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1 Spin Connections and Killing Spinors @

[ Conventions for this questions are as in BLT Section 14.8. |

The spin connection w is a connection for the local Lorentz symmetry in a given representation and can be

expanded in terms of 1-forms
w = wy(r)dar.
As for gauge connections in Yang—Mills theory we can define the curvature 2-form as
R=dw+wAw.

Infinitesimal local Lorentz transformations map
aw = dA + [w, A

and so AR = [R,A]. Let e, be the viel-bein where a,b,--- are the flat indices and p,v--- the curved indices.
Let V,, be the covariant derivative with Christoffel symbols

1
FZV = §gpa (augm/ + Oy Guo — aog,uu) .

The spin connection is then the 1-form valued in the local Lorentz algebra ( w has a p curved index, and is a
matrix valued object with a, b flat indices) that satisfies

a __ a a a b __
Ve, = 0uey, — 165 + wipe, =0

In components it is given by

wab _

" (Quvp — Qupp + Qo) "%’ where Quup = (8“(51% — &,e“) €ap-
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Question 1.1

Determine the components of the curvature 2-tensor RWab in terms of w.

Proof. The curvature 2-form is defined as
R=dw+wAw.

In terms of the frame bundle indices, this becomes a equation of real-valued 2-forms on the manifold:
R% = dw?, + w® A wS,.
Expanding in terms of the coordinate indices:

R, pdat A da” = d(w, pdat) + wyedat A w,,“pda”

= (0w — Opw "y + wp cwy Sy — Wy ewy, %) datt A da”.

Therefore we have
Ruyab — aﬂwyab _ Vw#ab + w‘uacwycb _ wyacw‘ucb. \/ m



Question 1.2

Consider 10 d spacetime RY3 x Mg, with local Lorentz group SO(1,3) x SO(6) in the spinor representation as
in the lecture (i.e. the generators are I'® ). Let € be a 16 component spinor of SO(1,9). Compute [V, V,]e.

Proof. The so(1,9) generators Ty, satisfies the usual Lorentz algebra:
(Tabs Tea) = 1 (MacTbd — NadToe — MoeTad + MbdTuc) -

i
In the spinor representation, the generators are given by Ty, = _Z[F“’F”]’ where I'* satisfy the (flat)

Clifford algebra {T'%,T%} = 2n®id. Let ¢ be a 16 component Weyl spinor of s0(1,9). The covariant
derivative of € is given by

Ve = <8“e + ;w,ﬁbTabe> dat

which gives the curvature R,,e = [V, V,]e (as expected).

bt o had o o | 1 1

’ 1 a Qa loa v
s’ o wo oo '( (Vi Vile = 5 Ry DT e = o Peb [Ty, Thle = g o [T, T e
: N where satisty the (curve ifford algebra 1 =2g"id.
! here T* fy the ( d) Clifford algebra {T'*,T%} = 2¢ id

JF\M, ro{w{' The decomposition under s0(1,3) @ s0(6) is given by 16 = 2;, ® 4® 25 ® 4, where 27,2 are Weyl spinors
Huw of 50(1,3) and 4,4 are Weyl spinors of 50(6). Since R is flat, we only need to concern the compactified
% manifold M. It has been shown in the lectures that the covariantly constant condition V,e = 0 on the

ue/\,o{g{, spinor impose restrictions on the metric such that the manifold Mg is Ricci-flat. More specifically,

1
[V, Viple = éRmnpq[Fp, IMe=0
— 0= 2Rmnpg " [T?, T9)€ = Ryppg(TPTPT 4 g"PT9 — g™TP)e = 2R, [,

where m,n,p,q = 4,...,9. The Riemannian signature on Mg implies that the coefficients of I'%¢ should

vanish. That is, the Ricci components R, = 0.

I am not sure if this is what the question asks. A further decomposition of the Weyl spinor in s0(6) = su(4)
depends on the holonomy of the manifold Mg. If Mg is Calabi—Yau, then it has SU(3) holonomy, and
the Weyl spinor decomposes into a singlet and a triplet: 4g,4) = (1 © 3)qy(3) under the decomposition
su(4) — su(3) @u(l). This provides N = 1 supersymmetry on RY3. If Mg is a general manifold, I am not
sure what can be said here... O

2 Kahler Manifolds, Projective Space @

Question 2.1
Let X,, be a complex n-dimensional Kéhler manifold. Determine the non-trivial Christoffel symbols and the

Ricci tensor for X,,.

Proof. By definition, a Kéhler manifold (X,,g,J) is a complex manifold with an Hermitian fundamental form,
locally given by w = ig,pzdz" A dz”, which is closed: dw = 0.

The fundamental form w is related to the Riemannian metric g on X,, by

w(X,Y):g(JX,Y), X7Y€F(TX7L)7



where J € End(TX,) satisfying J2 = —id is the almost complex structure. This justifies the above
local expansion w,p = iguw (cf. §1.2 of Huybrechts). The closedness of w imposes the constraints on the

Hermitian metric g:
dw=0w+ 0w =0 = Ow=0w=0 = 0,9,5 = 09,7 and 29,5 = I G5.

Next we compute the Christoffel symbols. On a Kéhler manifold the Chern connection coincides with the
Levi-Civita connection, so there is no ambiguity. By positive definite Hermitian metric g we have g, = 0
and gz = 0. Combining with the Kéhler condition, we can show by the Koszul formulae that all Christoffel
symbols with mixed indices vanish:

[ = %gﬁ” (Ougew + Ovgon — Osguw) = 0

I?,, = %g"ﬁ(augw + OvGop — Ovguw) =0 \/
I = %gﬁp (Ougsw + Ovgoy — Ozguw) = %gﬁp Ougew =0

7,5 = %g“ﬁ(auggp + O59ou — O Yuw) = %g”ﬁabggu =0

The non-zero Christoffel symbols are given by

1 _
Fp;w = igpg(au.gﬁu + aygEu - 859;11/) = gpgauguﬁa \/

_ 1 - _
o = 59’”(3,190; + 05901 — O 9mw) = 9"° Oaro-

Next we compute the Ricci curvature. The components with pure indices R,,, Ry p vanish in the same
reason as those of g. More specifically, the Ricci curvature is J-invariant: Ric(X,Y’) = Ric(JX, JY), which
follows from the compatibility equation V.J = 0. The components with mixed indices' are given by:

_ 1 _ 1 J
Ty = =0y = = 059" 0u919) = —3 07 tr(g™0u9) = —50u05(l0g detg). 0
J
donld e &
Question 2.2
Consider P? = C"*!/ ~, n-dimensional projective space, where the equivalence relation is (zo, e ,z”) ~
(wo, e ,w”) if 3\ # 0 such that (zo, ., ,z”) = A (wo, e ,w”). An open cover is given by U, = {z" # 0},
with local coordinates in U, given by zér),i =1,---,n.

i. Determine charts ¢, and transition functions ¢, o ¢; ! which make this into a complex manifold.

ii. Determine the metric that follows from the Kéhler potential in the open patch U,

" 2
K(T) :log <1+Z )
i=1

This is the Fubini-Study metric for P".

Z(r)

iii. Compute the Ricci form for this metric.

'In general, the components of the Ricci curvature are given by
Rij = 0,1%; — 9,1 %0 + Faabeij - Faibrbaj-

We see that all terms except for the second one vanish in this case because they contain Christoffel symbols with mixed indices.



iv. Show that for n = 1 the space is (as a real manifold) a 2-sphere S2.

Proof.  i. The chart ¢,.: U, — C" is given by

with inverse given by \/
-1/,1 ny __ . . .1 -
o (252" =z 2 i1z

where the hat on a term denotes the negligence of that term in the expression. For r < s, the transition
map @, 0@l C*\ {27 =0} — C"\ {2% = 0} is given by

1,1 n 7 2" 25 1 25t 2" \/
orop, (27,.,2Y)=—,.,—, ., — =, —, ..., — |

2"’

This is a bi-holomorphism with holomorphic inverse o, o ¢, t. This makes CP" a complex manifold.

ii. It can be shown that K(,) are compatible on the overlap U, N Us, which glues to a global Kéhler
potential K. (¢f. Example 3.1.9 of Huybrechts)

To compute the Fubini-Study metric, we look at the fundamental form w(,) = 100K (r)-

_ L S 2ddz " S dz ,
wy =100log [ 14+ |22 | =i0 | ———— | =1 O | ——— | dF A dF
™ < Z 143050 |2 ; 1+ 300 2

=1

= izn: (L4305 121*)05n — zjzkdzk: A dz
pe SR DAL DR '

Therefore the metric components in U, is given by

RS v/ Y Y
I e PP

iii. The Ricci form is defined by p(X,Y) := Ric(JX,Y), or p = iR, pdz" A dZ” in local coordinates. To
compute the Ricci components, we need to compute det(g;;). Following some change-of-basis trick,
we have:

1 i) oq oT
detl9n) = A5 ey det<<l w2l ) e )
S P

1 =
= — det | [14+) |2 )id -
(1425 [22) ( ZZ;

1
C (L AP J
Therefore

((1 + Z?i !2"!2)”“)

1
R, = —58#(%log



n+1 2\ e n+1
=5 8u&r/10g<1+;’z>: 5 OuOr Ky

n+1
=75 9w
Pt
\} Fubini-Study metric makes CP" an Einstein manifold! The Ricci form is given locally by

1)i(1 n k|2 61" =i, ) )
(n+ )1( +Zk‘:1 ";LZ ’ )kJQ 22’2 dzl/\dE]
2 (14> k=1 [27%)

10:

iv. It is obvious that CP! is diffeomorphic to the 2-sphere S? by the stereographic projection (cf. A2.
Complex Analysis). We may show further that CP! with the Fubini-Study metric is isometric to S2
with (a rescaling of) the round metric.

By the theorem of space forms in Riemannian geometry (c¢f. Theorem 8.9 in C3.11. Riemannian
Geometry), to show the isometry it suffices to show that CP! with the Fubini-Study metric has
constant sectional curvature K > 0. Since dimg CP' = 2, the Riemann curvature has only one
independent component. Therefore this is equivalent to that CP! has constant Ricci curvature, that
is, Ric(X, X) = const for any unit tangent vector field X. But we have shown that CP! is Einstein,
which implies that Ric(X, X) = g(X, X) = 1 is constant. This concludes the proof. O

3 Calabi—Yau Manifolds @

Question 3.1

Consider the Type IIB supergravity in 10d compactified on a Calabi—Yau three-fold Wg — with Hodge
numbers hP4 (Ws), in particular h! (W), h12 (Ws). Determine the bosonic field content by expanding the
10d fields into harmonic forms along Wg. Confirm that the massless spectrum agrees with this of ITA on the
mirror Calabi-—Yau Mg, where h''t (Wg) = h1? (Mg) and hb? (W) = hbt (Mg).

Proof. (cf. §14.3, 14.6 of BLT.) In the 10-dimensional type-IIB supergravity, the bosonic fields from the (R,R)-
sector are the p-forms Cp, with p = 0,2,4; those from the (NS,NS)-sector are the metric g, the anti-
symmetric metric 2-form B, and the dilaton ®. Upon compactification on the Calabi—Yau three-fold, we
split the coordinate indices as (i, ,7), where p is the 4d flat spacetime indices and (7,7) are the CY indices.

The decomposition of a p-form w in R x W as a direct sum is given by

@) =YW @) WY 7,V

r=0

where w%\g_r) is a (p — r)-form on R'3 and wgﬂ}’ is an (r)-form on Ws. The zero-mode equation on Wy is
the Laplace equation
Agw(yy = (dd* + d*d)wgy =0,

which implies that w(CT,;( is a harmonic r-form of Wg. The number of r-forms is the Betti number 6" (W), and
each such of them gives rise to a massless field representated by a (p — r)-form in R3. The decomposition
of the metric ¢ is similar. In summary, the bosonic fields in 4d are:

Guvs Gijs 93> 97> Buv, Big, @, Co, (C2)uws (C2)iz, (Ca)wizs (Ca)piji, (Ca) iz
In particular we don’t have (Cs),; because b'(Wg) = 0 from the Hodge diamond. These fields are grouped
into multiplets (with their fermionic counterparts neglected), as shown below: (cf. Table 14.1 of BLT)



gx(]?MA/WL w it aere
,WIMJ @/w ot & chng,?

Multiplet Fields Multiplicity
Gravity Guvs (C4) uijk 1 \/
Hyper ®, By, Co, (C2) 1
Hyper  gi3, Biz, (C2)ig, (Co)wiz 1 (W)

Vector 95> 97> (C4) ik hY2(We)

On the other hand, for the 10-dimensional type-IIA supergravity, the bosonic fields from the (NS,NS)-sector
are the same, and those from the (R,R)-sector are the p-forms C),, with p = 1,3. Upon compactification,

the bosonic fields in R"3 are given by
Guvs Gijs 93> 95> Buv, Big, ®, (C1)u (C3)puiz (C3)ijk (C3);5% (C3) 7 (C3)i-

These fields are grouped into multiplets (with their fermionic counterparts neglected), as shown below:

Multiplet Fields Multiplicity
Gravity v, (C1)p 1
Hyper CI), B'ul,, (03)ijk7 (CP’)EE 1
Hyper  gij, 953 (C2)iz, (C3) 50 (C3)iz 112 (M)
Vector 97, Bz, (C3)uiz hY1 (M)

Note that if ' (Ws) = hV2(Mg) and h'2(Ws) = hY(Mg), the two models produce the same massless
spectrum. This is exactly the mirror symmetry between Mg and Wyg. \J O

Question 3.2

Consider now a Calabi—Yau 2-fold (real 4d space), also called a K3-surface. The Hodge diamond is completely

h = h = h = h = y h = 20_

By Hodge duality, the (1, 1) forms are self-dual.

i. Determine the degrees of freedom that the following bosonic fields have in 6d: scalar, anti-symmetric

tensor, graviton, vector.

ii. IIB has two spinors €, ¢ in the 16. Decompose the spinors appropriate for a compactification to
RY5 x My, where My is (1) a generic 4d manifold and (2) a K3 surface. What is the supersymmetry of
the 6d theory obtained from IIB on K37

iii. By expanding the IIB bosonic supergravity fields determine the massless spectrum of I1IB on K3.

[ Note: be careful about the self-duality of Fs. |

Proof. 1. (cf. §19.8 of Polchinski.)
ii. The local Lorentz group is decomposed by SO(1,9) — SO(1,5) x SO(4). Note that so(4) = su(2) ®
s5u(2). The 16 component Weyl spinors are decomposed as

16 =4, 2D 4 X 2, 16 =4, 2D 4 R 2,

where 47,4 are Weyl spinors of s0(1,5) and 2,2 are Weyl spinors of so(4).

o If My is a generic manifold, then the Killing spinor condition Ve = 0 is violated and the
supersymmetry is broken...?



iii.

o If My is the K3 surface, then it has SU(2) holonomy. The compactification of IIB on K3 produces
the chiral (2,0)-supersymmetry in R, \/

O]



