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1 Spin Connections and Killing Spinors
[ Conventions for this questions are as in BLT Section 14.8. ]

The spin connection ω is a connection for the local Lorentz symmetry in a given representation and can be
expanded in terms of 1-forms

ω = ωµ(x)dx
µ.

As for gauge connections in Yang–Mills theory we can define the curvature 2-form as

R = dω + ω ∧ ω.

Infinitesimal local Lorentz transformations map

δΛω = dΛ+ [ω,Λ]

and so δΛR = [R,Λ]. Let eaµ be the viel-bein where a, b, · · · are the flat indices and µ, ν · · · the curved indices.
Let ∇µ be the covariant derivative with Christoffel symbols

Γρ
µν =

1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) .

The spin connection is then the 1-form valued in the local Lorentz algebra ( ω has a µ curved index, and is a
matrix valued object with a, b flat indices) that satisfies

∇µe
a
ν = ∂µe

a
ν − Γρ

µνe
a
ρ + ωa

µbe
b
ν = 0

In components it is given by

ωab
µ =

1

2
(Ωµνρ − Ωνρµ + Ωρµν) e

νaeρb where Ωµνρ =
(
∂µe

a
ν − ∂νe

a
µ

)
eaρ.

Question 1.1

Determine the components of the curvature 2-tensor Rµν
ab in terms of ω.

Proof. The curvature 2-form is defined as
R = dω + ω ∧ ω.

In terms of the frame bundle indices, this becomes a equation of real-valued 2-forms on the manifold:

Ra
b = dωa

b + ωa
c ∧ ωc

b.

Expanding in terms of the coordinate indices:

Rµν
a
bdx

µ ∧ dxν = d(ωµ
a
bdx

µ) + ωµ
a
cdx

µ ∧ ων
c
bdx

ν

= (∂µων
a
b − ∂νωµ

a
b + ωµ

a
cων

c
b − ων

a
cωµ

c
b) dx

µ ∧ dxν .

Therefore we have
Rµν

ab = ∂µων
ab − ∂νωµ

ab + ωµ
a
cων

cb − ων
a
cωµ

cb.
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Question 1.2

Consider 10 d spacetime R1,3×M6, with local Lorentz group SO(1, 3)×SO(6) in the spinor representation as
in the lecture (i.e. the generators are Γab ). Let ε be a 16 component spinor of SO(1, 9). Compute [∇µ,∇ν ] ε.

Proof. The so(1, 9) generators Tab satisfies the usual Lorentz algebra:

[Tab, Tcd] = i (ηacTbd − ηadTbc − ηbcTad + ηbdTac) .

In the spinor representation, the generators are given by Tab = − i

4
[Γa,Γb], where Γa satisfy the (flat)

Clifford algebra {Γa,Γb} = 2ηab id. Let ε be a 16 component Weyl spinor of so(1, 9). The covariant
derivative of ε is given by

∇µε =

(
∂µε+

i

2
ωµ

abTabε

)
dxµ

which gives the curvature Rµνε = [∇µ,∇ν ]ε (as expected).

[∇µ,∇ν ]ε =
i

2
Rµν

abTabε =
1

8
Rµνρσe

aρebσ[Γa,Γb]ε =
1

8
Rµνρσ[Γ

µ,Γν ]ε

where Γµ satisfy the (curved) Clifford algebra {Γµ,Γν} = 2gµν id.

The decomposition under so(1, 3)⊕ so(6) is given by 16 = 2L⊗4⊕2R ⊗4, where 2L,2R are Weyl spinors
of so(1, 3) and 4,4 are Weyl spinors of so(6). Since R1,3 is flat, we only need to concern the compactified
manifold M6. It has been shown in the lectures that the covariantly constant condition ∇µε = 0 on the
spinor impose restrictions on the metric such that the manifold M6 is Ricci-flat. More specifically,

[∇m,∇n]ε =
1

8
Rmnpq[Γ

p,Γq]ε = 0

=⇒ 0 = 2RmnpqΓ
n[Γp,Γq]ε = Rmnpq(Γ

[nΓpΓq] + gnpΓq − gnqΓp)ε = 2RmqΓ
qε,

where m,n, p, q = 4, ..., 9. The Riemannian signature on M6 implies that the coefficients of Γqε should
vanish. That is, the Ricci components Rmq = 0.

I am not sure if this is what the question asks. A further decomposition of the Weyl spinor in so(6) ∼= su(4)

depends on the holonomy of the manifold M6. If M6 is Calabi–Yau, then it has SU(3) holonomy, and
the Weyl spinor decomposes into a singlet and a triplet: 4su(4) = (1 ⊕ 3)su(3) under the decomposition
su(4) → su(3)⊕ u(1). This provides ! = 1 supersymmetry on R1,3. If M6 is a general manifold, I am not
sure what can be said here...

2 Kähler Manifolds, Projective Space
Question 2.1

Let Xn be a complex n-dimensional Kähler manifold. Determine the non-trivial Christoffel symbols and the
Ricci tensor for Xn.

Proof. By definition, a Kähler manifold (Xn, g, J) is a complex manifold with an Hermitian fundamental form,
locally given by ω = igµνdzµ ∧ dzν , which is closed: dω = 0.

The fundamental form ω is related to the Riemannian metric g on Xn by

ω(X,Y ) = g(JX, Y ), X, Y ∈ Γ(TXn),
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where J ∈ End(TXn) satisfying J2 = − id is the almost complex structure. This justifies the above
local expansion ωµν = igµν (cf. §1.2 of Huybrechts). The closedness of ω imposes the constraints on the
Hermitian metric g:

dω = ∂ω + ∂ω = 0 =⇒ ∂ω = ∂ω = 0 =⇒ ∂µgνρ = ∂νgµρ and ∂µgνρ = ∂νgµρ.

Next we compute the Christoffel symbols. On a Kähler manifold the Chern connection coincides with the
Levi-Civita connection, so there is no ambiguity. By positive definite Hermitian metric g we have gµν = 0

and gµν = 0. Combining with the Kähler condition, we can show by the Koszul formulae that all Christoffel
symbols with mixed indices vanish:

Γρ
µν =

1

2
gσρ(∂µgσν + ∂νgσµ − ∂σgµν) = 0

Γρ
µν =

1

2
gσρ(∂µgσν + ∂νgσµ − ∂σgµν) = 0

Γρ
µν =

1

2
gσρ(∂µgσν + ∂νgσµ − ∂σgµν) =

1

2
gσρ∂µgσν = 0

Γρ
µν =

1

2
gσρ(∂µgσν + ∂νgσµ − ∂σgµν) =

1

2
gσρ∂νgσµ = 0

The non-zero Christoffel symbols are given by

Γρ
µν =

1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν) = gρσ∂µgνσ,

Γρ
µν =

1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν) = gρσ∂µgνσ.

Next we compute the Ricci curvature. The components with pure indices Rµν , Rµ,ν vanish in the same
reason as those of g. More specifically, the Ricci curvature is J-invariant: Ric(X,Y ) = Ric(JX, JY ), which
follows from the compatibility equation ∇J = 0. The components with mixed indices1 are given by:

Rµν = −∂νΓ
ρ
µρ = −∂ν(g

ρσ∂µgρσ) = −1

2
∂ν tr

(
g−1∂µg

)
= −1

2
∂µ∂ν(log det g).

Question 2.2

Consider Pn = Cn+1/ ∼, n-dimensional projective space, where the equivalence relation is
(
z0, · · · , zn

)
∼(

w0, · · · , wn
)

if ∃λ ,= 0 such that
(
z0, · · · , zn

)
= λ

(
w0, · · · , wn

)
. An open cover is given by Ur = {zr ,= 0},

with local coordinates in Ur given by zi(r), i = 1, · · · , n.

i. Determine charts φr and transition functions φr ◦ φ−1
s which make this into a complex manifold.

ii. Determine the metric that follows from the Kähler potential in the open patch Ur

K(r) = log

(
1 +

n∑

i=1

∣∣∣zi(r)
∣∣∣
2
)

This is the Fubini–Study metric for Pn.

iii. Compute the Ricci form for this metric.

1In general, the components of the Ricci curvature are given by

Rij = ∂aΓ
a
ij − ∂jΓ

a
ai + Γa

abΓ
b
ij − Γa

ibΓ
b
aj .

We see that all terms except for the second one vanish in this case because they contain Christoffel symbols with mixed indices.
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iv. Show that for n = 1 the space is (as a real manifold) a 2-sphere S2.

Proof. i. The chart ϕr : Ur → Cn is given by

ϕr([z
0 : · · · : zn]) =

(
z0

zr
, ...,

ẑr

zr
, ...,

zn

zr

)
,

with inverse given by
ϕ−1
r (z1, ..., zn) = [z1 : · · · : zr : 1 : zr+1 : · · · : zn],

where the hat on a term denotes the negligence of that term in the expression. For r < s, the transition
map ϕr ◦ ϕ−1

s : Cn \ {zr = 0} → Cn \ {zs = 0} is given by

ϕr ◦ ϕ−1
s (z1, ..., zn) =

(
z1

zr
, ...,

ẑr

zr
, ...,

zs

zr
,
1

zr
,
zs+1

zr
, ...,

zn

zr

)
.

This is a bi-holomorphism with holomorphic inverse ϕs ◦ ϕ−1
r . This makes CPn a complex manifold.

ii. It can be shown that K(r) are compatible on the overlap Ur ∩ Us, which glues to a global Kähler
potential K. (cf. Example 3.1.9 of Huybrechts)

To compute the Fubini–Study metric, we look at the fundamental form ω(r) = i∂∂K(r).

ω(r) = i∂∂ log

(
1 +

n∑

i=1

|zi|2
)

= i∂

( ∑n
j=1 z

jdzj

1 +
∑n

i=1 |zi|2

)
= i

n∑

k=1

∂k

( ∑n
j=1 z

jdzj

1 +
∑n

i=1 |zi|2

)
dzk ∧ dzj

= i
n∑

k=1

(1 +
∑n

i=1 |zi|2)δjk − zjzk

(1 +
∑n

i=1 |zi|2)2
dzk ∧ dzj .

Therefore the metric components in Ur is given by

gi =
(1 +

∑n
k=1 |zk|2)δij − zizj

(1 +
∑n

k=1 |zk|2)2
.

iii. The Ricci form is defined by ρ(X,Y ) := Ric(JX, Y ), or ρ = iRµνdzµ ∧ dzν in local coordinates. To
compute the Ricci components, we need to compute det(gi). Following some change-of-basis trick,
we have:

det(gi) =
1

(1 +
∑n

i=1 |zi|2)2n
det

((
1 +

n∑

i=1

|zi|2
)
id−zz"

)

=
1

(1 +
∑n

i=1 |zi|2)2n
det





(
1 +

n∑

i=1

|zi|2
)
id−





∑n
i=1 |zi|2

0
. . .

0









=
1

(1 +
∑n

i=1 |zi|2)n+1
.

Therefore

Rµν = −1

2
∂µ∂ν log

(
1

(1 +
∑n

i=1 |zi|2)n+1

)
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=
n+ 1

2
∂µ∂ν log

(
1 +

n∑

i=1

|zi|2
)

=
n+ 1

2
∂µ∂νK(r)

=
n+ 1

2
gµν

Fubini–Study metric makes CPn an Einstein manifold! The Ricci form is given locally by

ρ =
(n+ 1)i

2

(1 +
∑n

k=1 |zk|2)δij − zizj

(1 +
∑n

k=1 |zk|2)2
dzi ∧ dzj .

iv. It is obvious that CP1 is diffeomorphic to the 2-sphere S2 by the stereographic projection (cf. A2.
Complex Analysis). We may show further that CP1 with the Fubini–Study metric is isometric to S2

with (a rescaling of) the round metric.

By the theorem of space forms in Riemannian geometry (cf. Theorem 8.9 in C3.11. Riemannian
Geometry), to show the isometry it suffices to show that CP1 with the Fubini–Study metric has
constant sectional curvature K > 0. Since dimR CP1 = 2, the Riemann curvature has only one
independent component. Therefore this is equivalent to that CP1 has constant Ricci curvature, that
is, Ric(X,X) = const for any unit tangent vector field X. But we have shown that CP1 is Einstein,
which implies that Ric(X,X) = g(X,X) = 1 is constant. This concludes the proof.

3 Calabi–Yau Manifolds
Question 3.1

Consider the Type IIB supergravity in 10d compactified on a Calabi–Yau three-fold W6 — with Hodge
numbers hp,q (W6), in particular h1,1 (W6) , h1,2 (W6). Determine the bosonic field content by expanding the
10d fields into harmonic forms along W6. Confirm that the massless spectrum agrees with this of IIA on the
mirror Calabi–Yau M6, where h1,1 (W6) = h1,2 (M6) and h1,2 (W6) = h1,1 (M6).

Proof. (cf. §14.3, 14.6 of BLT.) In the 10-dimensional type-IIB supergravity, the bosonic fields from the (R,R)-
sector are the p-forms Cp, with p = 0, 2, 4; those from the (NS,NS)-sector are the metric g, the anti-
symmetric metric 2-form B, and the dilaton Φ. Upon compactification on the Calabi–Yau three-fold, we
split the coordinate indices as (µ, i, ı), where µ is the 4d flat spacetime indices and (i, ı) are the CY indices.

The decomposition of a p-form ω in R1,3 ×W6 as a direct sum is given by

ω(x) =
p∑

r=0

ωM
(p−r)(x

µ) · ωCY
(r) (z

i, zi),

where ωM
(p−r) is a (p − r)-form on R1,3 and ωCY

(r) is an (r)-form on W6. The zero-mode equation on W6 is
the Laplace equation

∆6ω
CY
(r) = (dd∗ + d∗d)ωCY

(r) = 0,

which implies that ωCY
(r) is a harmonic r-form of W6. The number of r-forms is the Betti number br(W6), and

each such of them gives rise to a massless field representated by a (p− r)-form in R1,3. The decomposition
of the metric g is similar. In summary, the bosonic fields in 4d are:

gµν , gij , gi, gı, Bµν , Bi, Φ, C0, (C2)µν , (C2)i, (C4)µνi, (C4)µijk, (C4)µijk.

In particular we don’t have (C2)µi because b1(W6) = 0 from the Hodge diamond. These fields are grouped
into multiplets (with their fermionic counterparts neglected), as shown below: (cf. Table 14.1 of BLT)
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Multiplet Fields Multiplicity
Gravity gµν , (C4)µijk 1
Hyper Φ, Bµν , C0, (C2)µν 1
Hyper gi, Bi, (C2)i, (C4)µνi h1,1(W6)

Vector gij , gı, (C4)µijk h1,2(W6)

On the other hand, for the 10-dimensional type-IIA supergravity, the bosonic fields from the (NS,NS)-sector
are the same, and those from the (R,R)-sector are the p-forms Cp, with p = 1, 3. Upon compactification,
the bosonic fields in R1,3 are given by

gµν , gij , gi, gı, Bµν , Bi, Φ, (C1)µ (C3)µi (C3)ijk (C3)ijk (C3)ik (C3)ık.

These fields are grouped into multiplets (with their fermionic counterparts neglected), as shown below:

Multiplet Fields Multiplicity
Gravity gµν , (C1)µ 1
Hyper Φ, Bµν , (C3)ijk, (C3)ık 1
Hyper gij , gı, (C2)i, (C3)ijk, (C3)ik h1,2(M6)

Vector gi, Bi, (C3)µi h1,1(M6)

Note that if h1,1(W6) = h1,2(M6) and h1,2(W6) = h1,1(M6), the two models produce the same massless
spectrum. This is exactly the mirror symmetry between M6 and W6.

Question 3.2

Consider now a Calabi–Yau 2-fold (real 4d space), also called a K3-surface. The Hodge diamond is completely
fixed in this case and has non-trivial entries

h2,2 = h0,0 = h2,0 = h0,2 = 1, h1,1 = 20.

By Hodge duality, the (1, 1) forms are self-dual.

i. Determine the degrees of freedom that the following bosonic fields have in 6d: scalar, anti-symmetric
tensor, graviton, vector.

ii. IIB has two spinors ε, ε′ in the 16. Decompose the spinors appropriate for a compactification to
R1,5 ×M4, where M4 is (1) a generic 4d manifold and (2) a K3 surface. What is the supersymmetry of
the 6d theory obtained from IIB on K3?

iii. By expanding the IIB bosonic supergravity fields determine the massless spectrum of IIB on K3.

[ Note: be careful about the self-duality of F5. ]

Proof. i. (cf. §19.8 of Polchinski.)

ii. The local Lorentz group is decomposed by SO(1, 9) → SO(1, 5) × SO(4). Note that so(4) ∼= su(2) ⊕
su(2). The 16 component Weyl spinors are decomposed as

16 = 4L ⊗ 2⊕ 4R ⊗ 2, 16 = 4L ⊗ 2⊕ 4R ⊗ 2,

where 4L,4R are Weyl spinors of so(1, 5) and 2,2 are Weyl spinors of so(4).

• If M4 is a generic manifold, then the Killing spinor condition ∇µε = 0 is violated and the
supersymmetry is broken...?
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• If M4 is the K3 surface, then it has SU(2) holonomy. The compactification of IIB on K3 produces
the chiral (2, 0)-supersymmetry in R1,5.

iii.
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