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In these questions, F denotes the base field.

Question 1

Write down the dual to the Pappus’ Theorem.

Theorem. Suppose that LA, LB , LC and LA′ , LB′ , LC′ are two triples of concurrent lines. Let X = LA ∩ LB′ , X ′ = LA′ ∩ LB,
Y = LB ∩LC′ , Y ′ = LB′ ∩LC , Z = LC ∩LA′ , and Z ′ = LC′ ∩LA. Then the linesXX ′, Y Y ′ and ZZ ′ are concurrent.

Question 2

Let P0, P1, P2, P3 be four distinct points in a projetive plane P(V ). Show that P0, P1, P2, P3 are in general position if and
only if the lines P0P1, P1P2, P2P3, P3P0 are in general postition in P(V ∗).

Proof. Suppose that P0 = 〈v0〉, P1 = 〈v1〉, P2 = 〈v2〉, and P3 = 〈v3〉, where v0, v1, v2, v3 ∈ V . In the dual space V ∗, we have

(P0P1)
∗ = 〈v0, v1〉◦ (P1P2)

∗ = 〈v1, v2〉◦ (P2P3)
∗ = 〈v2, v3〉◦ (P3P0)

∗ = 〈v3, v0〉◦

Suppose that the four points are not in general position. Without loss of generality we assume that (P0P1)
∗, (P1P2)

∗ and
(P2P3)

∗ are collinear. Then we have

dim((P0P1)
∗ + (P1P2)

∗ + (P2P3)
∗) = 2

But by Proposition 8.1 we know that

dim((P0P1)
∗ + (P1P2)

∗ + (P2P3)
∗) = dim(〈v0, v1〉◦ + 〈v1, v2〉◦ + 〈v2, v3〉◦) = dim(〈v0, v1〉 ∩ 〈v1, v2〉 ∩ 〈v2, v3〉)◦ = 2

so that

dim(〈v1〉 ∩ 〈v2, v3〉) = dim(〈v0, v1〉 ∩ 〈v1, v2〉 ∩ 〈v2, v3〉) = dimV − 2 = 1

Hence v1 ∈ 〈v2, v3〉. In P(V ), P1 ∈ P2P3. So the four points are not in general position.

Question 3

Use the general position argument to show that given five points in the projective plane, such that no three are collinear,
there is a unique conic through these five points.

Proof. Let A,B,C,D,E be the given five points. By assumption A,B,C,D are in general position. By applying a projective
transformation we may assume that A = [1 : 0 : 0], B = [0 : 1 : 0], C = [0 : 0 : 1] and D = [1 : 1 : 1]. Suppose that

E = [α0 : α1 : α2]. Let C :
2∑

i,j=0

λi,jxixj = 0 be a conic that contains the five points.

A,B,C ∈ C implies that λ0,0 = λ1,1 = λ2,2 = 0. So C has the form

λ0,1x0x1 + λ1,2x1x2 + λ2,1x2x0 = 0

D,E ∈ C implies that (λ0,1, λ1,2, λ2,0) · (1, 1, 1) = 0, (λ0,1, λ1,2, λ2,0) · (α0, α1, α2) = 0. Since D 6= E, 〈(1, 1, 1)〉 6=
〈(α0, α1, α2)〉. We deduce that (λ0,1, λ1,2, λ2,0) ∈ 〈(1, 1, 1), (α0, α1, α2)〉⊥, which is a 1-dimensional subspace. Hence the
coefficients of the quadric is uniquely determined up to rescaling by a constant. The conic determined by the quadric is
unique.
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Question 4

Let C,D be conics in a projective plane P(V ), where V is a 3-dimensional real vector space, and suppose that C ∩ D =

{p1, p2, p3, p4}, where p1, ..., p4 are dinstinct points in P(V ).

(a) Show that p1, ..., p4 are in general position. Prove that there exist homogeneous coordinates [x0 : x1 : x2] on P(V )

for which

p1 = [1 : 1 : 1], p2 = [1 : −1 : 1] p3 = [1 : 1 : −1] p4 = [1 : −1 : −1]

(b) Show that any conic through p1, ..., p4 has equation λx20 + µx21 + νx22 = 0, where λ+ µ+ ν = 0.

(c) Find four projective transformations τ of P(V ) that form a group, and for which τ(C) = C and τ(D) = D.

Proof. (a) Let p1 = 〈v1〉, p2 = 〈v2〉, p3 = 〈v3〉, and p4 = 〈v4〉, where v1, v2, v3, v4 ∈ V . Suppose for contradiction that p1, p2 and
p3 are collinear. By rescaling we may assume that v3 = v1 + v2. Let 〈Bx, x〉 = 0 be the equation of C. Then we have

〈Bv1, v1〉 = 0 〈Bv2, v2〉 = 0 〈B(v1 + v2), (v1 + v2)〉 = 0

We expand the third equation:

〈B(v1 + v2), v1 + v2〉 = 〈Bv1, v1〉+ 2 〈Bv1, v2〉+ 〈Bv2, v2〉 = 0.

Hence we have 〈Bv1, v2〉 = 0. In particular, for any µv1 + νv2,

〈B(µv1 + νv2), µv1 + νv2〉 = µ2 〈Bv1, v1〉+ 2µν 〈Bv1, v2〉+ ν2 〈Bv2, v2〉 = 0

We deduce that the conicC contains the whole projective line p1p2p3. SimilarlyD also contains p1p2p3. ThenC∩D
is an infinite set. Contradiction. Then p1, ..., p4 are in general position.

Since [1 : 1 : 1], [1 : −1 : 1], [1 : 1 : −1], [1 : −1 : −1] are in general position, by general position theorem there exists
a projective transformation which maps the standard basis to a basis in which p1 = [1 : 1 : 1], p2 = [1 : −1 : 1],
p3 = [1 : 1 : −1] and p4 = [1 : −1 : −1].

(b) Suppose that the quadric has equation
2∑

i,j=0

αi,jxixj = 0. Since the quadric passes through p1, ..., p4, we have


α0,0 + α1,1 + α2,2 + 2α0,1 + 2α1,2 + 2α2,0 = 0

α0,0 + α1,1 + α2,2 − 2α0,1 − 2α1,2 + 2α2,0 = 0

α0,0 + α1,1 + α2,2 + 2α0,1 − 2α1,2 − 2α2,0 = 0

α0,0 + α1,1 + α2,2 − 2α0,1 + 2α1,2 − 2α2,0 = 0

In matrix form the equations are 
1 1 1

−1 −1 1

1 −1 −1
−1 1 −1


α0,1

α1,2

α2,0

 = η


1

1

1

1


where η satisfies that α0,0 + α1,1 + α2,2 = −2η.

We perform elementary row operations to the coefficients matrix. It is not hard to verify that the system has only
trival solution: α0,1 = α1,2 = α2,0 = η = 0. Then we deduce that the quadric has the equation λx20 + µx21 + νx22 = 0

where λ+ µ+ ν = 0.

(c) We consider the subgroup of the permutation group of {p1, p2, p3, p4} which induces a group of projective trans-
formations. We consider the subgroup generated by the double transpositions (1 2)(3 4) and (1 3)(2 4), which
corresponds to the subgroup generated by reflections x1 7→ −x1 and x2 7→ −x2. These transfomrations fix C and
D, because the equations of the quadrics have no off-diagonal terms. The action of the group on p1, ..., p4 are:
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{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

The subgroup is isomorphic to V4.

Question 5

Let F = (x0, x1, x2) be a homogneous polynomial of degree n. Let C be the set of points [a0 : a1 : a2] in RP2 such that
F (a0 : a1 : a2) = 0. Let a be a point on C. Provided that∇F (a) 6= 0, the tangent line to C at a = [a0 : a1 : a2] is the line

x0
∂F

∂x0
(a) + x1

∂F

∂x1
(a) + x2

∂F

∂x2
(a) = 0

in RP2 and a is said to be singular if∇F (a) = 0.

(i) Show that a lies on the tangent line to a.

(ii) Given a 3 × 3 symmetric real matrix B its associated conic is the set of solutions to the equation xTBx = 0 where
x = [x0 : x1 : x2] and the conic is said to be singular ifB is singular. Show that a conic is singular if and only if it has
a singular point.

(iii) Sketch the curves y2 = x3 and y2 = x2(x + 1) in R2. What singular points fo these curves have? Show that y = x3

has a singular point at infinity.

Proof. (i) By Intro Manifolds Sheet 1 Question 2, F is homogeneous of degree n implies that 〈∇F (x),x〉 = nF (x). Hence
F (a) = 0 implies that 〈∇F (a),a〉 = 0. That is, a lies on the tangent line to a.

(ii) Let F (x) = xTBx. Then∇F (x) = 2Bx. We have:

C has a singular point a⇐⇒∇F (a) = 2Ba = 0

⇐⇒ kerB 6= {0}

⇐⇒ B is singular

⇐⇒ C is singular

(iii) The sketch of the two curves:

x

y
y2 = x3

x

y
y2 = x2(x+ 1)

We observe that both curves have a singularity at (0, 0). For the curve y = x3 in R2, we embed R2 into RP2

by identifying (x, y) with [1 : x : y]. We make the equation of the curve homogeneous (of degree 3) by setting
F (x, y, z) = x3 − yz2. Then clearly the vanishing loci of F on R2 is the curve y = x3.

On the line of infinity, z = 0. F (x, y, 0) = x3 = 0 =⇒ x = 0. The locus of F at infinity is [0 : 1 : 0]. We compute that
gradient of F :

∇F (x, y, z) = (3x2,−z2,−2yz).
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Then∇F (0, 1, 0) = 0. We conclude that [0 : 1 : 0] is a singularity of the curve.

Question 6

Find all rational numbers x, y such that x2 + y2 − xy = 1.

Solution. We embed Q2 into QP2 via (x, y) 7→ [x : y : 1]. Then the curve x2 + y2 − xy = 1 is the loci of the quadratic form
F (x, y, z) = x2 + y2 − xy − z2. Let C be the conic represented by F in QP2. The Gram matrix associated with the
quadratic form is given by

B =


1 −1

2
0

−1

2
1 0

0 0 −1


We choose x = (1, 1, 1), a zero of F in Q3, and X = 〈x〉 ∈ QP2. Consider the projectiv line L : z = 0 in QP2. Clearly
X /∈ L. Then by Theorem 9.10 in the lecture notes, there is a bijection α : L → C such that for each Y ∈ L, X,Y, α(Y )

are collinear. For Y = 〈y〉 = 〈(λ1, λ2, 0)〉, α is given explicitly by:

α(y) = 〈By, y〉x− 2 〈Bx, y〉 y

(The pointX and the line L are chosen deliberately such that the solutions are symmetric in the parameters λ1 and λ2.)

We compute 〈By, y〉 and 〈Bx, y〉:

〈By, y〉 =
(
0 λ1 λ2

)
1 −1

2
0

−1

2
1 0

0 0 −1


 0

λ1

λ2

 = λ21 + λ22 − λ1λ2

〈Bx, y〉 =
(
1 1 1

)
1 −1

2
0

−1

2
1 0

0 0 −1


 0

λ1

λ2

 =
1

2
(λ1 + λ2)

Therefore

α(y) = (λ21 + λ22 − λ1λ2)(1, 1, 1)− (λ1 + λ2)(λ1, λ2, 0) = (λ22 − λ1λ2, λ21 − λ1λ2, λ21 + λ22 − λ1λ2)

For λ21 + λ22 − λ1λ2 6= 0, we deduce that
(

λ22 − λ1λ2
λ21 + λ22 − λ1λ2

,
λ21 − λ1λ2

λ21 + λ22 − λ1λ2

)
∈ Q2 are on C for λ1, λ2 ∈ Z.

Moreover, we claim that any rational solution of x2 + y2 − xy = 1 can be expressed in the given form. This is because α
is surjective.

Question 7

Let V be a 3-dimensional real vector space and suppose that L0, L1, L2, L3 are four lines in the projective plane P(V ) all
intersecting in a common point x. Explain why

(i) if L is a line in P(V ) that does not pass through x, but intersects Li in a point xi (so x0, x1, x2, x3 are four distinct
collinear points), then the cross-ratio (x0x1 : x2x3) is independent of the choice of Li.

(ii) the cross-ratio defined in (i) equals the cross-ratio (L0L1 : L2L3) formed by regarding L0, L1, L2, L3 as collinear
points of the dual projetive plane P(V ∗).

Proof. (i) Consider two different lines L and L′, which corresponds to two sets of points: {x0, x1, x2, x3} and {x′0, x′1, x′2, x′3}.
Let x = 〈a〉, x1 = 〈b〉 and x2 = 〈c〉, where a, b, c ∈ V are linearly independent. Since x′0 lies on the projective
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line xx0, we can set x′0 = 〈a+ b〉. Since x′1 lies on the projective line xx1, we can set x′1 = 〈a+ c〉. Since x2, x3
lie on the line x0x1, we have x2 = 〈b+ µc〉, x3 = 〈b+ νc〉 for some µ, ν ∈ R\{0}. From the figure we observe that
x′2 = xx2 ∩ x′0x′1 = 〈(1 + µ)a+ b+ µc〉 and x′3 = xx3 ∩ x′0x′1 = 〈(1 + ν)a+ b+ νc〉.

Let L = P(U) = P 〈b, c〉 and L′ = P(W ) = P 〈a+ b, a+ c〉. Then the linear transformation ϕ : U →W given by

ϕ(b) = a+ b ϕ(c) = a+ c

induces a projective transformation ϕ̃ : L → L′, which sends x0, x1, x2, x3 to x′0, x′1, x′2, x′3 respectively. Since the
cross-ratio is preserved by a projective transformation, (x0x1 : x2x3) = (x′0x

′
1 : x′2x

′
3). We conclude that the cross-

ratio is independent of the choice of L.

(ii) We consider {a, b, c} as a basis of V . Then the points have coordinates:

x0 = [0 : 1 : 0] x1 = [0 : 0 : 1] x2 = [0 : 1 : µ], x3 = [0 : 1 : ν]

Let fa, fb, fc be the dual basis of a, b, c. In the dual space P(V ∗), the dual of the lines are given by:

L∗0 = 〈a, b〉◦ L∗1 = 〈a, c〉◦ L∗2 = 〈a, b+ µc〉◦ , L∗3 = 〈a, b+ νc〉◦

In the dual basis, these dual lines have coordinates

L∗0 = [0 : 0 : 1] L∗1 = [0 : 1 : 0] L∗2 = [0 : µ : −1], L∗3 = [0 : ν : −1]

Finally, by explicit calculations, we verify that

(x0x1 : x2x3) = (L∗0L
∗
1 : L∗2L

∗
3) = µ/ν


