Peize Liu St. Peter's College University of Oxford

Problem Sheet 2 ASO: Projective Geometry

In these questions, F denotes the base field.

Question 1

Write down the dual to the Pappus' Theorem.

Theorem. Suppose that L_A, L_B, L_C and $L_{A'}, L_{B'}, L_{C'}$ are two triples of concurrent lines. Let $X = L_A \cap L_{B'}$, $X' = L_{A'} \cap L_B$, $Y = L_B \cap L_{C'}$, $Y' = L_{B'} \cap L_C$, $Z = L_C \cap L_{A'}$, and $Z' = L_{C'} \cap L_A$. Then the lines XX', YY' and ZZ' are concurrent. \square

Question 2

Let P_0, P_1, P_2, P_3 be four distinct points in a projetive plane $\mathbb{P}(V)$. Show that P_0, P_1, P_2, P_3 are in general position if and only if the lines $P_0P_1, P_1P_2, P_2P_3, P_3P_0$ are in general position in $\mathbb{P}(V^*)$.

Proof. Suppose that $P_0 = \langle v_0 \rangle$, $P_1 = \langle v_1 \rangle$, $P_2 = \langle v_2 \rangle$, and $P_3 = \langle v_3 \rangle$, where $v_0, v_1, v_2, v_3 \in V$. In the dual space V^* , we have $(P_0P_1)^* = \langle v_0, v_1 \rangle^\circ$ $(P_1P_2)^* = \langle v_1, v_2 \rangle^\circ$ $(P_2P_3)^* = \langle v_2, v_3 \rangle^\circ$ $(P_3P_0)^* = \langle v_3, v_0 \rangle^\circ$

Suppose that the four points are not in general position. Without loss of generality we assume that $(P_0P_1)^*$, $(P_1P_2)^*$ and $(P_2P_3)^*$ are collinear. Then we have

$$\dim((P_0P_1)^* + (P_1P_2)^* + (P_2P_3)^*) = 2$$

But by Proposition 8.1 we know that

$$\dim((P_0P_1)^* + (P_1P_2)^* + (P_2P_3)^*) = \dim(\langle v_0, v_1 \rangle^\circ + \langle v_1, v_2 \rangle^\circ + \langle v_2, v_3 \rangle^\circ) = \dim(\langle v_0, v_1 \rangle \cap \langle v_1, v_2 \rangle \cap \langle v_2, v_3 \rangle)^\circ = 2$$
so that

$$\dim(\langle v_1 \rangle \cap \langle v_2, v_3 \rangle) = \dim(\langle v_0, v_1 \rangle \cap \langle v_1, v_2 \rangle \cap \langle v_2, v_3 \rangle) = \dim V - 2 = 1$$

Hence $v_1 \in \langle v_2, v_3 \rangle$. In $\mathbb{P}(V)$, $P_1 \in P_2 P_3$. So the four points are not in general position.

Question 3

Use the general position argument to show that given five points in the projective plane, such that no three are collinear, there is a unique conic through these five points.

Proof. Let A,B,C,D,E be the given five points. By assumption A,B,C,D are in general position. By applying a projective transformation we may assume that A=[1:0:0], B=[0:1:0], C=[0:0:1] and D=[1:1:1]. Suppose that $E=[\alpha_0:\alpha_1:\alpha_2]$. Let $\mathcal{C}:\sum_{i,j=0}^2\lambda_{i,j}x_ix_j=0$ be a conic that contains the five points.

 $A,B,C\in\mathcal{C}$ implies that $\lambda_{0,0}=\lambda_{1,1}=\lambda_{2,2}=0$. So \mathcal{C} has the form

$$\lambda_{0.1}x_0x_1 + \lambda_{1.2}x_1x_2 + \lambda_{2.1}x_2x_0 = 0$$

 $D, E \in \mathcal{C}$ implies that $(\lambda_{0,1}, \lambda_{1,2}, \lambda_{2,0}) \cdot (1, 1, 1) = 0$, $(\lambda_{0,1}, \lambda_{1,2}, \lambda_{2,0}) \cdot (\alpha_0, \alpha_1, \alpha_2) = 0$. Since $D \neq E$, $\langle (1, 1, 1) \rangle \neq \langle (\alpha_0, \alpha_1, \alpha_2) \rangle$. We deduce that $(\lambda_{0,1}, \lambda_{1,2}, \lambda_{2,0}) \in \langle (1, 1, 1), (\alpha_0, \alpha_1, \alpha_2) \rangle^{\perp}$, which is a 1-dimensional subspace. Hence the coefficients of the quadric is uniquely determined up to rescaling by a constant. The conic determined by the quadric is unique.

Question 4

Let C, D be conics in a projective plane $\mathbb{P}(V)$, where V is a 3-dimensional real vector space, and suppose that $C \cap D = \{p_1, p_2, p_3, p_4\}$, where $p_1, ..., p_4$ are dinstinct points in $\mathbb{P}(V)$.

(a) Show that $p_1, ..., p_4$ are in general position. Prove that there exist homogeneous coordinates $[x_0 : x_1 : x_2]$ on $\mathbb{P}(V)$ for which

$$p_1 = [1:1:1], \quad p_2 = [1:-1:1] \quad p_3 = [1:1:-1] \quad p_4 = [1:-1:-1]$$

- (b) Show that any conic through $p_1,...,p_4$ has equation $\lambda x_0^2 + \mu x_1^2 + \nu x_2^2 = 0$, where $\lambda + \mu + \nu = 0$.
- (c) Find four projective transformations τ of $\mathbb{P}(V)$ that form a group, and for which $\tau(C) = C$ and $\tau(D) = D$.
- *Proof.* (a) Let $p_1 = \langle v_1 \rangle$, $p_2 = \langle v_2 \rangle$, $p_3 = \langle v_3 \rangle$, and $p_4 = \langle v_4 \rangle$, where $v_1, v_2, v_3, v_4 \in V$. Suppose for contradiction that p_1, p_2 and p_3 are collinear. By rescaling we may assume that $v_3 = v_1 + v_2$. Let $\langle Bx, x \rangle = 0$ be the equation of C. Then we have

$$\langle Bv_1, v_1 \rangle = 0$$
 $\langle Bv_2, v_2 \rangle = 0$ $\langle B(v_1 + v_2), (v_1 + v_2) \rangle = 0$

We expand the third equation:

$$\langle B(v_1+v_2), v_1+v_2\rangle = \langle Bv_1, v_1\rangle + 2\langle Bv_1, v_2\rangle + \langle Bv_2, v_2\rangle = 0.$$

Hence we have $\langle Bv_1, v_2 \rangle = 0$. In particular, for any $\mu v_1 + \nu v_2$,

$$\langle B(\mu v_1 + \nu v_2), \mu v_1 + \nu v_2 \rangle = \mu^2 \langle B v_1, v_1 \rangle + 2\mu \nu \langle B v_1, v_2 \rangle + \nu^2 \langle B v_2, v_2 \rangle = 0$$

We deduce that the conic C contains the whole projective line $p_1p_2p_3$. Similarly D also contains $p_1p_2p_3$. Then $C \cap D$ is an infinite set. Contradiction. Then $p_1, ..., p_4$ are in general position.

Since [1:1:1], [1:-1:1], [1:-1:-1], [1:-1:-1] are in general position, by general position theorem there exists a projective transformation which maps the standard basis to a basis in which $p_1 = [1:1:1]$, $p_2 = [1:-1:1]$, $p_3 = [1:1:-1]$ and $p_4 = [1:-1:-1]$.

(b) Suppose that the quadric has equation $\sum_{i,j=0}^{2} \alpha_{i,j} x_i x_j = 0$. Since the quadric passes through $p_1,...,p_4$, we have

$$\begin{cases} \alpha_{0,0} + \alpha_{1,1} + \alpha_{2,2} + 2\alpha_{0,1} + 2\alpha_{1,2} + 2\alpha_{2,0} = 0 \\ \alpha_{0,0} + \alpha_{1,1} + \alpha_{2,2} - 2\alpha_{0,1} - 2\alpha_{1,2} + 2\alpha_{2,0} = 0 \\ \alpha_{0,0} + \alpha_{1,1} + \alpha_{2,2} + 2\alpha_{0,1} - 2\alpha_{1,2} - 2\alpha_{2,0} = 0 \\ \alpha_{0,0} + \alpha_{1,1} + \alpha_{2,2} - 2\alpha_{0,1} + 2\alpha_{1,2} - 2\alpha_{2,0} = 0 \end{cases}$$

In matrix form the equations are

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ 1 & -1 & -1 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} \alpha_{0,1} \\ \alpha_{1,2} \\ \alpha_{2,0} \end{pmatrix} = \eta \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

where η satisfies that $\alpha_{0,0} + \alpha_{1,1} + \alpha_{2,2} = -2\eta$.

We perform elementary row operations to the coefficients matrix. It is not hard to verify that the system has only trival solution: $\alpha_{0,1}=\alpha_{1,2}=\alpha_{2,0}=\eta=0$. Then we deduce that the quadric has the equation $\lambda x_0^2+\mu x_1^2+\nu x_2^2=0$ where $\lambda+\mu+\nu=0$.

(c) We consider the subgroup of the permutation group of $\{p_1, p_2, p_3, p_4\}$ which induces a group of projective transformations. We consider the subgroup generated by the double transpositions $(1\ 2)(3\ 4)$ and $(1\ 3)(2\ 4)$, which corresponds to the subgroup generated by reflections $x_1\mapsto -x_1$ and $x_2\mapsto -x_2$. These transformations fix C and D, because the equations of the quadrics have no off-diagonal terms. The action of the group on $p_1, ..., p_4$ are:

$$\{id, (12)(34), (13)(24), (14)(23)\}$$

The subgroup is isomorphic to V_4 .

Question 5

Let $F = (x_0, x_1, x_2)$ be a homogneous polynomial of degree n. Let \mathcal{C} be the set of points $[a_0 : a_1 : a_2]$ in \mathbb{RP}^2 such that $F(a_0 : a_1 : a_2) = 0$. Let a be a point on \mathcal{C} . Provided that $\nabla F(a) \neq 0$, the *tangent line* to \mathcal{C} at $a = [a_0 : a_1 : a_2]$ is the line

$$x_0 \frac{\partial F}{\partial x_0}(\boldsymbol{a}) + x_1 \frac{\partial F}{\partial x_1}(\boldsymbol{a}) + x_2 \frac{\partial F}{\partial x_2}(\boldsymbol{a}) = 0$$

in \mathbb{RP}^2 and \boldsymbol{a} is said to be *singular* if $\nabla F(\boldsymbol{a}) = 0$.

- (i) Show that a lies on the tangent line to a.
- (ii) Given a 3×3 symmetric real matrix B its associated *conic* is the set of solutions to the equation $x^T B x = 0$ where $x = [x_0 : x_1 : x_2]$ and the conic is said to be *singular* if B is singular. Show that a conic is singular if and only if it has a singular point.
- (iii) Sketch the curves $y^2 = x^3$ and $y^2 = x^2(x+1)$ in \mathbb{R}^2 . What singular points fo these curves have? Show that $y = x^3$ has a singular point at infinity.
- *Proof.* (i) By Intro Manifolds Sheet 1 Question 2, F is homogeneous of degree n implies that $\langle \nabla F(x), x \rangle = nF(x)$. Hence F(a) = 0 implies that $\langle \nabla F(a), a \rangle = 0$. That is, a lies on the tangent line to a.
 - (ii) Let $F(x) = x^T Bx$. Then $\nabla F(x) = 2Bx$. We have:

$$\mathcal{C}$$
 has a singular point $a \Longleftrightarrow \nabla F(a) = 2Ba = 0$

$$\iff \ker B \neq \{0\}$$

$$\iff B \text{ is singular}$$

$$\iff \mathcal{C} \text{ is singular}$$

(iii) The sketch of the two curves:

We observe that both curves have a singularity at (0,0). For the curve $y=x^3$ in \mathbb{R}^2 , we embed \mathbb{R}^2 into \mathbb{RP}^2 by identifying (x,y) with [1:x:y]. We make the equation of the curve homogeneous (of degree 3) by setting $F(x,y,z)=x^3-yz^2$. Then clearly the vanishing loci of F on \mathbb{R}^2 is the curve $y=x^3$.

On the line of infinity, z=0. $F(x,y,0)=x^3=0 \Longrightarrow x=0$. The locus of F at infinity is [0:1:0]. We compute that gradient of F:

$$\nabla F(x, y, z) = (3x^2, -z^2, -2yz).$$

Then $\nabla F(0,1,0) = 0$. We conclude that [0:1:0] is a singularity of the curve.

Question 6

Find all rational numbers x, y such that $x^2 + y^2 - xy = 1$.

Solution. We embed \mathbb{Q}^2 into \mathbb{QP}^2 via $(x,y)\mapsto [x:y:1]$. Then the curve $x^2+y^2-xy=1$ is the loci of the quadratic form $F(x,y,z)=x^2+y^2-xy-z^2$. Let \mathcal{C} be the conic represented by F in \mathbb{QP}^2 . The Gram matrix associated with the quadratic form is given by

$$B = \begin{pmatrix} 1 & -\frac{1}{2} & 0\\ -\frac{1}{2} & 1 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

We choose x=(1,1,1), a zero of F in \mathbb{Q}^3 , and $X=\langle x\rangle\in\mathbb{QP}^2$. Consider the projectiv line L:z=0 in \mathbb{QP}^2 . Clearly $X\notin L$. Then by Theorem 9.10 in the lecture notes, there is a bijection $\alpha:L\to\mathcal{C}$ such that for each $Y\in L$, $X,Y,\alpha(Y)$ are collinear. For $Y=\langle y\rangle=\langle (\lambda_1,\lambda_2,0)\rangle$, α is given explicitly by:

$$\alpha(y) = \langle By, y \rangle x - 2 \langle Bx, y \rangle y$$

(The point X and the line L are chosen deliberately such that the solutions are symmetric in the parameters λ_1 and λ_2 .)

We compute $\langle By, y \rangle$ and $\langle Bx, y \rangle$:

$$\langle By, y \rangle = \begin{pmatrix} 0 & \lambda_1 & \lambda_2 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ \lambda_1 \\ \lambda_2 \end{pmatrix} = \lambda_1^2 + \lambda_2^2 - \lambda_1 \lambda_2$$

$$\langle Bx, y \rangle = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ \lambda_1 \\ \lambda_2 \end{pmatrix} = \frac{1}{2} (\lambda_1 + \lambda_2)$$

Therefore

$$\alpha(y) = (\lambda_1^2 + \lambda_2^2 - \lambda_1 \lambda_2)(1, 1, 1) - (\lambda_1 + \lambda_2)(\lambda_1, \lambda_2, 0) = (\lambda_2^2 - \lambda_1 \lambda_2, \ \lambda_1^2 - \lambda_1 \lambda_2, \ \lambda_1^2 + \lambda_2^2 - \lambda_1 \lambda_2)$$

 $\text{For } \lambda_1^2 + \lambda_2^2 - \lambda_1 \lambda_2 \neq 0 \text{, we deduce that } \left(\frac{\lambda_2^2 - \lambda_1 \lambda_2}{\lambda_1^2 + \lambda_2^2 - \lambda_1 \lambda_2}, \ \frac{\lambda_1^2 - \lambda_1 \lambda_2}{\lambda_1^2 + \lambda_2^2 - \lambda_1 \lambda_2} \right) \in \mathbb{Q}^2 \text{ are on } \mathcal{C} \text{ for } \lambda_1, \lambda_2 \in \mathbb{Z}.$

Moreover, we claim that any rational solution of $x^2 + y^2 - xy = 1$ can be expressed in the given form. This is because α is surjective.

Ouestion 7

Let V be a 3-dimensional real vector space and suppose that L_0, L_1, L_2, L_3 are four lines in the projective plane $\mathbb{P}(V)$ all intersecting in a common point x. Explain why

- (i) if L is a line in $\mathbb{P}(V)$ that does not pass through x, but intersects L_i in a point x_i (so x_0, x_1, x_2, x_3 are four distinct collinear points), then the cross-ratio $(x_0x_1 : x_2x_3)$ is independent of the choice of L_i .
- (ii) the cross-ratio defined in (i) equals the cross-ratio $(L_0L_1:L_2L_3)$ formed by regarding L_0,L_1,L_2,L_3 as collinear points of the dual projetive plane $\mathbb{P}(V^*)$.
- *Proof.* (i) Consider two different lines L and L', which corresponds to two sets of points: $\{x_0, x_1, x_2, x_3\}$ and $\{x'_0, x'_1, x'_2, x'_3\}$. Let $x = \langle a \rangle$, $x_1 = \langle b \rangle$ and $x_2 = \langle c \rangle$, where $a, b, c \in V$ are linearly independent. Since x'_0 lies on the projective

line xx_0 , we can set $x_0' = \langle a+b \rangle$. Since x_1' lies on the projective line xx_1 , we can set $x_1' = \langle a+c \rangle$. Since x_2, x_3 lie on the line x_0x_1 , we have $x_2 = \langle b+\mu c \rangle$, $x_3 = \langle b+\nu c \rangle$ for some $\mu, \nu \in \mathbb{R} \setminus \{0\}$. From the figure we observe that $x_2' = xx_2 \cap x_0'x_1' = \langle (1+\mu)a+b+\mu c \rangle$ and $x_3' = xx_3 \cap x_0'x_1' = \langle (1+\nu)a+b+\nu c \rangle$.

Let $L = \mathbb{P}(U) = \mathbb{P}\langle b, c \rangle$ and $L' = \mathbb{P}(W) = \mathbb{P}\langle a+b, a+c \rangle$. Then the linear transformation $\varphi: U \to W$ given by

$$\varphi(b) = a + b$$
 $\qquad \varphi(c) = a + c$

induces a projective transformation $\tilde{\varphi}:L\to L'$, which sends x_0,x_1,x_2,x_3 to x_0',x_1',x_2',x_3' respectively. Since the cross-ratio is preserved by a projective transformation, $(x_0x_1:x_2x_3)=(x_0'x_1':x_2'x_3')$. We conclude that the cross-ratio is independent of the choice of L.

(ii) We consider $\{a, b, c\}$ as a basis of V. Then the points have coordinates:

$$x_0 = [0:1:0]$$
 $x_1 = [0:0:1]$ $x_2 = [0:1:\mu],$ $x_3 = [0:1:\nu]$

Let f_a , f_b , f_c be the dual basis of a, b, c. In the dual space $\mathbb{P}(V*)$, the dual of the lines are given by:

$$L_0^* = \langle a, b \rangle^{\circ}$$
 $L_1^* = \langle a, c \rangle^{\circ}$ $L_2^* = \langle a, b + \mu c \rangle^{\circ}$, $L_3^* = \langle a, b + \nu c \rangle^{\circ}$

In the dual basis, these dual lines have coordinates

$$L_0^* = [0:0:1]$$
 $L_1^* = [0:1:0]$ $L_2^* = [0:\mu:-1],$ $L_3^* = [0:\nu:-1]$

Finally, by explicit calculations, we verify that

$$(x_0x_1:x_2x_3)=(L_0^*L_1^*:L_2^*L_3^*)=\mu/\nu$$