $r_a : A \to A$ be the left A-linear map given by $r_a(b) = ba$ for each $b \in A$.

Prove that the map $r: A^{op} \to \operatorname{End}_A(A)$ given by $r(a) = r_a$ is an isomorphism of rings.

Proof.

• r is a ring homomorphism: For $a, b, c \in A$:

$$r(a \star b)(c) = r_{ha}(c) = cba = r(b) \circ r(a)(c)$$

Hence $r(a \star b) = r(b) \circ r(a)$. $= r(a + b) = r(a + b) \cdot r(a + b) \cdot r(a + b) \cdot r(a + b) = r(a + b) = r(a + b) = r(a + b) \cdot r(a + b) \cdot r(a + b) = r(a + b) \cdot r(a + b) \cdot r(a + b) \cdot r(a + b) = r(a + b) \cdot r(a + b) \cdot r(a + b) \cdot r(a + b) \cdot r(a + b) = r(a + b) \cdot r(a + b$

- r is injective: For $a \in \ker r$, $\forall c \in A$: ca = 0. In particular $1_A a = 0$. Hence a = 0. $\ker r = \{0\}$.
- *r* is surjective: Let ω : $A \to A$ be an A-module homomorphism. Let $\omega(1_A) = \omega_0 \in A$. Then for any $a \in A$, $\omega(a) = \omega(a1_A) = \omega($ $a\omega(1_A) = a\omega_0$. Hence $\omega = r(\omega_0) \in \operatorname{im} r$.

Hence $r: A^{op} \to \operatorname{End}_A(A)$ is an isomorphism of rings. \checkmark

Question 2

- (a) Suppose that $|G| \neq 0$ in k and let $e := \frac{1}{|G|} \sum_{g \in G} g \in kG$. Prove that e is a central idempotent.
- (b) Let $G = C_3 = \langle x \rangle$ be a cyclic group of order 3. Suppose that char(k) \neq 3 and that k contains a primitive cube root of unity ω . Find an explicit isomorphism of k-algebras $k \times k \times k \stackrel{\cong}{\longrightarrow} kC_3$.

(a) Fix $h \in G$. Note that $\rho_h : G \to G$ given by $\rho_h(g) = h^{-1}gh$ is a group isomorphism. Then Proof.

$$eh = \frac{1}{|G|} \sum_{g \in G} gh = \frac{1}{|G|} \sum_{g \in G} h\rho_h(g) = \frac{1}{|G|} \sum_{\rho_h(g) \in G} h\rho_h(g) = \frac{1}{|G|} \sum_{g \in G} hg = he$$

Next we notice that, for $g \in G$, the left multiplication by g^{-1} is a group isomorphism. Hence $e^2 = \frac{1}{|G|^2} \left(\sum_{g \in G} g \right) \left(\sum_{h \in G} h \right) = \frac{1}{|G|^2} \left(\sum_{g \in G} g \right) \left(\sum_{h \in G} g^{-1} h \right) = \frac{1}{|G|^2} \sum_{g \in G} \sum_{h \in G} h = \frac{1}{|G|} \sum_{h \in G} h = e$ We conclude that e is a central idea.

We conclude that e is a central idempotent.

(b) Note that by Chinese Remainder Theorem we have

$$k[C_3] \cong \frac{k[x]}{\left\langle x^3 - 1 \right\rangle} \cong \frac{k[x]}{\left\langle x - 1 \right\rangle} \times \frac{k[x]}{\left\langle x - \omega \right\rangle} \times \frac{k[x]}{\left\langle x - \omega^2 \right\rangle} \cong k^3$$

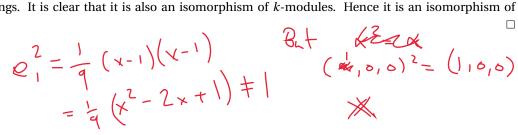
To find the explicit isomorphism, we need to find $e_1 \in \langle x-1 \rangle$, $e_2 \in \langle x-\omega \rangle$ and $e_3 \in \langle x-\omega^2 \rangle$ such that $e_1 + e_2 + e_3 = 1 \in \mathbb{R}$ k[x]. One choice is:

$$e_1 = -\frac{1}{3}(x-1), \quad e_2 = -\frac{1}{3}\omega^2(x-\omega), \quad e_3 = -\frac{1}{3}\omega(x-\omega^2)$$
of Chinese Remainder Theorem that $\sigma: k^3 \to k[C_3]$ given by

Then it is clear from the proof of Chinese Remainder Theorem that $\sigma: k^3 \to k[C_3]$ given by

$$\sigma(\alpha, \beta, \gamma) = (\alpha e_1 + \beta e_2 + \gamma e_3)$$

is an isomorphism of rings. It is clear that it is also an isomorphism of k-modules. Hence it is an isomorphism of algebras.



Question 3

- (a) Prove that every representation $\rho: G \to GL(V)$ extends to a k-algebra homomorphism $\tilde{\rho}: kG \to End_k(V)$.
- (b) Let $G = S_3$ and let $\rho : G \to GL(W)$ be the degree 2 representation from Example 1.20. Prove that $\tilde{\rho} : kG \to End_k(W)$ is surjective, provided char(k) $\neq 3$.
- (c) Assume that the characteristic of k is not 2 or 3. Using part (b), prove that there is an isomorphism of k-algebras

 $kS_3 \stackrel{\cong}{\longrightarrow} k \times k \times M_2(k)$

Proof. (a) Define $\widetilde{\rho}: k[G] \to \operatorname{End}_k(V)$ by

$$\widetilde{\rho}\left(\sum_{g\in G}a_gg\right):=\sum_{g\in G}a_g\rho(g)$$

For $\sum_{g \in G} a_g g$, $\sum_{h \in G} b_h h \in k[G]$, $\alpha, \beta \in k$,

$$\widetilde{\rho}\left(\sum_{g\in G}a_{g}g\sum_{h\in G}b_{h}h\right) = \widetilde{\rho}\left(\sum_{g\in G}\sum_{h\in G}a_{g}b_{h}gh\right) = \sum_{g\in G}\sum_{h\in G}a_{g}b_{h}\rho(gh) = \left(\sum_{g\in G}a_{g}\rho(g)\right)\left(\sum_{h\in G}b_{h}\rho(h)\right)$$

$$= \widetilde{\rho}\left(\sum_{g\in G}a_{g}g\right)\widetilde{\rho}\left(\sum_{h\in G}b_{h}h\right)$$

$$\widetilde{\rho}\left(\alpha\sum_{g\in G}a_{g}g + \beta\sum_{h\in G}b_{h}h\right) = \widetilde{\rho}\left(\sum_{g\in G}(\alpha a_{g} + \beta b_{g})g\right) = \sum_{g\in G}(\alpha a_{g} + \beta b_{g})\rho(g) = \alpha\sum_{g\in G}a_{g}\rho(g) + \beta\sum_{h\in H}b_{h}\rho(h)$$

$$= \alpha\widetilde{\rho}\left(\sum_{g\in G}a_{g}g\right) + \beta\widetilde{\rho}\left(\sum_{h\in G}b_{h}h\right)$$

Hence $\tilde{\rho}$ is a k-algebra homomorphism with $\tilde{\rho}|_G = \rho$.

(b) We claim that dim $\ker \widetilde{\rho} = 2$. We shall prove this by brute force. Let $\sum_{\sigma \in S_2} a_{\sigma} \sigma \in \ker \widetilde{\rho}$. We know that $\{e_1 - e_2, e_2 - e_3\}$ is a basis of W. Then we have

$$\widetilde{\rho}\left(\sum_{\sigma\in S_3}a_\sigma\sigma\right)(e_1-e_2)=\widetilde{\rho}\left(\sum_{\sigma\in S_3}a_\sigma\sigma\right)(e_2-e_3)=0$$

which implies that

$$\sum_{\sigma \in S_3} a_{\sigma} e_{\sigma(1)} = \sum_{\sigma \in S_3} a_{\sigma} e_{\sigma(2)} = \sum_{\sigma \in S_3} a_{\sigma} e_{\sigma(3)}$$

Since $S_3 = \{e, (12), (13), (23), (123), (132)\}$, we expand the expression above and equate the coefficients of e_1 , e_2 and e_3 :

$$a_e + a_{(23)} = a_{(12)} + a_{(132)} = a_{(13)} + a_{(123)};$$

 $a_{(12)} + a_{(123)} = a_e + a_{(13)} = a_{(23)} + a_{(132)};$

$$a_{(13)} + a_{(132)} = a_{(23)} + a_{(123)} = a_e + a_{(12)}.$$

Then a_{σ} must satisfy $a_e = a_{(123)} = a_{(132)}$ and $a_{(12)} = a_{(23)} = a_{(13)}$. Hence the dim ker $\widetilde{\rho} \le 2$. By first isomorphism theorem, $\dim \operatorname{im} \widetilde{\rho} = \dim k[S_3] - \dim \ker \widetilde{\rho} \ge 4$. Since $\operatorname{im} \widetilde{\rho} \subseteq \operatorname{End}_k(W)$ and $\dim \operatorname{End}_k(W) = 4$. We deduce that $\operatorname{im} \widetilde{\rho} = \operatorname{End}_k(W)$. Therefore $\tilde{\rho}$ is surjective.

(c) We don't know if k is algebraically closed, so we cannot use the Artin-Wedderburn Theorem.

The group S_3 has irreducible representations on k: $\rho_1: S_3 \to GL(k)$ given by $\rho_1(\sigma) = 1_k$ and $\rho_2: S_3 \to GL(k)$ given by $\rho_2(\sigma) = (-1)^{\sigma} 1_k$, where

$$(-1)^{\sigma} = \begin{cases} -1, & \sigma \in S_3 \text{ is an odd permtuation;} \\ 1, & \sigma \in S_3 \text{ is an even permtuation.} \end{cases}$$

The representations induce surjective k-algebra homomorphisms $\widetilde{\rho_1}: k[S_3] \to k$ and $\widetilde{\rho_2}: k[S_3] \to k$. Since ρ_1, ρ_2, ρ are distinct sub-representations of the left regular representation $k[S_3]$, we have the surjective $k[S_3]$ -module homomor-

How go Non from enleying

which is also k-linear. Notice that $\dim_k(k[S_3]) = \dim_k(k \times k \times M_2(k)) = 6$. Then τ is in fact a bijection. Therefore it is a k[G]-module isomorphism, which is also a k-algebra isomorphism.

Question 4

Find an example of a ring A that contains a field F such that A is not an F-algebra.

Proof. The ring of quaternions

$$\mathbb{H} = \{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}: \ a, b, c, d \in \mathbb{R}, \ \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1\}$$

contains the complex field \mathbb{C} , but is not a \mathbb{C} -algebra. The inclusion $\iota:\mathbb{C} \hookrightarrow \mathbb{H}$ defines a \mathbb{C} -module structure on \mathbb{H} . Suppose that it is a \mathbb{C} -algebra. Then

$$-1 = k^2 = (ij)^2 = i^2j^2 = -1 \cdot -1 = 1$$

which is a contradiction.

From a higher perspective, $\mathbb H$ is a simple ring in the sense that it has no non-trivial two sided ideals. If it is a $\mathbb C$ -algebra, then by Artin-Wedderburn Theorem we have $\mathbb H\cong M_n(\mathbb C)$ as $\mathbb C$ -algebras for some $n\in\mathbb N$. But

$$\dim_{\mathbb{C}} \mathbb{H} = \dim_{\mathbb{R}} \mathbb{H} / \dim_{\mathbb{R}} \mathbb{C} = 2 \neq n^2 = \dim_{\mathbb{C}} M_n(\mathbb{C})$$

for any $n \in \mathbb{N}$, which is also a contradiction.

П

Question 5

Let *V* be an *A*-module, let $D := \operatorname{End}_A(V)$ and let $n \ge 1$.

- (a) Use the inclusion maps $\sigma_j: V \hookrightarrow V^n$ and the projection maps $\pi_j: V^n \to V(j=1,\cdots,n)$ to construct an explicit ring isomorphism $M_n(D) \stackrel{\cong}{\longrightarrow} \operatorname{End}_A(V^n)$.
- (b) Prove that $M_n(S)^{op}$ is isomorphic to $M_n(S^{op})$ for any ring S.

Proof. (a) Let $\rho : \operatorname{End}_A(V^n) \to M_n(D)$ given by $\rho(f) = \{f_{ij}\}$, where $f_{ij} = \pi_i \circ f \circ \sigma_j \in \operatorname{End}_A(V) = D$.

• ρ is a ring homomorphism: For $f, g \in \text{End}_A(V^n)$, let $h = f \circ g$. We have

$$h_{ij} = \pi_i \circ f \circ g \circ \sigma_j = \pi_i \circ f \circ \mathrm{id}_{V^n} \circ g \circ \sigma_j = \sum_{k=1}^n (\pi_i \circ f \circ \sigma_k) \circ (\pi_k \circ g \circ \sigma_j) = \sum_{k=1}^n f_{ik} \circ g_{kj}$$

in which we used the identity $\mathrm{id}_{V^n} = \sum_{k=1}^n \sigma_k \circ \pi_k$. Hence ρ is a ring homomorphism.

- ρ is injective: Suppose that $f \in \ker \rho$. Write $f(v_1, ..., v_n) = (w_1, ..., w_n)$. Then $w_i = \sum_{j=1}^n f_{ij}(v_j) = 0$. Hence f = 0. ρ is injective.
- ρ is surjective: For $\{f_{ij}\}\in M_n(D)$, define $f:V^n\to V^n$ by $f(v_1,...,v_n)=\sum_{j=1}^n(f_{1j}(v_j),...,f_{nj}(v_j))$. Then $f\in \operatorname{End}_A(V)$. Hence f is surjective.

We conclude that ρ : End_A(V^n) $\rightarrow M_n(D)$ is an isomorphism.

(b) It suffice to check that the identity map $\tau: M_n(S)^{\text{op}} \to M_n(S^{\text{op}})$ is a ring homomorphism. For $A = \{a_{ij}\}$ and $B = \{b_{ij}\}$ in $M_n(S)$,

$$\tau(A \star B) = A \star B = BA = \{b_{ik}a_{kj}\}_{i,j=1}^{n} = \{a_{kj} \star b_{ik}\}_{i,j=1}^{n} = \tau(A) \star \tau(B)$$

Hence τ is an isomorphism.

Ivolte : A - > A

 $(RA)_{ij} = \sum_{K} b_{ik} a_{Kj} = \sum_{K} a_{Kj} \circ_{p} b_{jik}$ $(AB)_{ij} = \sum_{K} a_{ik} a_{Kj} \circ_{p} b_{jik}$

better to define inuso

Question 6

Let *V* be a finite dimensional *kG*-module.

- (a) Let W be a one-dimensional kG-module. Prove that $V \otimes W$ is simple if and only if V is simple.
- (b) Prove that V is simple if and only if V^* is simple.

(a) I think "W is a one-dimensional kG-module" in fact means that "W is a kG-module such that $\dim_k(W) = 1$ ". Proof.

Since *W* is one-dimensional over *k*, we have *k*-module isomorphisms $V \otimes_k W \cong V \otimes_k k \cong V$

" \Longrightarrow ": Suppose that $V \otimes_k W$ is a simple k[G]-module. Let $U \subseteq V$ be a sub-k[G]-module. Then $U \otimes_k W$ is a sub-k[G]module of $V \otimes_k W$. Hence U = V or $U = \{0\}$. We deduce that V is a simple k[G]-module.

" \Leftarrow ": Suppose that V is a simple k[G]-module. Let $U \subseteq V \otimes_k W$ be a sub-k[G]-module. If $U \neq \{0\}$, then there exists $\sum_i \lambda_i v_i \otimes_k w_i \neq 0$ in $U(w_i \neq 0)$. Note that $W = \langle w_0 \rangle$ as k-modules for some $w_0 \in W$. There exists $\eta_i \in k$ such that $w_i = \eta_i w_0$. Then

$$\sum_{i} \lambda_{i} v_{i} \otimes_{k} w_{i} = \left(\sum_{i} \lambda_{i} \eta_{i} v_{i}\right) \otimes_{k} w_{0} \in U \implies \left\langle \sum_{i} \lambda_{i} \eta_{i} v_{i}\right\rangle_{k[G]} \otimes_{k} \langle w_{0} \rangle_{k[G]} \subseteq U$$

$$\text{proble } k[G]\text{-modules. Hence } U = V \otimes_{k} W. \text{ We deduce that } V \otimes_{k} W \text{ is a simple } k[G]\text{-module.}$$

Both V and W are simple k[G]-modules. Hence $U = V \otimes_k W$. We deduce that $V \otimes_k W$ is a simple k[G]-module.

(b) We have the canonical isomorphism $V \cong V''$ so it suffices to prove one direction. Suppose that V^* is a simple k[G]-

Let $U \subseteq V$ be a sub-k[G]-module. Then U is a sub-k-module of V, and the annihilator

$$U^0 := \{ \varphi \in V' : \forall u \in U(\varphi(u) = 0) \} \subseteq V'$$

is a sub-k-module of V'. It is also a sub-k[G]-module of V', because for $\varphi \in U^0$, $u \in U$ and $\sum_{g \in G} a_g g \in k[G]$,

$$\left(\sum_{a\in G}a_gg\right)\cdot\varphi(u)=\sum_{a\in G}a_g\varphi\left(g^{-1}\cdot u\right)=0 \qquad \left(u\in U\Longrightarrow g^{-1}\cdot u\in U\right)$$

so $\left(\sum_{a\in G}a_gg\right)\cdot \varphi\in U^0$. If V' is simple, then $U^0=V'$ or $\{0\}$. So U=V or $\{0\}$. Hence V is a simple k[G]-module.

Question 7

Recall the maps $\alpha: V^* \otimes W \to \operatorname{Hom}(V, W)$ and $\beta: \operatorname{Hom}(V, W) \to V^* \otimes W$ from Lemma 4.11.

- (a) Prove that $\beta \circ \alpha = 1_{V^* \otimes W}$.
- (b) Prove that α is a homomorphism of kG-modules.

(a) A Remainder: Proof.

$$\alpha(\varphi \otimes_k w) : v \mapsto \varphi(v)w, \qquad \beta(T) = \sum_{i=1}^n v_i' \otimes_k T(v_i)$$

Then

$$\beta \circ \alpha(\varphi \otimes_k w) = \sum_{i=1}^n v_i' \otimes_k \alpha(\varphi \otimes_k w)(v_i) = \sum_{i=1}^n v_i' \otimes_k \varphi(v_i) w$$

Since
$$w = \sum_{j=1}^{n} v'_{j}(w)v_{j}$$
 and $\varphi = \sum_{j=1}^{n} \varphi(v_{j})v'_{j}$,

$$\sum_{i=1}^n v_i' \otimes_k \varphi(w) v_i = \sum_{i=1}^n v_i' \otimes_k \varphi(v_i) \left(\sum_{j=1}^n v_j'(w) v_j \right) = \sum_{i=1}^n \sum_{j=1}^n v_i' \otimes_k v_j'(w) \varphi(v_i) v_j = \left(\sum_{i=1}^n \varphi(v_i) v_i' \right) \otimes_k \left(\sum_{j=1}^n v_j'(w) v_j \right) = \varphi \otimes_k w$$

By linearity, we deduce that $\beta \circ \alpha = \mathrm{id}_{V' \otimes_k W}$.

(b) α is already k-linear. For $g \in G$, $\varphi \in V'$, $w \in W$ and $v \in V$,

$$\alpha(g \cdot (\varphi \otimes_k w))(v) = \alpha((g \cdot \varphi) \otimes_k (g \cdot w))(v) = (g \cdot \varphi)(v)(g \cdot w) = \varphi(g^{-1} \cdot v)(g \cdot w) = (g \cdot \alpha(\varphi \otimes_k w))(v)$$

Hence $\alpha(g \cdot (\varphi \otimes_k w)) = g \cdot \alpha(\varphi \otimes_k w)$. Extending this linearly on k[G], we deduce that α is a k[G]-module homomorphism.

Question 8

Let U, V, W be finite dimensional kG-modules. Prove $Hom(U \otimes V, W)$ is isomorphic to Hom(U, Hom(V, W)) as kG-modules.

Proof. For $\sigma \in \text{Hom}_k(U, \text{Hom}_k(V, W)), \ \sigma(u) \in \text{Hom}_k(V, W)$. Thus σ defines a k-bilinear map $\varphi : U \times V \to W$ given by $\varphi(u, v) = V$ $\sigma(u)(v)$. By universal property of $U \otimes_k V$, there exists a unique k-linear map $\overline{\varphi}: U \otimes_k V \to W$ such that $\overline{\varphi}(u \otimes_k v) = \sigma(u)(v)$. We claim that $\mathscr{F}: \sigma \mapsto \overline{\varphi}$ defines a k[G]-module isomorphism from $\operatorname{Hom}_k(U, \operatorname{Hom}_k(V, W))$ to $\operatorname{Hom}_k(U \otimes V, W)$.

We shall prove that \mathscr{F} is a k[G]-module homomorphism. For $\sigma \in \operatorname{Hom}_k(U, \operatorname{Hom}_k(V, W)), u \in U, v \in V$ and $g \in G$,

$$(g \cdot \sigma)(u)(v) = (g \cdot \sigma(g^{-1} \cdot u))(v) = g \cdot \sigma(g^{-1} \cdot u)(g^{-1} \cdot v)$$
$$= g \cdot \overline{\varphi}((g^{-1} \cdot u) \otimes_k (g^{-1} \cdot v)) = (g \cdot \overline{\varphi})(g^{-1} \cdot (u \otimes_k v)) = (g \cdot \overline{\varphi})(u \otimes_k v)$$

By extending g linearly in k[G], we deduce that \mathcal{F} is a k[G]-module homomorphism.

 \mathcal{F} is injective:

$$\sigma \in \ker \mathcal{F} \implies \overline{\varphi} = 0 \implies \forall \ u \in U \ \forall \ v \in V \ \overline{\varphi}(u \otimes_k v) = 0 \implies \forall \ u \in U \ \forall \ v \in V \ \sigma(u)(v) = 0 \implies \forall \ u \in U \ \sigma(u) = 0 \implies \sigma = 0$$

Hence $\ker \mathcal{F} = \{0\}$.

 \mathcal{F} is surjective: Let $\overline{\varphi} \in \operatorname{Hom}_k(U \otimes_k V, W)$. For $u \in U$, $\sigma_u : v \mapsto \overline{\varphi}(u \otimes_k v)$ is k-linear. In addition $\sigma : u \mapsto \sigma_u$ is also k-linear. Hence there is $\sigma \in \operatorname{Hom}_k(U, \operatorname{Hom}_k(V, W))$ such that $\mathscr{F}(\sigma) = \overline{\varphi}$.

We conclude that $\operatorname{Hom}_k(U, \operatorname{Hom}_k(V, W)) \cong \operatorname{Hom}_k(U \otimes V, W)$ as k[G]-modules.

Remark. The functor $-\otimes_k V$ is the left adjoint to the functor $\operatorname{Hom}_k(V,-)$. Yes $\int_{\mathbb{R}^n} \operatorname{Hom}_k(V,-) = \int_{\mathbb{R}^n} \operatorname{$ categorical way. For example, it may be defined as a faithful functor from k-Vect to k[G]-Mod such that it commutes with the tensor

functors. not sue what you near by the