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Throughout this sheet, k denotes a field, A denotes a ring and G denotes a finite group.

Question 1

For each a ∈ A, let ra : A → A be the left A-linear map given by ra(b) = ba for each b ∈ A.

Prove that the mapr : Aop → EndA(A) given by r (a) = ra is an isomorphism of rings.

Proof. • r is a ring homomorphism: For a,b,c ∈ A:

r (a ?b)(c) = rba(c) = cba = r (b)◦ r (a)(c)

Hence r (a ?b) = r (b)◦ r (a).
r (a +b)(c) = ra+bc = c(a +b) = ca + cb = (ra + rb)(c)

Hence r (a +b) = r (a)+ r (b).

• r is injective: For a ∈ kerr , ∀c ∈ A : ca = 0. In particular 1A a = 0. Hence a = 0. kerr = {0}.

• r is surjective: Let ω : A → A be an A-module homomorphism. Let ω(1A) =ω0 ∈ A. Then for any a ∈ A, ω(a) =ω(a1A) =
aω(1A) = aω0. Hence ω= r (ω0) ∈ imr .

Hence r : Aop → EndA(A) is an isomorphism of rings.

Question 2

(a) Suppose that |G| 6= 0 in k and let e := 1
|G|

∑
g∈G g ∈ kG . Prove that e is a central idempotent.

(b) Let G =C3 = 〈x〉 be a cyclic group of order 3. Suppose that char(k) 6= 3 and that k contains a primitive cube root of unity

ω. Find an explicit isomorphism of k-algebras k ×k ×k
∼=−→ kC3.

Proof. (a) Fix h ∈G . Note that ρh : G →G given by ρh(g ) = h−1g h is a group isomorphism. Then

eh = 1

|G|
∑

g∈G
g h = 1

|G|
∑

g∈G
hρh(g ) = 1

|G|
∑

ρh (g )∈G
hρh(g ) = 1

|G|
∑

g∈G
hg = he

Extending this linearly, we have ea = ae for any a ∈ k[G]. Hence e ∈ Z(k[G]).

Next we notice that, for g ∈G , the left multiplication by g−1 is a group isomorphism. Hence

e2 = 1

|G|2
( ∑

g∈G
g

)( ∑
h∈G

h

)
= 1

|G|2
( ∑

g∈G
g

)( ∑
h∈G

g−1h

)
= 1

|G|2
∑

g∈G

∑
h∈G

h = 1

|G|
∑

h∈G
h = e

We conclude that e is a central idempotent.

(b) Note that by Chinese Remainder Theorem we have

k[C3] ∼= k[x]〈
x3 −1

〉 ∼= k[x]

〈x −1〉 ×
k[x]

〈x −ω〉 ×
k[x]〈

x −ω2
〉 ∼= k3

To find the explicit isomorphism, we need to find e1 ∈ 〈x −1〉, e2 ∈ 〈x −ω〉 and e3 ∈ 〈
x −ω2

〉
such that e1 + e2 + e3 = 1 ∈

k[x]. One choice is:

e1 =−1

3
(x −1), e2 =−1

3
ω2(x −ω), e3 =−1

3
ω(x −ω2)

Then it is clear from the proof of Chinese Remainder Theorem that σ : k3 → k[C3] given by

σ(α,β,γ) = (αe1 +βe2 +γe3)

is an isomorphism of rings. It is clear that it is also an isomorphism of k-modules. Hence it is an isomorphism of
algebras.
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Question 3

(a) Prove that every representation ρ : G → GL(V ) extends to a k-algebra homomorphism ρ̃ : kG → Endk (V ).

(b) Let G = S3 and let ρ : G → GL(W ) be the degree 2 representation from Example 1.20. Prove that ρ̃ : kG → Endk (W ) is
surjective, provided char(k) 6= 3.

(c) Assume that the characteristic of k is not 2 or 3. Using part (b), prove that there is an isomorphism of k-algebras

kS3
∼=−→ k ×k ×M2(k)

Does such an isomorphism exist when char(k) = 3?

Proof. (a) Define ρ̃ : k[G] → Endk (V ) by

ρ̃

( ∑
g∈G

ag g

)
:= ∑

g∈G
agρ(g )

For
∑

g∈G ag g ,
∑

h∈G bhh ∈ k[G], α,β ∈ k,

ρ̃

( ∑
g∈G

ag g
∑

h∈G
bhh

)
= ρ̃

( ∑
g∈G

∑
h∈G

ag bh g h

)
= ∑

g∈G

∑
h∈G

ag bhρ(g h) =
( ∑

g∈G
agρ(g )

)( ∑
h∈G

bhρ(h)

)

= ρ̃
( ∑

g∈G
ag g

)
ρ̃

( ∑
h∈G

bhh

)

ρ̃

(
α

∑
g∈G

ag g +β ∑
h∈G

bhh

)
= ρ̃

( ∑
g∈G

(αag +βbg )g

)
= ∑

g∈G
(αag +βbg )ρ(g ) =α ∑

g∈G
agρ(g )+β ∑

h∈H
bhρ(h)

=αρ̃
( ∑

g∈G
ag g

)
+βρ̃

( ∑
h∈G

bhh

)

Hence ρ̃ is a k-algebra homomorphism with ρ̃|G = ρ.

(b) We claim that dimker ρ̃ = 2. We shall prove this by brute force. Let
∑
σ∈S3

aσσ ∈ ker ρ̃. We know that {e1 − e2,e2 − e3} is a

basis of W . Then we have

ρ̃

( ∑
σ∈S3

aσσ

)
(e1 −e2) = ρ̃

( ∑
σ∈S3

aσσ

)
(e2 −e3) = 0

which implies that ∑
σ∈S3

aσeσ(1) =
∑
σ∈S3

aσeσ(2) =
∑
σ∈S3

aσeσ(3)

Since S3 = {e, (12), (13), (23), (123), (132)}, we expand the expression above and equate the coefficients of e1, e2 and e3:

ae +a(23) = a(12) +a(132) = a(13) +a(123);

a(12) +a(123) = ae +a(13) = a(23) +a(132);

a(13) +a(132) = a(23) +a(123) = ae +a(12).

Then aσ must satisfy ae = a(123) = a(132) and a(12) = a(23) = a(13). Hence the dimker ρ̃ É 2. By first isomorphism theorem,
dimim ρ̃ = dimk[S3]−dimker ρ̃ Ê 4. Since im ρ̃ ⊆ Endk (W ) and dimEndk (W ) = 4. We deduce that im ρ̃ = Endk (W ).
Therefore ρ̃ is surjective.

(c) We don’t know if k is algebraically closed, so we cannot use the Artin-Wedderburn Theorem.

The group S3 has irreducible representations on k: ρ1 : S3 → GL(k) given by ρ1(σ) = 1k and ρ2 : S3 → GL(k) given by
ρ2(σ) = (−1)σ1k , where

(−1)σ =
{
−1, σ ∈ S3 is an odd permtuation;

1, σ ∈ S3 is an even permtuation.

The representations induce surjective k-algebra homomorphisms ρ̃1 : k[S3] → k and ρ̃2 : k[S3] → k. Since ρ1,ρ2,ρ are
distinct sub-representations of the left regular representation k[S3], we have the surjective k[S3]-module homomor-
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phism:
τ : k[S3] → k ×k ×M2(k)

which is also k-linear. Notice that dimk (k[S3]) = dimk (k ×k ×M2(k)) = 6. Then τ is in fact a bijection. Therefore it is a
k[G]-module isomorphism, which is also a k-algebra isomorphism.

Question 4

Find an example of a ring A that contains a field F such that A is not an F -algebra.

Proof. The ring of quaternions
H= {a +bi+ cj+dk : a,b,c,d ∈R, i2 = j2 = k2 = ijk =−1}

contains the complex field C, but is not a C-algebra. The inclusion ι : C ,→ H defines a C-module structure on H. Suppose
that it is a C-algebra. Then

−1 = k2 = (ij)2 = i2j2 =−1 ·−1 = 1

which is a contradiction.

From a higher perspective, H is a simple ring in the sense that it has no non-trivial two sided ideals. If it is a C-algebra, then
by Artin-Wedderburn Theorem we have H∼= Mn(C) as C-algebras for some n ∈N. But

dimCH= dimRH/dimRC= 2 6= n2 = dimCMn(C)

for any n ∈N, which is also a contradiction.

Question 5

Let V be an A-module, let D := EndA(V ) and let n ≥ 1.

(a) Use the inclusion maps σ j : V ,→ V n and the projection maps π j : V n → V ( j = 1, · · · ,n) to construct an explicit ring

isomorphism Mn(D)
∼=−→ EndA (V n).

(b) Prove that Mn(S)op is isomorphic to Mn
(
Sop

)
for any ring S.

Proof. (a) Let ρ : EndA(V n) → Mn(D) given by ρ( f ) = { fi j }, where fi j =πi ◦ f ◦σ j ∈ EndA(V ) = D .

• ρ is a ring homomorphism: For f , g ∈ EndA(V n), let h = f ◦ g . We have

hi j =πi ◦ f ◦ g ◦σ j =πi ◦ f ◦ idV n ◦g ◦σ j =
n∑

k=1
(πi ◦ f ◦σk )◦ (πk ◦ g ◦σ j ) =

n∑
k=1

fi k ◦ gk j

in which we used the identity idV n =
n∑

k=1
σk ◦πk . Hence ρ is a ring homomorphism.

• ρ is injective: Suppose that f ∈ kerρ. Write f (v1, ..., vn) = (w1, ..., wn). Then wi =
n∑

j=1
fi j (v j ) = 0. Hence f = 0. ρ is

injective.

• ρ is surjective: For { fi j } ∈ Mn(D), define f : V n → V n by f (v1, ..., vn) =
n∑

j=1
( f1 j (v j ), ..., fn j (v j )). Then f ∈ EndA(V ).

Hence f is surjective.

We conclude that ρ : EndA(V n) → Mn(D) is an isomorphism.

(b) It suffice to check that the identity map τ : Mn(S)op → Mn(Sop) is a ring homomorphism. For A = {ai j } and B = {bi j } in
Mn(S),

τ(A?B) = A?B = B A = {bi k ak j }n
i , j=1 = {ak j ?bi k }n

i , j=1 = τ(A)?τ(B)

Hence τ is an isomorphism.
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Question 6

Let V be a finite dimensional kG-module.

(a) Let W be a one-dimensional kG-module. Prove that V ⊗W is simple if and only if V is simple.

(b) Prove that V is simple if and only if V ∗ is simple.

Proof. (a) I think "W is a one-dimensional kG-module" in fact means that "W is a kG-module such that dimk (W ) = 1".

Since W is one-dimensional over k, we have k-module isomorphisms V ⊗k W ∼=V ⊗k k ∼=V .

"=⇒": Suppose that V ⊗k W is a simple k[G]-module. Let U ⊆ V be a sub-k[G]-module. Then U ⊗k W is a sub-k[G]-
module of V ⊗k W . Hence U =V or U = {0}. We deduce that V is a simple k[G]-module.

"⇐=": Suppose that V is a simple k[G]-module. Let U ⊆ V ⊗k W be a sub-k[G]-module. If U 6= {0}, then there exists∑
i λi vi ⊗k wi 6= 0 in U (wi 6= 0). Note that W = 〈w0〉 as k-modules for some w0 ∈ W . There exists ηi ∈ k such that

wi = ηi w0. Then ∑
i
λi vi ⊗k wi =

(∑
i
λiηi vi

)
⊗k w0 ∈U =⇒

〈∑
i
λiηi vi

〉
k[G]

⊗k 〈w0〉k[G] ⊆U

Both V and W are simple k[G]-modules. Hence U =V ⊗k W . We deduce that V ⊗k W is a simple k[G]-module.

(b) We have the canonical isomorphism V ∼= V ′′ so it suffices to prove one direction. Suppose that V ∗ is a simple k[G]-
module.

Let U ⊆V be a sub-k[G]-module. Then U is a sub-k-module of V , and the annihilator

U 0 := {
ϕ ∈V ′ : ∀u ∈U (ϕ(u) = 0)

}⊆V ′

is a sub-k-module of V ′. It is also a sub-k[G]-module of V ′, because for ϕ ∈U 0, u ∈U and
∑

a∈G
ag g ∈ k[G],

( ∑
a∈G

ag g

)
·ϕ(u) = ∑

a∈G
agϕ

(
g−1 ·u

)= 0
(
u ∈U =⇒ g−1 ·u ∈U

)

so

( ∑
a∈G

ag g

)
·ϕ ∈U 0. If V ′ is simple, then U 0 =V ′ or {0}. So U =V or {0}. Hence V is a simple k[G]-module.

Question 7

Recall the maps α : V ∗⊗W → Hom(V ,W ) and β : Hom(V ,W ) →V ∗⊗W from Lemma 4.11.

(a) Prove that β◦α= 1V ∗⊗W .

(b) Prove that α is a homomorphism of kG-modules.

Proof. (a) A Remainder:

α(ϕ⊗k w) : v 7→ϕ(v)w, β(T ) =
n∑

i=1
v ′

i ⊗k T (vi )

Then

β◦α(ϕ⊗k w) =
n∑

i=1
v ′

i ⊗k α(ϕ⊗k w)(vi ) =
n∑

i=1
v ′

i ⊗k ϕ(vi )w

Since w =
n∑

j=1
v ′

j (w)v j and ϕ=
n∑

j=1
ϕ(v j )v ′

j ,

n∑
i=1

v ′
i ⊗k ϕ(w)vi =

n∑
i=1

v ′
i ⊗k ϕ(vi )

(
n∑

j=1
v ′

j (w)v j

)
=

n∑
i=1

n∑
j=1

v ′
i ⊗k v ′

j (w)ϕ(vi )v j =
(

n∑
i=1

ϕ(vi )v ′
i

)
⊗k

(
n∑

j=1
v ′

j (w)v j

)
=ϕ⊗k w

By linearity, we deduce that β◦α= idV ′⊗k W .
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(b) α is already k-linear. For g ∈G , ϕ ∈V ′, w ∈W and v ∈V ,

α(g · (ϕ⊗k w))(v) =α((g ·ϕ)⊗k (g ·w))(v) = (g ·ϕ)(v)(g ·w) =ϕ(g−1 · v)(g ·w) = (g ·α(ϕ⊗k w))(v)

Henceα(g ·(ϕ⊗k w)) = g ·α(ϕ⊗k w). Extending this linearly on k[G], we deduce thatα is a k[G]-module homomorphism.

Question 8

Let U ,V ,W be finite dimensional kG-modules. Prove Hom(U ⊗V ,W ) is isomorphic to Hom(U ,Hom(V ,W )) as kG-modules.

Proof. For σ ∈ Homk (U ,Homk (V ,W )), σ(u) ∈ Homk (V ,W ). Thus σ defines a k-bilinear map ϕ : U ×V → W given by ϕ(u, v) =
σ(u)(v). By universal property of U ⊗k V , there exists a unique k-linear map ϕ : U ⊗k V → W such that ϕ(u ⊗k v) = σ(u)(v).
We claim that ℱ :σ 7→ϕ defines a k[G]-module isomorphism from Homk (U ,Homk (V ,W )) to Homk (U ⊗V ,W ).

We shall prove that ℱ is a k[G]-module homomorphism. For σ ∈ Homk (U ,Homk (V ,W )), u ∈U , v ∈V and g ∈G ,

(g ·σ)(u)(v) = (
g ·σ(g−1 ·u)

)
(v) = g ·σ(g−1 ·u)(g−1 · v)

= g ·ϕ((g−1 ·u)⊗k (g−1 · v)) = (g ·ϕ)(g−1 · (u ⊗k v)) = (g ·ϕ)(u ⊗k v)

By extending g linearly in k[G], we deduce that ℱ is a k[G]-module homomorphism.

ℱ is injective:

σ ∈ kerℱ =⇒ ϕ= 0 =⇒ ∀u ∈U ∀v ∈V ϕ(u ⊗k v) = 0 =⇒ ∀u ∈U ∀v ∈V σ(u)(v) = 0 =⇒ ∀u ∈U σ(u) = 0 =⇒ σ= 0

Hence kerℱ = {0}.

ℱ is surjective: Let ϕ ∈ Homk (U ⊗k V ,W ). For u ∈U , σu : v 7→ ϕ(u ⊗k v) is k-linear. In addition σ : u 7→ σu is also k-linear.
Hence there is σ ∈ Homk (U ,Homk (V ,W )) such that ℱ (σ) =ϕ.

We conclude that Homk (U ,Homk (V ,W )) ∼= Homk (U ⊗V ,W ) as k[G]-modules.

Remark. The functor −⊗k V is the left adjoint to the functor Homk (V ,−).

It seems to me that the definition of k[G]-module structure on k-vector spaces given in the notes can be formulated in a more
categorical way. For example, it may be defined as a faithful functor from k-Vect to k[G]-Mod such that it commutes with the tensor
functors.
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